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Abstract

Almost one third of the UK’s total energy is consumed by the domestic sector. Occupancy measurement could

have the potential to save significant amounts of that energy, either instantly via a home automation system or

retrospectively via post-occupancy evaluation. However, not many localisation technologies are applicable to a

domestic environment. In this paper three unobtrusive occupancy measuring technologies, i.e. Passive Infra-Red

(PIR), Carbon Dioxide (CO2) and Device-free Localisation (DfL), are compared. Their operation is explained

and possible advantages and disadvantages are outlined. A qualitative experimental study then analyses the

abilities of each system to detect overall occupancy, detect room level occupancy, count the number of

occupants and localise them. It has been found that CO2 and PIR sensors are very limited. The impacts of other

factors, such as windows or occupants’ metabolic rates, were significant on the reliability of the measured data.

Device-free localisation on the other hand has great potential, but requires further research.
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1. Introduction



The domestic sector consumed 30.5% of the UK’s final energy in 2010 [1]. Improving the energy efficiency of a

dwelling is a challenge, as a variety of factors influence its energy consumption. One attempt has been to give

occupants feedback of their energy consumption and thus make them consciously change their behaviour [2].

Providing occupants additionally with their location could further increase the potential of this method as shown

in [3].

Other attempts have been made by using automation systems, as even the most energy aware consumer would

not be able to control on a 24 hour basis, for example, complex heating patterns that are related to the outdoor

weather changes and associated lags in fabric heat flows. Boait and Rylatt [4] demonstrated a space and water

heating control system that based on occupancy data was able to achieve savings of approximately 14 %.

Karjalainen et al. [5], who suggest the use of a spatially integrated control system, highlight that occupancy

detection is crucial in order to improve energy efficiency, as their presence and level of activity needs to be

known. However, if energy saving measures are taken autonomously, there could be conflicts of interest

between the occupants and the automation system. To reduce or even prevent their occurrence the number of

occupants and their locations should also be detected. Furthermore, this would allow the system to take more

educated decisions; and similarly the resolution of information given through post-occupancy evaluation could

be increased.

However, there are not many localisation systems that are appropriate for a domestic environment. Video

surveillance for instance can be excluded for privacy reasons; the Global Positioning System (GPS) is not able to

penetrate external walls and even other tag-based systems, such as Radio Frequency Identification (RFID),

would restrict the occupants to wearing tags. In a domestic environment a localisation system is required, which

does not reveal the occupant’s identity, which is unobtrusive, which needs low maintenance, which is visually

pleasing and which is energy efficient itself. Two established systems fulfilling these requirements have been

identified. They are based on Carbon Dioxide (CO2) and Passive Infra-Red (PIR) sensors. These as well as an

emerging third technology called Device-free Localisation (DfL) will be introduced and analysed in this paper.

In section 2 each system will be explained in detail, along with their advantages and disadvantages. Section 3

will describe the methodology used to experimentally compare the three technologies. The results will then be

described in section 4. Finally, section 5 will discuss the findings, suggest further research areas and conclude

the paper.



2. Technology descriptions

2.1. CO2 technology

Humans naturally exhale CO2 on a constant basis. Therefore, the CO2 concentration in a building can be used as

an indicator of occupancy, assuming humans are the only major source of CO2 in the building. Human’s CO2

generation rate depends heavily on their metabolic rate, which itself depends on the type of activity they are

doing. This is clearly shown in Levine et al.’s [6] table 1, which has been quoted by Leephakpreeda et al. [7].

However, the metabolic rate is dependent on other factors too and there is no proven method of measuring it in

real time. Therefore, research projects assume that the changes in CO2 generation related to the metabolic rate

are marginal and that an average value can be taken. Leephakpreeda et al. [7], as well as others [8-10], made this

assumption in their experiment to deduce the number of occupants from the CO2 measurements.

The experiments took place in schools or office buildings. Some of these experiments were conducted by placing

a CO2 sensor in a single room [7, 8]. Although this is advantageous for demonstration purposes and experimental

simplicity, not many buildings can be represented by a single room. In domestic buildings, interior doors are

frequently used to separate spaces. Also, occupants, compared to pupils or office workers, are more likely to

move around inside their house. The created air circulation patterns spread the CO2 content over a wider space.

Consequently, CO2 content might be measured in unoccupied areas. References [9, 10] tried to bypass this

complexity by simply measuring the CO2 content in the corresponding ventilation ducts. Although, occupancy

can be detected, this method does not have the potential to localise a person.

Ventilation systems are the reason the CO2 based occupancy measurement was introduced. To meet indoor air

quality standards, ventilation systems need to measure the level of pollution. CO2 is one of the most common

gases in the atmosphere and therefore an ideal reference factor. Also, as mentioned, CO2 is exhaled by humans

on a constant basis. Hence, the Demand Controlled Ventilation (DCV) strategy assumes that the number of

persons present can be estimated using their average CO2 emission rates to then adapt the ventilation rate [11]. In

this context the ventilation rates are controlled and known at all times. However, in domestic environments the

ventilation rates can vary significantly, as ventilation is often achieved by opening windows instead. The relation

between emitted and extracted CO2 content is therefore not linear anymore and makes it more difficult to

estimate the number of persons present.



Also, CO2 sensors have a significant reaction time. Meyn et al. [12] estimate it to be between 10 to 20 minutes.

Emmerich and Persily [13] demonstrate that it is dependent on the volume of the room and the ventilation rate.

However, this approach still assumes the air content to be well-mixed due to constant ventilation. In a non-

ventilated room many other factors could influence the reaction time, such as the CO2 dissipation within the

room, the layout of the room, the infiltration rate, etc. In addition, real world variables, like wind speed and

pressure differences, would have an impact. This delay in reaction time would be especially problematic if the

residence time of occupants was short. Control strategies, which require fast switching times, could not be

implemented. Even the efficiency of slower strategies would be affected.

2.2. PIR technology

Passive Infra-Red sensors exploit the fact that heated objects emit infra-red light. They detect moving objects of

one temperature on a background of another temperature. In buildings the PIR sensors are usually adjusted as

closely as possible to the average human body temperature to identify occupancy more effectively. However,

heat currents from HVAC systems can also trigger a PIR sensor, as mentioned by Teixeira et al. [14]. This is

called false positive output and can simply be sensor related as in Dodier et al.’s experiment [15]. PIR sensors

also suffer from false negative outputs, for example if occupants remain still. Furthermore, Akhlaghinia et al.

[16] demonstrated in a domestic-like environment that PIR sensors can have difficulties to cover the desired

visual area. They also point out the case in which a sensor associated with one room, is triggered by events in

another room.

Floyd et al. [17] showed that PIR controlled lighting, using a time-delay algorithm, can result in energy savings

as well as energy wastage. They conclude that the setup, i.e. the sensors, their location and the associated

control, is the key factor. In addition, Floyd et al. highlighted that occupancy patterns and ownership of space

also impact potential energy savings.

The PIR sensor’s output is binary and can therefore not differentiate between the presences of one or several

persons. A misconception is that the rate of triggering can be used to infer the number of occupants. However,

PIR sensors have the advantage that they are cheap, low in energy consumption, easy to deploy and that they

operate in real-time.



2.3. DfL technology

In recent years a new human presence measuring technology has been developed based on radio signals. Device-

free Localisation does not require the person to take actively part. It simply exploits the fact that the human body

absorbs partially a radio signal, thus decreasing the received signal strength (RSS). Intensive research has been

carried out with radios based on the IEEE 802.11 standard, also known as Wi-Fi. Seifeldin et al. [18], for

example, located a static person in an area of 750m² with an average error of 6.74m. They suggest that DfL

works particularly well at the 2.4GHz frequency, as this corresponds to the resonant frequency of a water

molecule and as the human body is mainly made of water. The IEEE 802.11 standard is very data and power

intensive and therefore its main application is the wireless connection to internet access points. However, it is not

suited for home automation equipment. The IEEE 802.15.4 standard on the other hand, is more appropriate as it

is designed for low data rates, low power and high reliability. Radios of this standard also operate in the

unlicensed 2.4GHz frequency band and are therefore similarly sensitive to human presence. Wilson and Patwari

[19] proved that successfully by tracking a person in an area of 72.5m² with an average error of 1m. They also

showed that DfL works through walls.

At the moment, a difficulty for DfL is the reliable estimation of the number of people present. Nakatsuka et al.

[20] suggest that it can be deduced from the average and the variance of the RSS. However, their results do not

show a linear relationship with the number of people present. They also suggest that the link quality indicator

(LQI) might give more information, as it takes the noise into account.

Besides noise multipath propagation impacts the quality of the signal. This phenomenon is mainly related to

scattering and reflection of the signal within the environment [21]. Vance et al. [22] employed a filter to reduce

these effects. Alternatively, the signal patterns in the environment can be learned previous to the localisation and

can then be taken into account during. Kosba et al. [23] demonstrated such an approach successfully. However,

the training required for such algorithm could prove problematic in a domestic environment. In a different study,

Kosba et al. [24] demonstrated that the line-of-sight of the communicating radios is especially sensitive to human

presence. The infrastructure should therefore carefully be designed to improve the localisation of occupants.

3. Methodology



The test-bed chosen to compare occupant detection strategies is a 3 bedroom domestic house. It is equipped with

CO2 sensors on the landing and in every living area, i.e. the living room, the dining room and all bedrooms. The

living areas as well as the kitchen are also fitted PIR sensors on the ceiling. In addition, several temperature and

humidity (TH) sensors are fitted throughout the house. All the CO2, PIR and TH sensors have embedded Jennic

JN5139 modules. Each module includes an IEEE 802.15.4 transceiver, which is operated by the JenNet protocol.

The data recorded by the sensors is sent approximately every 4 minutes via routers to a data logging system. The

system stores these values and simultaneously records the signal strength associated to each of the sensors.

JenNet, unlike most, calls the signal strength LQI and not RSS. This could lead to confusion, as the term LQI is

used in other literature for the distortion of the signal and not its strength. For consistency the term LQI will be

used as replacement for RSS in this article. A signal “sniffer” has also been used to monitor the network traffic.

Additionally, the house is equipped with a tag based ultra-wideband (UWB) tracking system, called Ubisense.

This will be used as a reference during the tests to measure the actual location of the participants. The layout of

the CO2 and PIR sensors is illustrated in figure 1. The TH sensors as well as other components of the JenNet

network are not represented, as the relation between their positions and the occupants’ positions might not be

linear. The UWB Ubisense sensors are also shown in figure 1.

Furthermore, the house is equipped with a MVHR. The air is extracted from the kitchen, the bathroom and the

toilet. The fresh air is supplied to all living areas, i.e. living room, dining room, 1st bedroom, 2nd bedroom and 3rd

bedroom. The extraction and supply of the MVHR can be switched on/off independently. The DCV strategy

described earlier, does not apply to this MVHR, it only operates at a constant extraction/supply rate?

The floor area of rooms positioned above each other, e.g. the living room and 1st bedroom, are approximately

equal in floor area, as can be seen in Table 2. However, the room height is different between the ground and first

floor and therefore is the volume of these rooms. In order to draw comparisons, overlaid rooms will be treated as

equally sized.

Each of the three systems mentioned will be tested to determine whether it can detect occupancy, differentiate

the number of people present and has the potential to localise an occupant within a room.

4. Results



The experiment took place over several days. The findings of the individual days were similar; therefore only

one day’s data will be presented in this paper.

The house was occupied between 10:45 and 18:00 by the three occupants A, B and C. Each of the occupants had

been given a UWB tag with an individual identification number. In table 3 the actual location of the occupants

during the experiment has been transcribed from the Ubisense recordings. In addition, circumstances that could

affect CO2 or PIR results have been included.

4.1. CO2 measurements

The house was unoccupied between approximately 18:00 the previous day and the start of the experiment. The

data from all the sensors are plotted in figure 2 to give an impression of their relative responses before discussing

each in detail. The initial CO2 content measured by all sensors was between 400 and 500ppm. These values

correspond to typical outdoor CO2 content and can therefore be taken as baseline reference. The CO2

concentration then starts to rise shortly after the occupants are present.

The person in each room was most of the time further than 0.6m away from the CO2 sensors, as suggested by

[11], in order to not directly influence the measurements. In the figures 3 to 7 the individual room’s CO2

measurements are plotted against recorded occupancy.

In order to explore the effects of variable space separation, the interior doors have been closed from 12:00 to

13:00 and from 17:00 to 18:00 as shown in table 3. In the first case, it can be seen that before 12:00 the CO2

content increased in all areas of the house, even unoccupied once. Once the doors were closed, the content in the

occupied rooms accumulated faster whilst it slightly decreased in the unoccupied rooms. Very important is also

the moment when the doors were opened again. The air with the higher CO2 content mixed with the air of the

unoccupied rooms. This could lead to misinterpretation of occupation or mask the actual change of location of an

occupant, as happened in the experiment. As shown in table 3 occupant A, who occupied the living room, moved

to the front bedroom when all doors were opened at 13:00. These results suggest that a CO2 sensor’s output is

highly dependent on the air circulation within its space.

Furthermore, CO2 measurements also dependent on air circulation between indoor and outdoor space. The CO2

level in the dining room, which has been occupied throughout the whole experiment, has been rising more

slowly than in other rooms. The initial baseline level of the dining room CO2 sensor and its sharp drop at 6pm



suggests that there might be higher localised air flows around the CO2 sensor. This could be due to a higher

infiltration rate of the dining room, related to the finishing, or the position of the sensor which is, as shown in

figure 1, relatively close to a French door. Both of these causes can only be revealed during the commissioning

of a CO2 system and can therefore hardly be taken into account during the design stage.

Also, drafts are often voluntarily created either by ventilation systems or by occupants using windows. To assess

the impact, both scenarios have been tested. The MVHR has been switched on from 15:00 to 16:00. The only

room occupied was the dining room. Even though two persons were present at this time, the CO2 levels dropped

for approximately 30 minutes before stabilising.

Once the MVHR was switched off again, the window in the living room has been opened from 16:00 to 17:00.

Surprisingly, the CO2 level in the dining room dropped below the CO2 level in the living room, although both

were occupied by one person during this period. This phenomenon could be explained with the suggested draft

in the dining room. However, both, the MVHR test and the window test, highlight that CO2 occupancy detection

is influenced by air quality improving measures. As mentioned in section 2, knowing the ventilation rate could

improve the estimation of the CO2 emission rate. Nevertheless, it would comprise the accuracy of the CO2

system.

The ability of the CO2 system to detect the number of people has been examined. Two persons were present in

the dining room between 14:20 and 16:00. In figure 4 the CO2 levels shown are distinctively higher during that

period. It also needs to be reminded, that the MVHR, which has an outlet in the dining room, was switched on

from 15:00 to 16:00. However, the CO2 level were similar to those of the living room and 2nd bedroom during

the period with closed doors when only a single person was present in each of those rooms. On the other hand,

the very sharp rise in the living room between 17:00 and 17:30 is not related to an increased number of

occupants, but only to the increased metabolic rate of a single occupant due to physical exercise as mentioned in

table 3. Therefore, conclusions cannot be drawn reliably on the number of occupants based on CO2 content.

4.2. PIR measurements

The measurements represented in figure 8 are the times each PIR sensor has been triggered in the 4 minute time

interval and are again presented on a single plot to compare the combined sensor data with the occupancy of the

house. It shows that overall occupancy has been detected correctly.



The presence has also consistently been detected within the single rooms, as shown in the figures 9 to 14.

However, the PIR sensors were prone to negative false outputs. Several time intervals had no PIR measurements

although the room was occupied. This occurred in all rooms and was probably caused by a reduced amount of

movement of the occupant. The longest period of negative false measurement was in the living room for half an

hour between 11:38 and 12:07.

Positive false outputs on the other hand have not been detected. The figures 11, 12 and 14 show values outside

the occupied periods, however, they are all related to events that took place. In the kitchen, the bin has been used

at several occasions and the opening and closing of its door has been measured. In the 1st bedroom and 3rd

bedroom the closing of the doors at 12:00 and 17:00 respectively has been detected.

Furthermore, it has been noticed that the PIR sensor in the kitchen, shown in figure 11, has been triggered very

often between 14:00 and 14:20. However, the person has consciously been very still in that time period. The

higher output could be related to the fact that the person was standing, rather than sitting. Also, the kitchen has a

significantly smaller surface area than the other rooms. Smaller stimuli could therefore trigger greater outputs. It

could also simply be sensor related. The pure heating of the pan or the lighting up of the hob whilst cooking can

be ruled out as a cause, because the same hot pan has been left on from 14:20 to 15:00, which did not trigger

anything.

Also, having two people in the same room did not result in greater PIR peaks as can be seen in figure 10. The

average might be slightly higher over that period, but the average was also high around 11:00 when just a single

person was present. The only real information that can be deducted from PIR values is the amount of movement

that is taking place in the sensor’s visual area. The assumption that greater movement equals more people

present cannot always be applied. Over the whole day the biggest PIR values were measured in the living room

between 17:00 and 17:30, which were caused by the physical activity of occupant A.

4.3. DfL measurements

The signal strength of all the PIR sensors, CO2 sensors, TH sensors and routers communicating via JenNet is

shown in figure 15. This was examined to see if variations correlated with the presence of occupants.



The signal strength for the occupied period from 10:45 to 18:00 has a clearly distinguishable pattern compared to

the rest of the day. The fluctuations mainly before, but also after that period are related to the way the Jennic

modules calculate their LQI value.

LQI = (47 – MED)*6

If (LQI < 0) LQI = 0

Else if (LQI > 255) LQI = 255

MED represents the number of gain stages required for the correct reception of a package and 47 is the

maximum number of gain stages available.

Therefore, if the signal is slightly noisy and varying between 2 gain stages, the LQI value will vary in step sizes

of 6. These variations also seem to occur periodically. During the occupied period on the other hand, the LQI

values vary less symmetrically. Additionally, the variations are often greater to one step size of 6 and supported

by other sensors with similar signal changes. Indeed, a significant peak of the Landing TH sensor is shown in

figure 15 between 01:47 and 01:51. However, it occurred by itself with no support of other sensors and it took

the value 255, which seems very discontinuous.

Several sensors during the experiment changed from a medium LQI value abrupt to the maximum value of 255.

Six sensors had the maximum LQI value of 255 over the entire 24 hour period. These sensors gave correct

readings and worked fine, however it is believed that this particular value might have several functionalities.

Besides representing the signal strength, it might also be used as replacement for missing signal strength

information.

The signal “sniffer” showed that the connections were constantly rerouted. JenNet has a self-heal function,

which finds new connection paths if the existing path is degrading. This function however makes it very difficult

to know the real-time communication path and the associated line-of-sight. Therefore, it was not possible to

associate a location or room to the signal strength of a specific radio, i.e. although a sensor is positioned in one

room, the human presence in another room might impact its signal strength more. Also, it has been noticed that a

lot of network traffic was navigated through the same connection paths. This decreases the area covered by radio

signals and could lead to blind spots.

In figure 16 are the LQI values of two sensors represented, whose signal clearly responded to the combined

human presence over the entire measurement period. It is noticeable that the signals started varying before the



occupants entered the house and also after they left it. As radio waves travel through walls, DfL purely aimed at

indoor applications could be prone to give feedback related to events that take place outside the desired area.

5. Discussion and Conclusion

Three unobtrusive occupancy measuring technologies that could be applied to domestic environments have been

outlined. CO2, PIR and DfL technologies were assessed in an experimental setup, which found that all were able

to detect overall occupancy of the dwelling. However, each technology had intrinsic restrictions.

In order to improve occupant localisation using CO2 sensors, the air circulation patterns in the environment need

to be known and measured. Simulations backed-up by real data would be beneficial to assess the quality of the

finishing of the building, i.e. the infiltration rates. In addition, doors and windows would need to be monitored.

Also, data from existing ventilation system could be linked in and some form of predictive algorithm would be

required to compensate for the slow response time of CO2 sensors.

The PIR system on the other hand can hardly be improved, as the negative false outputs are intrinsic to the

sensors mode of operation. However, increasing the density of deployed sensors and varying the visual angles

could improve their detection abilities. Advanced algorithm could potentially infer the number of occupants in

specific setups.

Another option could be to combine several occupant detection systems, as described by Meyn et al. [12] and

Dong et al. [25]. The gathered data could complement each other to deduce more information. However, CO2

and PIR are both prone, directly and indirectly, to the metabolic rate of occupants. Therefore, even combined

they would have difficulties to determine the number of occupants. Also, occupants might be reluctant to install

a great amount of sensors in their dwelling, as this increases costs and maintenance. Especially if the sole

purpose of the sensors is to localise the occupants.

Device-free Localisation on the other hand has the advantage that it comes without any additional hardware

costs, as most home automation systems are based on wireless radio connections. The exploitation of the data as

well as the optimal setup would require further research work. The overall occupancy detection has already been

successfully demonstrated. The research literature suggests that there is potential for DfL to detect the position

and the number of occupants without the need for complimentary information. Also, events happening outside

the dwelling could be monitored.
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Figures

Figure 1: Floor plans of the house with CO2, PIR and Ubisense sensors



Figure 2: CO2 content in all rooms versus overall human presence

Figure 3: CO2 content versus human presence in the living room
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Figure 4: CO2 content versus human presence in the dining room

Figure 5: CO2 content versus human presence in the 1st bedroom
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Figure 6: CO2 content versus human presence in the 2nd bedroom

Figure 7: CO2 content versus human presence in the 3rd bedroom
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Figure 8: PIR measurements in all rooms versus overall human presence

Figure 9: PIR values versus human presence in the living room
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Figure 10: PIR values versus human presence in the dining room

Figure 11: PIR values versus human presence in the kitchen
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Figure 12: PIR values versus human presence in the 1st bedroom

Figure 13: PIR values versus human presence in the 2nd bedroom
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Figure 14: PIR values versus human presence in the 3rd bedroom

Figure 15: LQI measurements of all the JenNet equipment versus overall human presence
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Figure 16: The LQI of two particular sensors versus overall human presence
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Type of activity G (L/min per person)

Very light work:

Seated, writing 0.27

Seated, typing 0.29

Seated, talking 0.29

Seated, filing 0.31

Standing, talking 0.31

Standing, filing 0.35

Light work:

Walking 0.44

Lifting, packing 0.53

Table 1: Types of human activity associated with different CO2 generation rates (Source: Leephakpreeda et al.

2001 [5])

Floor Area (m²) Average Height (m) Volume (m³)

Living Room 16.86 2.35 39.63

Dining Room 14.71 2.35 34.57

Kitchen 6.84 2.35 16.08

1st Bedroom 16.86 2.3 38.78

2nd Bedroom 14.71 2.3 33.83

3rd Bedroom 6.76 2.3 15.55

Table 2: Dimensions of the main rooms



Occupied rooms Occupant Adding circumstances

10:45 – 11:00 Living Room A

Dining Room B

11:00 – 12:00 Living Room A

Dining Room B

2nd Bedroom C

12:00 – 13:00 Living Room A

All interior doors were closedDining Room B

2nd Bedroom C

13:00 – 14:00 Dining Room B

1st Bedroom A

2nd Bedroom C (until 13:15) –> 0

14:00 – 15:00 Dining Room B (until 14:20) –> A+B
Cooking food

Kitchen A (until 14:20) –> 0

15:00 – 16:00 Dining Room A+B MVHR on

16:00 – 17:00 Living Room A

Window in Living Room was openedDining Room B

2nd Bedroom 0 (until 16:25) –> C

17:00 – 18:00 Living Room A
Occupant A exercised until 17:30

All interior doors were closed
Dining Room B

2nd Bedroom C

Table 3: Timeline of actual room occupation extra from Ubisense system and added circumstances


