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Abstract

The use of correlation matrices to evaluate the number of uncorrelated stirrer

positions of electromagnetic reverberation chambers has widespread applications

in electromagnetic compatibility. We present a review of recent methods based

on multivariate correlation functions that relates statistical inhomogeneities in

space (frequency) to the reduction of uncorrelated cavity configurations. Full

wave finite-difference time domain simulations of an actual reverberation cham-

ber are performed through an in-house parallel code. The efficiency of this code

allows for capturing extensive inhomogeneous/anisotropic reverberation fields at

frequencies close to the lowest usable frequency (LUF) of the chamber. The con-

cept of effective independent position is revised in light of random sampling and

a model-driven relation with the probability distribution of correlation matrix

entries is used to take into account spatial (frequency) inhomogeneities. Driven

by extensive simulation data, an empirical probability density function is found

for the correlation matrix elements to be non-central t-student distributed with

asymmetry increasing towards low frequencies.
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1. Introduction

Performances of a mode-stirred reverberation chamber (RC) in electromag-

netic compatibility (EMC) applications are intimately related to the number of

independent cavity realizations [1]. Unambiguous evaluation of the number of

independent stirrer positions is still under investigation [38, 18]. Current ap-

proaches rely on the autocorrelation of fields sampled at single site inside the

working volume (WV) of the RC. The autocorrelation function is also used to

calculate the coherence time of the RC [44]. Previous investigators showed that,

despite being inside the WV, by considering only one chamber site results in

a high spatial variability of the autocorrelation coefficient [3, 10, 40]. This ex-

perimental evidence is of crucial importance as the commonly accepted notion

of independence for a stirrer position is just defined by the ρe = e−1 threshold

crossing of the autocorrelation coefficient. Even though it brings about a simple

and effective criterion, this metrics is empirical and borrows a certain amount of

uncertainty in evaluating whether members of the cavity ensemble are strictly

“independent” each other. To this regard, the threshold ρe is typically associ-

ated with the concept of “uncorrelation” rather than “independence”. Those

observations naturally lead to the definition a correlation matrix having each

entry defined by the correlation between two of the total Ns stirrer positions.

The number of entries of the so defined correlation matrix is given by Ns ×Ns.

In a good RC, we expect a low value for many correlation matrix elements, i.e.

many stirrer position pairs have “low correlation”.

In this multivariate approach, an alternative way of evaluating the number

of uncorrelated positions of mechanical mode-stirrers is based on the calculation

of the correlation matrix through a grid of Nw spatial points, selected among an

arbitrary volume of the chamber [22]. An alternative application of the correla-

tion matrix involves single-point measurements through a wide frequency range

and therefore it leads to “uncorrelated frequencies” rather than spatial points

[41]. This way proves more fast and efficient as populating spatial correlation

matrix requires for a large amount of field/power measurements. Hybrid tech-
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niques can also be conceived based on the correlation matrix. Spatial point and

frequency point data can be combined to check stirring performance.

In this work, we review existing multivariate strategies grounded on the

correlation matrix that are important to assess RC performances. The typi-

cal framework we use to test different performance indicators is a reverbera-

tion chamber equipped with a “carousel” shape mechanical stirrer [36]. Being

based on multi-spatial multi-frequency sampling, these indicators can be used

in arbitrary complex dynamic electromagnetic environments. In particular, the

mode stirrer can be either present as in RCs or absent as in wave chaotic bil-

liards or enclosures [17, 6, 23, 43]. Correlation based analysis of uncorrelated

chamber states are useful to analyze the RC behavior in the transition between

undermined and overloaded regimes, as well as to create finite sets of realiza-

tions behaving closely to ideal statistical ensembles. The strategies being used

throughout the paper are focused on the evaluation of:

1. uncorrelated stirrer positions adopting a spatial correlation matrix (hence-

forth referred as “US–PM”);

2. uncorrelated stirrer positions adopting a frequency correlation matrix (hence-

forth referred as “US–FM”);

3. uncorrelated frequency steps adopting a spatial correlation matrix for a

single stirrer position (henceforth referred as “UF–PM”).

In any strategy we analyze the effect of varying the involved parameters,

number and distance of frequency and spatial points, and we compare results to

those obtained applying the 1–D circular autocorrelation method, as suggested

by IEC standard [1] and applied on simulated S21 parameters.

Finally, we use the correlation matrix to investigate:

4. the uncorrelated frequency steps adopting a stirrer position correlation

matrix at a single spatial point (henceforth referred as “UF–SM”);

5. uncorrelated spatial points adopting a stirrer position correlation matrix

for each single frequency (henceforth referred as “UP–SM”);
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Figure 1: Geometry of the reverberation chamber (RC) equipped with a “carousel” stirring
system. The simulated RC is that of Ancona EMC laboratory, it is Lx = 6 m long, Ly = 4 m
wide and Lz = 2.5 m height. The vertical plates are h = 2.4 m high and they have a Z-folded
shape. The rotating system describes a cylindrical volume whose base is centered in x = 4 m
and y = 2 m, the external diameter is de = 3.8 m and the internal diameter is di = 3.3 m.

6. uncorrelated spatial points adopting a frequency correlation matrix (hence-

forth referred as “UP–FM”).

2. RC Performance Indicators

The use of the circular autocorrelation function (ACF) [1] is well accepted

for evaluating the number of statistically uncorrelated stirrer configurations,

Neff . More advanced methods based on the ACF have been proposed to as-

sess the performances of mode-tuned reverberation chambers (MTRC) [28, 3].

Recently, the concept of multi-resolution for the construction of correlation ma-

trices in MTRC has attracted the interest of the EMC community [13] where

the MTRC performances are evaluated considering multiple space/frequency

points, in contrast to the single space/frequency point approach adopted in the

ACF method.

4



We now illustrate the different multi-resolution methods proposed in the

literature to estimate Neff from an ensemble of Ns cavity realizations. A def-

inition of uncorrelated stirrer positions based on a multivariate approach has

been proposed in [38, 22]. A correlation matrix has been defined in [22, Eqs.

(1)-(6)]

Rs =



ρ11 ρ12 . . . ρ1Ns

ρ21 ρ22 . . . ρ2Ns

ρ31 ρ32 . . . ρ3Ns

...
...

...
...

ρNs1 ρNs2 . . . ρNsNs


, (1)

where ρij is the Pearson correlation coefficient between pairs calculated as de-

tailed in [22, Eqs. (8) and (9)], and where Ns is the total number of cavity

realizations, e.g., the number of stirrer configurations in mechanical stirring.

The number of multiple space/frequency points adopted in the calculation of

individual Pearson coefficients is hereafter denoted with M . In [10], the number

of uncorrelated positions are related to the number of independent eigenvalues of

the correlation matrix Rs. Those elements are calculated as two-point correla-

tion functions between two arbitrary points, and therefore require multi-resolved

field sampling. This has been achieved, for example, through a “platform stir-

ring” strategy [10]. From information theoretic arguments, it turns out that the

number of independent eigenvalues is

Neff =
Tr2

[
Rs
]

Tr
[
R2
s

] , (2)

where Tr[·] indicates the trace of a matrix. This perspective has the advantage

of being threshold-less, i.e., the elements of Rs do not need to be tested against

the empirical e−1 limit to achieve Neff . Threshold-based approaches currently

adopted in the IEC normative [1] rely on single point circular autocorrelation

coefficient (CC) to evaluate Neff . It has been shown that, with respect to the

IEC method, the expression (2) underestimates Neff .

A similar philosophy is adopted in [41] where the concern is the number

of uncorrelated measurements rather than stirrer positions. The measurement
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correlation has been defined in terms of the maximum Renỳı entropy, again

based on the eigenvalues of the correlation matrix. In particular, given the

maximum entropy (maxentr) achievable through Ns measurements

S2 = log (Neff) , (3)

it is straightforward to have an estimation of the number of uncorrelated mea-

surements reading

Neff = eS2 . (4)

Since S2 can be calculated from the eigenvalues λn of Rs, denoted as λn, then

Neff =

(∑Ns

n=1 λn

)2

∑Ns

n=1 λ
2
n

. (5)

The analogies between between (5) and (2) are many, and essentially they con-

stitute the same formula achieved through two diverse approaches [8]. The

advantage of (5) is that the correlation matrix can be populated through a fre-

quency scanning, i.e., a frequency sampling would lead to Rf as in [41], rather

than the spatial scanning, leading to Rs. It is worth remarking that the es-

timator (2), used in different versions in [41] and [10], depends on the sample

length, and the estimated number of uncorrelated positions Neff is given by [8,

Eq. (14)]

N̂eff =
Neff

1 + Neff

M

, (6)

where, again, M indicates the number of multiple space/frequency points adopted

in the calculation of individual Pearson coefficients, or sample length in [8,

Sec. 2.b.], and N̂eff is the sample estimate of Neff . The bias expression in (6)

converges to Neff for a relatively high number of degrees of freedom M , i.e.,

M � Neff . A proof of (6) can be obtained by noting that the correlation matrix

can be expanded in true principal components (PC) (see [8] for more details).

It has been indeed demonstrated that the RC field admits PC decomposition

of the stirring process in empirical (time-domain) modes, called as “eigenstir-

rings” [5]. Inherently, (6) can be also used to perform a systematic correction
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of the estimates if we make use of (2) to evaluate the number of effective stirrer

positions with a few finite difference time domain (FDTD) lattice points [22].

Based on an entropic perspective, we can use (5) to carry out the calculation

of uncorrelated stirrer positions through either Rs or Rf . It has been already

acknowledged that the production of entropy from scattering processes over

finite regions of space is important to evaluate the degrees of freedom of a

complex EM system [9]. A study of the time-domain entropy generation in RC

has been performed in [19], through numerical FDTD simulations of an actual

RC, and the linear increase at early time followed by a saturation to the maxentr

limit of entropy at late time

S2 ≈

 σ t log (Neff) , t < tb,

log (Neff) , t > tb,
(7)

where σ is the growth rate, tb is a build-up time of which an estimate is given

in [26], was observed to saturate at the maxentr limit (3) which converges

to the high-frequency estimate. This behavior is typical of multi-component

(many-body) complex systems and has been observed in quantum many-body

systems operating in chaotic regime [42]. Very recently, a similar result has

been demonstrated in the context of time-dependent Hamiltonians with Floquet

instabilities, where the entanglement entropy of a quantum system grows in time

with a rate determined by the Lyapunov instability exponent [7]. Therefore,

in the high frequency asymptotic regime, where the RC field mixing can be

imagined to take place through the interference of several plane waves following

classical ray trajectories, the so-called semiclassical regime, the result in [7,

Theorem 2] for a wave system supports the hypothesis that

σ ≈
L+∑
n=1

Λn, (8)

where L+ is the number of positive (classical) Lyapunov exponents Λn. The

connection between (7) and (8) deserves further modeling effort in order to be

clarified. This is a non-trivial task that involves the connection between entropy

of the random field underpinned by interference, and classical ray dynamics
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associated with the wave system subject to instability and chaos.

A step forward has been carried out in [39] through the evaluation of uncor-

related pairs in the correlation matrix. The method is based on graph theory

to estimate the number of uncorrelated stirrer positions. A graph is developed

where each node corresponds to a stirrer position, and an arc is formed when

the correlation between two positions (i, j) satisfies the cutoff condition [1]

rij =
[
Rs
]
ij
≤ e−1

[
1− 7.22

(N2
s )

0.64

]
. (9)

Equation (9) is an extension of the correlation threshold ρe based on sampling

theory. The Authors then use standard algorithms to search for the so-called

“maximum clique” of the graph, and identifies it as the maximum number of

uncorrelated positions. The result is a graphical method to count the number

of uncorrelated positions through a direct test of uncorrelated node pairs. The

method in [38, 3] relies on a threshold, while the methods proposed in [10, 40]

do not rely on it, i.e., they can be classified as threshold-less.

The presence of a threshold should not be taken necessarily as a limitation.

Actually, its physical significance will become clear in a random sampling per-

spective, where we imagine that correlation matrix Rs,f entries are realizations

of a unique random correlation coefficient that fluctuates under space/frequency

inhomogeneity.

In the multivariate approach, we introduce a generalized threshold-based

procedure to estimate the number of uncorrelated positions, by exploiting in-

formation of an extended reverberation (sub) space rather than a single point.

The generality of the method resides in the fact that the sampling over mul-

tiple spatial points/frequencies has been extended to an arbitrary reverberant

subspace independently on the a-priori definition of the WV, and beyond the

orientation of the device under test. The mathematical procedure is detailed

in [22]. The number of uncorrelated stirrer positions comes from counting the

number of elements in Rs,f that are below the threshold (9). Each element has

the meaning of a correlation between two cavity sub-spaces (calculated through

a discrete space/frequency lattice [20] generated from two different stirrer con-
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figurations. More precisely, this number is obtained by taking account of the

symmetry properties of Rs,f , and of the fact that rii = 1, hence

Neff =
N2
s

#
[
Rs,f > r1

] , (10)

where # [·] is the counting operator, 1 is the a square matrix of dimension Ns,

where all elements are 1. When two stirrers are used in an RC, we follow the

procedure described in [35]. Here, the case involving Rs corresponds to US–PM,

while the case involving Rf corresponds to US–FM.

Interestingly, besides stirrer positions, our method can be used to evaluate

the number of uncorrelated spatial points given measurements from a set of

stirrer positions (US–SM, UP–FM). Also, the number of uncorrelated working

frequencies can be estimated from stir sequences (UF–SM), or spatial lattice

sampling (UF–SM).

In all cases, the threshold given in (10) is adopted.

3. Full-wave simulations and results

We now evaluate the number of uncorrelated stirrer positions of an actual RC

simulated by an in-house numerical code. In particular, we focus on the stirring

performances of the “carousel” stirrer previously studied in [36]. Figure 1 shows

the detailed geometry: the stirrer consists of equispaced metallic z-folded blades.

Its rotation describes a cylindrical volume which bounds the uniformity volume

of the chamber, i.e., the working volume (WV).

According to the method discussed in Section 2, we do not restrict our inves-

tigations to an a-priori defined working volume, further requiring a calibration

protocol such as that describe in [1, A.5].

Full wave FDTD simulations of the RC have been recently used by other

investigators [33, 2, 14]. An in-house FDTD code, optimized for BlueGene

computer architecture [32, 37], is used to perform a full wave simulation of the

Ancona’s RC. The EM fields can then be sampled over a dense grid of spatial

points (sampling lattice), for an arbitrary number of stirrer positions [22].
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The RC is then discretized in 201 × 134 × 84 cubic cells with a side of 30

mm, the FDTD time step is ∆t = 50 ps, and the number of iterations necessary

to analyze the entire structure is around 200 000. In the code, the chamber

walls, the carousel blades, and the two antennas are considered made of ideal

conductors. Volumetric air losses are inserted to account for whole losses in

the real chamber operating in our laboratory. The adoption of these equivalent

volumetric losses allow to speed up the computation time, and a provides reliable

numerical results at the same time [34]. Frequency data are obtained by fast

Fourier transform (FFT). Figure 1 shows the sampling lattice (gold solid line

grid) adopted in the simulations, where the Nw points are 0.15 m equispaced.

The discrete (total or Cartesian) field E
(τ)
(mi,mj ,mk) is picked up at Nw spatial

points (mi∆x,mj∆y,mk∆z) of the sampling grid, for each stir state τi = i∆θ,

i = 1, . . . , Ns, with ∆θ angular stirrer step, and Ns total number of stirrer

positions considered in the analysis. In discretizing the continuous stirring, we

assumed that the “uncorrelation angle” of the carousel stirrer is greater than

∆θ. The correlation is then computed by using Np field values. In particular, for

the total electric field we have Np = Nw, while for the three separate Cartesian

components we have Np = 3Nw.

The RC is simulated for 512 (equispaced) stirrer angles, and for each angle

the three Cartesian field components are computed in a grid of 8× 8× 8 = 512.

To reduce the burden of storing very big files, the values computed by the FFT

subroutine were reduced to 2622 equidistant frequency points in the range 0.2–

1.0 GHz. The memory required to store all the data is 189 GBytes.

3.1. Quality factor and coherence bandwidth

We start our analysis by computing the quality factor of the simulated RC in

the investigated frequency range. An average quality factor (Q) can be derived

directly from simulated scattering data by using the formula [25]

Q =
16π2V

〈
|S21|2

〉
ηTxηRxλ3

(
1− |〈S11〉|2

) , (11)
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Figure 2: Simulated Q-factor and coherence bandwidth.

where V is the RC volume, λ the free-space wavelength, S21 the complex scatter-

ing transmission, and S11 the complex scattering reflection coefficient, ηTx and

ηRx the transmitting and receiving antenna efficiency respectively. With refer-

ence to Figure 1, the transmitting antenna is in the point (1.53, 1.31, 0.89) m

whereas the receiving one is in (0.71, 3.19, 1.41) m.

Regarding the efficiencies, we assumed ideal conductors in the antenna sim-

ulations, ηTx = ηRx = 1. Pertaining the mismatching factor, we separated

the incident and reflected signals in the transmission line feeding the antennas,

so we got the realistic scattering parameters. Only in the case of lossless and

load matched antennas, ηTx = ηRx = 1, and 〈S11〉 = 〈S22〉 = 0. An accurate

estimate of Q allows for recovering the RC coherence bandwidth Bc [11, 16, 27]

Bc =
f

〈Q〉
. (12)

Figure 2 shows the simulated quality factor and the corresponding coherence

bandwidth. It is worth noticing that for working frequencies f > 350 MHz, the

RC coherence bandwidth becomes lower than the sampling frequency step we

use, which is ∆f ≈ 305 kHz. This regime corresponds to high-quality factor

modes accompanied by a high modal density which is predicted by the Weyl law

[4]. Despite in high frequency regime, we expect for spectral rigidity and avoided

level crossing to cause overlapping between non-degenerate modes [17, 6, 12].
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3.2. Uncorrelated stirrer positions

Referring to the notation of Section 1, we compute Neff either through sam-

pling grid of Nw spatial points, i.e., the case 1) US–PM, and through a frequency

scanning over Nf frequency points, i.e., the case 2) US–FM. Figure 3 shows Neff

as calculated with Nw = 512 and Nf = 512. The same Figure also reports Neff

computed through the standard, i.e., circular correlation (CC), technique as de-

scribed in the IEC standard [1]. It is worth noticing that the US–PM method

underestimates Neff with respect to the CC method. This happens also vary-

ing the number of grid spatial points [20] and the number of frequency points

[21]. Conversely, the US–FM method overestimates Neff . Again, the sampling

frequency step is greater than or equal to Bc. The effect of bandwidth variation

was investigated in [22], where a lower number of frequency points were adopted

to build up the correlation matrix.

Interestingly, the curve related to US–FM saturates when the cavity coher-

ence bandwidth reaches the sampling frequency, viz.,

Bc ≈ ∆f = 305 kHz . (13)

Below this frequency, evaluating uncorrelated positions with this strategy mean

sampling over Bc, as shown in Figure 2, whence Bc < ∆f results in Neff ≤ Ns.

Finally, the same Figure reports also the computation applying the thresh-

oldless method (2). As expected, the threshold method gives a lower number of

uncorrelated stirrer angles. In fact, equation (2) would return all the 512 posi-

tions as uncorrelated only if all off-diagonal elements of the correlation matrix

were null, above a certain frequency. This is impossible in practice, because the

electric field correlation coefficient between two spatial points in the chamber

is zero only for particular values of distance and frequency, and asymptotically

tends to zero for an infinite distance [24, 15].

3.3. Uncorrelated frequency points

In those RC applications, where the electronic stirring method is thus em-

ployed, it is important to know whether the frequency steps are uncorrelated
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Figure 3: Simulated uncorrelated stirrer positions, for a correlation matrix of grid points (US–
PM) and of frequency points (US–FM). Results applying the IEC standard method are also
reported (CC). The trace (US–PMTL) shows the results obtained applying the thresholdless
method (2).

or not. Figure 4 shows the number of uncorrelated frequencies as calculated in

the UF–PM strategy. It is worth pointing out two interesting features. Adopt-

ing the total field |E|, the frequency points become correlated below 400 MHz,

where the frequency step is lower than the chamber Bc. On the other hand, the

single rectangular component gives a lower number of frequency uncorrelation

points. Conversely, there is no difference when the uncorrelated stirrer positions

are evaluated by |E| or by Ex,y,z [20], i.e. in the US–PM strategy. Results refer

to a fixed stirrer angle. The gray area in Figure 4 shows the spreading of the

uncorrelated frequency points for 16 stirrer positions. This indirectly quantifies

the uncertainty of the estimation. Figure 4 shows a very limited spreading.

The determination of uncorrelated frequency number can also be done popu-

lating the correlation matrix with the field values computed in a single chamber

point by rotating the stirrer (UF–SM). Figure 5 shows the simulated number of

uncorrelated frequencies. A similar behavior to the case UF–PM is observed.

The gray area of Figure 5 shows a larger uncertainty than the one in Figure 4.

Apart this, it can be noted that populating the matrix by field samples col-

lected in many spatial points (Figure 4) the number of uncorrelated frequencies

is a little bit lower than the case when the matrix is populated by field sam-

ples collected for many stirrer positions (Figure 5). This discrepancy is evident
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Figure 4: Simulated uncorrelated frequency points for a correlation matrix of grid points
(UF–PM). Values computed by using each component and the magnitude of the electric field
are reported. The gray area is the spread for 16 stirrer angles.
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Figure 5: Simulated uncorrelated frequency points for a correlation matrix of stirrer angles
(UF–SM). The gray area is the spread for all the 512 grid points.
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up to about 650 MHz in adopting the single Cartesian field components, and

it needs further investigation after analysing the uncorrelation degree of both

stirrer positions and spatial points, Section 4.

3.4. Random stir sampling

The definition (10) has a straightforward physical meaning: the number of

independent positions can be evaluated as the number of stirring configurations

having acceptable spatial dispersion of the (Cartesian or total) field variance.

Therefore, given a sampling subspace, it is possible to construct a two-position

correlation function over a discretized, i.e., tuned, stirrer rotation. The theoret-

ical prediction of Neff based on (10) is not an easy task.

In a very general fashion, we could also treat rij as a random variable

through Rs,f . In this perspective, its probability distribution1 would be reg-

ulated by the space/frequency sampling. Inherently, a randomized sampling

over continuous stirrer rotations is more realistic and would naturally call for

a statistical treatment of rij , though in principle also in deterministic sam-

pling it is possible to linearize Rs,f , order its elements rij , and calculate the

probability density function (PDF) of the correlation as a distribution of its

values. Therefore, also Neff becomes a random variable with probability density

function fNeff
(neff ). Exploiting the addition theorem in probability, we can

turn the probability of the counting operator into a union of probabilities of

the single element fR (r < r). Obviously, the ability of obtaining many single

uncorrelated elements r = rij ≤ r depends on the stirring parameters such as

structure geometry, location, and dimensions. The evaluation of the stirring ef-

ficiency can be performed deterministically by full-wave numerical simulations

or measurements on actual structures. Our perspective calls for a statistical

approach to the problem: instead of a pure deterministic evaluation, it would

be useful to introduce a probability fR (r < r) of the mode-stirrer to make two

arbitrary realizations uncorrelated.

1meaning frequency of value occurrence in the Laplace sense
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Furthermore, counting neff positions in Ns elements means having neff

successes with probability fR (r < r) in Ns trials, that is given by the Bernoulli

(or binomial) distribution. The use of this probability distribution function

requires assuming that the entries of the correlation matrix (1), in our case the

Pearson correlation coefficients, are statistically uncorrelated. Further assuming

a deterministic threshold of r, yields

fNeff
(neff , r) =

(
neff
Ns

)
[fR (r < r)]

neff

[1− fR (r < r)]
Ns−neff ,

(14)

where (
neff
Ns

)
=

neff !

Ns! (neff −Ns)!
, (15)

is the Newton binomial, which accounts for the fact that we have Ns elements

that can be either above or below the threshold r, and the effective number

of considered pairs of chamber configurations is given by half the number of

off-diagonal elements of the correlation matrix, viz.,

Ns =
Ns (Ns − 1)

2
, (16)

and the event probability is actually a cumulative distribution function (CDF)

FR (r) = fR (r < r) =

∫ r

0

fR (r) dr . (17)

Further physical considerations would be involved in presence of lattice auto-

correlation. In this paper we treat the case of uncorrelated sampling space/frequency

lattice. Once the distribution of neff has been obtained, it is possible to obtain

a robust estimation of the number of independent stirrer positions by calculating

the following averaging

N eff (r) =

∫
δ (neff − n) fNeff

(n, r) dn , (18)

which is given by

N eff (r) = NsFR (r) . (19)

The challenge is now to derive the probability distribution of the correlation

matrix entries fR (r), and to understanding its dependence on chamber and
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Figure 6: Probability density function of the off-diagonal element of correlation matrix for
|Ex| at low (200 MHz), intermediate (303 MHz), and high (800 MHz) frequency, for a spatial
grid 13× 13× 11 of the US–PM strategy.
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Figure 7: Probability density function of the off-diagonal element of correlation matrix for
|Ey | at low (200 MHz), intermediate (303 MHz), and high (800 MHz) frequency, for a spatial
grid 13× 13× 11 of the US–PM strategy.

stirrer parameters [35, 31] such as chamber volume and losses. Here, we present

empirical distributions of the correlation function resulting from a numerical

(FDTD) model of the reverberation chamber. It is worth to be noticed that this

model-driven distribution captures the fluctuation of the correlation in space or

frequency, depending on the ensemble of cavity realizations chosen a priori for

the analysis. Individual Pearson correlation elements are also subject to local

fluctuations given by the sampling involved in the stirring process.

The PDF of fR (r) is reported in Figure 6 for the correlation of the Cartesian

field |Ex|, as obtained through the US–PM strategy. Similar distributions are

obtained for the components Ey and Ez. Those are shown in Figure 7 and

Figure 8. Interestingly, the PDF of |Ex|, |Ey|, and |Ez| has non-central t-
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Figure 8: Probability density function of the off-diagonal element of correlation matrix for
|Ez | at low (200 MHz), intermediate (303 MHz), and high (800 MHz) frequency, for a spatial
grid 13× 13× 11 of the US–PM strategy.

student profile. Also, observations confirm isotropic behavior and ergodicity

over the investigated frequency range. Furthermore, it looks had to get rid of

any residual correlation, whence the importance of fixing a threshold, and the

genesis of the uncorrelation seems to be related to the positive tail. In this

perspective, the presence of a threshold is of key importance as it looks that

non-central behavior of the correlation PDF at low frequencies creates a fat

tail in the region rij > e−1. The presence of statistical inhomogeneities and

anisotropies create non-central t-student probability distributions with large

skewness. This fact can be exploited formally to make the rule in (19) more

explicit by using the expression of the mean value of a non-central t-distribution

[30]

N eff (r) ≈ KNs

Φ (−µ) +
1

2

 ∞∑
j=0

pjIn

(
j +

1

2
,
ν

2

)
+ qjIn

(
j + 1,

ν

2

) .

(20)

where K represents a normalization factor, µ the non-centrality parameter, ν

the number of degrees of freedom of the t-student distribution, Φ is the CDF of

the standard normal distribution, In is the regularized incomplete beta function
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and

n =
r2

r2 + ν
, (21)

pj =
1

j!
exp

(
−µ

2

2

) (
µ2

2

)j
, (22)

qj =
µ√

2Γ
(
j + 3

2

) exp

(
−µ

2

2

) (
µ2

2

)j
, (23)

in which it expected an inverse proportionality of µ and ν on frequency. There-

fore, further studies are necessary to relate the number of correlated realization

pairs to the t-student non-centrality and degrees of freedom. Furthermore, the

sampling effect of the finite number of realization pairs can be accounted for

by using results on effective sample size achieved in [29] as well as the Fisher

distribution as described in [22].

4. Uncorrelated spatial points

Figure 9 shows the simulated number of uncorrelated grid points for a cor-

relation matrix of stirrer angles (UP–SM). Again, when computed through the

total electric field magnitude, this number exhibits higher values with respect

to the single components. By using the rectangular components, the adopted

grid points are uncorrelated above 800 MHz, where the point distance is 0.4λ.

This result is close to the expected spatial correlation length of 0.5λ. By using

the total field, the adopted grid points are uncorrelated above 650 MHz, where

the point distance is 0.325λ. From a practical point of view, there is a residual

correlation among spatial points in the lower frequency range, that results in

less efficient stirring action if compared to the rotating stirrer, for the consid-

ered chamber of course. More precisely, comparing Figure 3 and Figure 9, we

can observe that the 512 stirrer angles are more uncorrelated respect to the 512

spatial points, by applying the same threshold-based method. In fact, the ro-

tating stirrer exhibits a higher number of uncorrelated positions respect to that

given by the positioning stirring (spatial points). The higher correlation that

affects the spatial points might be responsible of the discrepancy observed in
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Figure 9: Simulated uncorrelated grid points for a correlation matrix of stirrer positions (UP–
SM). Values computed by using each component and the magnitude of the electric field are
reported.

Section 3.3 between Figure 4 and Figure 5. The correlation matrix adopted for

Figure 4 has more correlated elements respect to the elements of that used for

Figure 5, so resulting in an underestimation of the uncorrelated frequency points

below 0.65 GHz. The effect of the number of stirrer positions used to compute

the correlation matrix is reported in Figure 10. When the number of positions

is large enough, the results converge to the same values, while decreasing the

number of positions gives rise to lower values. This means that the correlation

must be computed over a sufficiently large data ensemble. The curve behavior

around 0.65 GHz, shows a large peak. In order to explain it, we considered

the scattering parameters reported in Figure 11. The S11 shows a reflection

increment around 0.65 GHz. This is due to the resonance between antenna and

stirrer at the particular location used throughout the experiments. This peak

is not present in the S21 and in the field spatial distribution. Moreover, regular

frequency peaks where correlation increases appear. These peaks are also visible

in the US–PM case, see Figure 3, and investigated in [20]. They do not depend

on the adopted strategy, but on the RC geometry. In particular, peak distance

corresponds to a value for which the RC dimension along the stirrer rotation

axis is 0.5λ, which is 60 MHz for this RC.

Figure 12 shows the simulated number of uncorrelated grid points for the
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Figure 10: Simulated uncorrelated grid points as function of the number of stirrer positions
used in the computation of the correlation matrix (UP–SM). The |E| was used.

Figure 11: Simulated scattering parameters.
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Figure 12: Simulated uncorrelated grid points for a correlation matrix of frequency points
(UP–FM). Values computed by using each component and the magnitude of the electric field
are reported.

strategy UP–FM. At each working frequency, we compute the correlation coef-

ficients using a set of Nf frequency points, which defines the frequency stirring

bandwidth Bw. When we use Nf = 512, Bw = 156 MHz. The effect of the

number of frequency points adopted for the computation of the uncorrelated

grid point number is reported in Figure 13. The frequency points where the

correlation is calculated are the same. All the frequency points are equidistant,

therefore reducing Nf has the effect of decreasing Bw. When the number of

frequency points is large enough, the results converge. Decreasing Nf , a re-

duction of the number of uncorrelated points is observed. In the FM strategies,

peaks where uncorrelation decreases are not visible due to the intrinsic frequency

averaging of the method.

5. Conclusions

We have compared existing methods to estimate the number of uncorrelated

stirrer positions through the correlation matrix of multivariate stir traces. An

actual reverberation chamber has been simulated through a full-wave, finite-

difference time-domain, parallel code. Spatial and frequency multi-point sam-

pling of stir traces offers a large scale picture of the field distributions within

reverberation chambers. A threshold is introduced to count the uncorrelated
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Figure 13: Simulated uncorrelated grid points as function of the number of frequency points
used in the computation of the correlation matrix (UP–FM). The |E| was used.

pairs of stirrer positions. Inherently, we observed that the classical autocor-

relation method overestimates the uncorrelated blade positions. Estimation of

uncorrelated frequencies and spatial grid points is also possible, which is of in-

terest in frequency and spatial stirring techniques often adopted to change the

chamber states. We noted an overestimation of uncorrelated pairs if frequency

samples are used. The use of Cartesian field components underestimate the un-

correlated frequency and space points. Conversely, uncorrelated stirrer positions

are not effected by this choice. In general, a sufficiently large date ensemble is

necessary to correctly compute the correlation matrix elements. Finally, the

probability density function of the correlation matrix elements is found to be

non-central t-student distributed with asymmetry increasing towards the low

frequency of chamber operation. This study suggests a physics-based study to

relate the statistics of the effective number of uncorrelated stirrer positions with

the non-centrality and degree-of-freedom parameters of the t-student distribu-

tion.
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