
2

ConstructingQuotient Inductive-Inductive Types

AMBRUS KAPOSI, Eötvös Loránd University, Hungary

ANDRÁS KOVÁCS, Eötvös Loránd University, Hungary

THORSTEN ALTENKIRCH, University of Nottingham, United Kingdom

Quotient inductive-inductive types (QIITs) generalise inductive types in two ways: a QIIT can have more
than one sort and the later sorts can be indexed over the previous ones. In addition, equality constructors are
also allowed. We work in a setting with uniqueness of identity proofs, hence we use the term QIIT instead
of higher inductive-inductive type. An example of a QIIT is the well-typed (intrinsic) syntax of type theory
quotiented by conversion. In this paper first we specify finitary QIITs using a domain-specific type theory
which we call the theory of signatures. The syntax of the theory of signatures is given by a QIIT as well. Then,
using this syntax we show that all specified QIITs exist and they have a dependent elimination principle. We
also show that algebras of a signature form a category with families (CwF) and use the internal language of
this CwF to show that dependent elimination is equivalent to initiality.

CCS Concepts: • Theory of computation→ Type theory;

Additional Key Words and Phrases: homotopy type theory, inductive-inductive types, higher inductive types,

quotient inductive types, logical relations, category with families, generalised algebraic theory

ACM Reference Format:

Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. 2019. Constructing Quotient Inductive-Inductive
Types. Proc. ACM Program. Lang. 3, POPL, Article 2 (January 2019), 24 pages. https://doi.org/10.1145/3290315

1 INTRODUCTION

A quotient inductive-inductive type (QIIT) can be seen as a multi-sorted algebraic theory where
sorts can be indexed over each other. An example of a QIIT is the following well-typed (intrinsic)
syntax of a small type theory.

Con : Set

Ty : Con → Set

· : Con

▷ : (Γ : Con) → Ty Γ → Con

ι : (Γ : Con) → Ty Γ

Σ : (Γ : Con) → (A : Ty Γ) → Ty (Γ ▷A) → Ty Γ

eq : (Γ : Con) → (A : Ty Γ) → (B : Ty (Γ ▷A)) → (Γ ▷A ▷ B = Γ ▷ Σ ΓAB)

It has two sorts: contexts (Con) and types (Ty). The latter is indexed over the former: to talk about
a type we need to say which context it lives in. There is an empty context · and context extension

Authors’ addresses: Ambrus Kaposi, Department of Programming Languages and Compilers, Eötvös Loránd University,
Budapest, Hungary, akaposi@inf.elte.hu; András Kovács, Department of Programming Languages and Compilers, Eötvös
Loránd University, Budapest, Hungary, kovacsandras@inf.elte.hu; Thorsten Altenkirch, School of Computer Science,
University of Nottingham, United Kingdom, Thorsten.Altenkirch@nottingham.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/1-ART2
https://doi.org/10.1145/3290315

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315

2:2 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch

▷ which takes a context and a type in that context and returns the extended context. Note that
we cannot turn this QIIT into two inductive types defined one after the other because the Con-
constructor ▷ refers to Ty, henceCon and Tymust be defined at the same time. There is a constructor
for a base type ι in any context and a constructor for Σ types. This takes a context (this could be
made an implicit parameter), a type A in that context and a type in the context extended by A and
returns a type in the original context. The third argument of Σ shows a pattern which does not
appear in inductive types or indexed inductive types: a constructor refers to a previous constructor
(in our case ▷). Finally, there is an equality constructor which states the unusual equality (included
here for illustration) that extending a context twice is the same as extending by a Σ type. Equality
constructors can only target one of the sorts. The constructor eq quotients contexts so that for
any Γ, A and B it becomes impossible to distinguish (Γ ▷A ▷ B) and (Γ ▷ Σ ΓAB) ś this is ensured
by the eliminator of the QIIT as shown below. The equality constructor also refers to previous
constructors. This small example can be extended to the full syntax of type theory as shown in
[Altenkirch and Kaposi 2016].
In this paper we define the theory of signatures, a small type theory. It is itself given as a QIIT,

and we show that if a type theory supports this QIIT, then it supports all finitary QIITs. This is
analogous to the following results: if a type theory has W-types [Abbott et al. 2005], then it has all
inductive types; if a type theory has indexed W-types [Morris and Altenkirch 2009], then it has all
indexed inductive types.
The theory of signatures is a restriction of the theory of codes in [Kaposi and Kovács 2018]. A

signature for a QIIT is given by a context in this type theory. For example, the context for the above
Con-Ty example is (Con : U, Ty : Con → U, · : Con,▷ : (Γ : Con) → Ty Γ → Con, ...) where Con,
Ty, ·, ▷ are simply variable names.
By induction on the syntax of the theory of signatures, we define what algebras are for each

signature and we construct the initial algebra. Then we define algebra homomorphisms and a
homomorphism from the initial algebra to any other algebra called the recursor. In a similar way,
we define displayed algebras over algebras, sections of displayed algebras and the eliminator for each
signature.

In the following table we summarise how the above notions correspond to other concepts in the
literature:

signature code, specification, arities of operators
algebra model, sets with operations and equations
initial algebra type formation rules and constructors, free algebra
algebra homomorphism morphism of models
recursor non-dependent eliminator, iterator, fold, catamorphism
displayed algebra motives and methods of the eliminator, fibration
section of a displayed algebra dependent function which respects the operators
eliminator induction principle, dependent eliminator

Additionally, we show that algebras of a signature form a category with families (CwF), where
displayed algebras and sections yield the łFž part of CwF, and these CwFs also support constant
families in the sense of [Nordvall Forsberg 2013, p. 74] (or equivalently they are democratic [Clairam-
bault and Dybjer 2014]) and extensional identity types. This yields a small internal language of
algebras for each signature, and it allows us to prove that unique recursion (initiality) is equivalent
to dependent elimination (induction).

In the rest of the introduction, before giving an overview of the paper, we illustrate our method
for deriving the above notions by three examples. We start with a closed type which has a recursive

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

Constructing Quotient Inductive-Inductive Types 2:3

constructor, the natural numbers. Then we move on to a parameterised type with an equality
constructor: the integers. Finally, we sketch how our method works for the above Con-Ty example.
Our notation below is standard, but we summarise it in Section 2.

1.1 Natural Numbers

The theory of signatures is a small internal type theory with a universe, two restricted function
spaces and an identity type. We will use the following notation for the theory of signatures. Ty Γ
denotes well-formed types in a context Γ. Given A : Ty Γ, Tm ΓA denotes well-typed terms in
context Γ of type A. The following three-element context is the signature for natural numbers: it
has one sort and two operators, zero and successor. 1

∆ :≡ (Nat : U, zero : ElNat , suc : Nat ⇒ ElNat)

U is the universe (the type of codes), El decodes a code into a type. We call types which come
from a code small, other types large. The function space ⇒ in the theory of signatures has a small
domain and a large codomain and is itself large. This ensures strict positivity of the operators in
the signature.

Algebras, homomorphisms, the initial algebra, the recursor etc. are defined by induction on the
syntax of the theory of signatures in later sections. Here we only describe them informally and
show their output on the signature ∆.

The operation śA computes the set of algebras from a signature. A natural number algebra is an
iterated Σ-type: a set together with an element of the set and an endofunction on the set.

∆
A ≡ (N : Set) × N × (N → N)

The operation śA is the standard interpretation of the syntax which is sometimes called the
metacircular interpretation or interpretation into the set model [Altenkirch and Kaposi 2016]. For
a context Γ it gives ΓA : Set, for type A : Ty Γ it gives AA : ΓA → Set and for a term t : Tm ΓA it
produces tA : (γ : ΓA) → AA γ .
The initial ∆-algebra is given by con∆ : ∆A. The idea is that natural numbers are terms of type

Nat in the context ∆, with the intuitive justification that the only way to form terms of type Nat

in this context is using zero or suc .

con∆ ≡ (Tm∆ (ElNat), zero, λt .suc @ t)

The zero operator is given by the variable zero, successor is given by a function which takes a term
t and applies it to the variable suc . Application in the theory of signatures is denoted @.

A ∆-algebra homomorphism between two ∆-algebras (A,a, f) and (B,b,д) is given by a function
between the two sets which respects the operators. Propositional equality is denoted =.

∆
M (A,a, f) (B,b,д) ≡ (NM : A → B) × (NM a = b) × ((x : A) → NM (f x) = д (NM x))

The operation śM is a modified binary logical relation interpretation [Bernardy et al. 2012]: a
context Γ is interpreted as a relation Γ

M : ΓA → Γ
A → Set.

We use the standard interpretation śA to show weak initiality: given an algebra (A,a, f) : ∆A,
the homomorphism rec∆ (A,a, f) : ∆M con∆ (A,a, f) is given by

rec∆ (A,a, f) ≡ (λt .tA (A,a, f), refla , λx .reflf (xA (A,a,f))).

For a natural number t , its interpretation in the algebra (A,a, f) is given by its standard inter-
pretation at (A,a, f). This has the right type because (ElNat)A (A,a, f) ≡ A by the standard

1To improve readability we use named variables to describe contexts in the theory of signatures, while later we formally
only define de Bruijn-like combinators. Note that the : is now overloaded, it is used in the metatheory and in the theory of
signatures.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

2:4 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch

interpretation of ElNat. The recursor computes a for zero as its standard interpretation is just
the corresponding component: zeroA (A,a, f) ≡ a. Similarly we have that (suc @x)A (A,a, f) ≡

sucA (A,a, f) (xA (A,a, f)) ≡ f (xA (A,a, f)). In essence, the standard interpretation folds over
terms, substituting a function for suc and a value for zero - which is exactly recursion for natural
numbers.
A displayed algebra over an algebra (N , z, s) consists of a proof-relevant predicate over N , a

witness of the predicate at z and a proof that s respects the predicate. We borrow the term łdisplayedž
from [Ahrens and Lumsdaine 2017], as our notion of displayed algebra is a generalization of the
displayed categories of Ibid.2

∆
D (N , z, s) ≡ (ND : N → Set) × ND z × ((x : N) → ND x → ND (s x))

The operation śD is the unary logical predicate interpretation [Bernardy et al. 2012]: a context
Γ is interpreted as a predicate ΓD : ΓA → Set. A type A : Ty Γ becomes a predicate depending on
a witness of ΓD, that is, AD : ΓD γ → AA γ → Set, where we implicitly quantify over γ . A term
t : Tm ΓA is interpreted as tD : (γD : ΓD γ) → AD γD (tA γ).

A section of a displayed algebra (ND
, zD , sD) over (N , z, s) is given by a section of the predicate

ND which respects the operations.

∆
S (N , z, s) (ND

, zD , sD) ≡ (N S : (x : N) → ND x) × (N S z = zD) ×
(
(x : N) → ND x → N S (s x) = sD x (N S x)

)

The operation śS is a modified dependent logical relation interpretation: a context Γ is interpreted
as a dependent relation Γ

S : (γ : ΓA) → Γ
D γ → Set.

Given a displayed algebra (ND
, zD , sD) over the initial algebra con∆, we construct a section

which we call the eliminator. It has type ∆S con∆ (ND
, zD , sD) Ð the two equations in the definition

of sections correspond to the β-rules.

elim∆ (N
D
, zD , sD) ≡

(
λt .trND (tC id

−1
) (tD (ND

, zD , sD)), reflzD ,

λx xD .J reflsD x (xD (ND
,zD,sD)) (x

C id)
)

We can eliminate any natural number t using the logical predicate interpretation tD (ND
, zD , sD) :

ND (tA con∆). The result has to be transported along the equality tC id : (t = tA con∆) so that we
get something of type ND t . The operation śC is a generalisation of con; as we will see later, con
is defined in terms of śC. The usage of tC id corresponds to the identity extension lemma [Atkey
et al. 2014]. The computation rule for zero is definitional (can be proved by refl), but the case for
successor requires using J on xC id.

1.2 Integers

Assuming that we have natural numbers in our metatheory (with N : Set, + : N → N → N),
integers are specified by the following signature.

Φ :≡
(
Int : U, pair : N ⇒̂ N ⇒̂ El Int,

eq : (a b c d : N) ⇒̂ a + d = b + c ⇒̂ Id Int (pair @̂a @̂b) (pair @̂ c @̂d)
)

The operator pair uses a function space different from the one used for suc in section 1.1. An
⇒ function has small domain and large codomain, while ⇒̂ has metatheoretic domain and large
codomain. This lets us specify parameterised types, allowing integers to refer to the set of natural
numbers and addition. The eq operator takes four natural numbers and a metatheoretic equality

2However, we work in a setting with UIP, while Ahrens and Lumsdaine work in homotopy type theory.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

Constructing Quotient Inductive-Inductive Types 2:5

between them and returns an identity between the appropriate pairs in the theory of signatures. @̂
is application for the ⇒̂ function space. Id is the constructor for the identity type. It is indexed by
two elements of a small type and produces a large type Ð this prevents us from writing iterated
equality types.

The ⇒̂ function space is converted to metatheoretic function space by the śA operation, and Id
is interpreted as metatheoretic equality.

Φ
A ≡ (I : Set) × (p : N→ N→ I) ×

(
(a b c d : N) → a + d = b + c → p a b = p c d

)

The initial algebra is given by the terms of type El Int in context Φ. The identity type Id has the
equality reflection rule which says that if there is a term of type Id Int t u, then we have t = u

(conversion in the theory of signatures is given by propositional equality in the metatheory). Hence,
terms of type El Int in Φ are already quotiented by eq, through equality reflection.

conΦ ≡
(
TmΦ (El Int), λa b .pair @̂a @̂b, λa b c d e .reflect (eq @̂a @̂b @̂ c @̂d @̂ e)

)
: ΦA

The pair operator is given by the pair variable applied to the two natural number inputs, and the
equality is given by equality reflection on the eq variable.
A Φ-homomorphism is given by a function which respects the pair operators. The component

for eq is trivial (⊤) as we have uniqueness of identity proofs (UIP) in the metatheory, so there is no
need to relate the equality proofs e and e ′.

Φ
M (I ,p, e) (I ′,p ′, e ′) ≡ (IM : I → I ′) ×

(
(a b : N) → IM (p a b) = p ′ a b

)
× ⊤

The recursor is given using śA as in the case of natural numbers. It is reflexivity for the pair

constructor and it just returns the single element of ⊤ for the eq constructor.

recΦ (I ,p, e) ≡ (λt .tA (I ,p, e), λa b .reflp a b , λa b c d e .tt) : Φ
A
.

A displayed algebra over a Φ-algebra (I ,p, e) is an element of the following set.

Φ
D (I ,p, e) ≡ (ID : I → Set) ×

(
pD : (a b : N) → ID (p a b)

)
×

(
(a b c d : N) → (e : a + d = b + c) → trID (e a b c d e) (pD a b) = pD c d

)

We need a predicate on I , a witness of the predicate at p a b for all a and b, and a proof that the two
witnesses are equal. The types of the witnesses can be shown equal by e , we have to transport over
this.
A section of a displayed algebra (ID ,pD , eD) over (I ,p, e) is an element of the following set.

Φ
S (I ,p, e) (ID ,pD , eD) ≡ (IS : (i : I) → ID i) ×

(
(a b : N) → ID (p a b) = pD a b

)
× ⊤

The eliminator can be defined using śD and śC as in the case of natural numbers.

1.3 Contexts and Types

The previous Con-Ty example is represented by the context below. We only present here a prefix
of the definition which suffices to demonstrate inductive-inductive dependency.

Θ :≡
(
Con : U, Ty : Con ⇒ U, · : ElCon,▷ : (Γ : Con) ⇒ Ty @ Γ ⇒ ElCon, ...

)

Algebras for this signature consist of a set, a family of sets over it, and operators which construct
elements of these.

Θ
A ≡ (C : Set) × (T : C → Set) × (e : C) × (f : (γ : C) → T γ → C) × ...

The initial algebra now has two sorts: one is given by terms of type Con, the other takes a Con-term
as an input and outputs the type of terms of type El at the Con-term.

conΘ ≡
(
TmΘ (ElCon), λt .TmΘ (El (Ty @ t)), ·, λt r . ▷ @ t @ r , ...

)
: ΘA

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

2:6 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch

An algebra homomorphism is given by a function between the Con components and a function
between the Ty components which refers to the first function (this phenomenon is called recursion-
recursion in [Nordvall Forsberg 2013] as an analogue to induction-induction).

Θ
M (C,T , e, f , ...) (C ′

,T ′
, e ′, f ′, ...) ≡ (CM : C → C ′) × (TM : (γ : C) → T γ → T ′ (CM γ)) ×

(eM : CM e = e ′) ×

(f M : (γ : C)(α : T γ) → CM (f γ α) = f ′ (CM γ) (TM γ α)) ×

...

The first function in the recursor invokes the standard interpretation on its input, the second one
invokes it on its second input. We abbreviate (C,T , e, f , ...) by γ .

recΦ γ ≡ (λt .tA γ , λt r .rA γ , refle , λt r .reflf (tA γ) (rA γ), ...) : Θ
A

A displayed algebra over an algebra (C,T , e, f , ...) consists of a family over C and a family over T γ

which is also indexed over the first family.

Θ
D (C,T , e, f , ...) ≡ (CD : C → Set) × (TD : (γ : C) → CD γ → T γ → Set) ×

(eD : CD e) ×

(f D : (γ : C)(γD : CD γ)(α : T γ)(αD : TD γ γD α) → CD (f γ α)) × ...

As in the case of the homomorphisms, the second function in a section refers to the first one.

Θ
S (C,T , e, f , ...) (CD

,TD
, eD , f D , ...) ≡

(CS : (γ : C) → CD γ) × (T S : (γ : C)(α : T γ) → TD γ (CS γ)α) ×

(eS : CS e = eD) ×

(f S : (γ : C)(α : T γ) → CS (f γ α) = f D γ (CS γ)α (T S γ α)) × ...

The eliminator is given analogously to the recursor, but using śD and śC instead of śA.

1.4 Overview of the Rest of the Paper

After a discussion of related work, we describe the metatheory in Section 2. We define the type
theory of signatures in Section 3. We define algebras and the initial algebra for each signature
in Section 4, homomorphisms and the recursor in Section 5, displayed algebras, sections and the
eliminator in Section 6. In Section 7 we extend algebras and homomorphisms to a categories with
families (CwF) model of the theory of signatures and use this to show that initiality is equivalent to
dependent elimination. We conclude in Section 8.

In the following table we summarize the operations which we define in Sections 4ś6. Γ denotes
a signature. The full definitions of these operations are given in Appendix A3.

3Available at https://bitbucket.org/akaposi/finitaryqiit/raw/master/appendix.pdf

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

https://bitbucket.org/akaposi/finitaryqiit/raw/master/appendix.pdf

Constructing Quotient Inductive-Inductive Types 2:7

Γ
A : Set the set of Γ-algebras

Sec. 4Γ

CΩ : SubΩ Γ → Γ
A helper for initial algebra

conΓ : ΓA initial algebra: conΓ :≡ Γ
CΓ idΓ

Γ
M : ΓA → Γ

A → Set homomorphisms of Γ-algebras

Sec. 5Γ

RΩ,ω : (ν : SubΩ Γ) → Γ
M (νA conΩ) (νAω) helper for the recursor

recΓ : (γ : ΓA) → Γ
M conΓ γ recursor: recΓ γ :≡ Γ

RΓ,γ idΓ
Γ
D : ΓA → Set displayed algebras over Γ-algebras

Sec. 6
Γ
S : (γ : ΓA) → Γ

D γ → Set sections of displayed algebras

Γ
E
Ω,ωD : (ν : SubΩ Γ) → Γ

S (νA con) (νDωD) helper for the eliminator

elimΓ : (γD : ΓD conΓ) → Γ
S conΓ γD eliminator: elimΓ γ

D :≡ Γ
E
Γ,γ D idΓ

1.5 Related Work

Internal codes for simple inductive types such as natural numbers, lists or binary trees can be given
by containers which are decoded toW-types [Abbott et al. 2005]. Morris and Altenkirch [Morris and
Altenkirch 2009] extend the notion of container to that of indexed container which specifies indexed
inductive types. External schemes for inductive families are given in [Dybjer 1997; Paulin-Mohring
1993], for inductive-recursive types in [Dybjer 2000]. Inductive-inductive types were introduced by
Nordvall Forsberg together with an internal coding scheme [Nordvall Forsberg 2013]. A symmetric
scheme for both inductive and coinductive types is given in [Basold and Geuvers 2016].

Quotient types as in [Hofmann 1995b] are a precursor to the current development. More recently,
an increasing amount of research is concerned with higher inductive types (HITs), motivated
by their use cases in homotopy type theory [The Univalent Foundations Program 2013]. The
theory of HITs is relevant to the current work as it also has to describe signatures with equality
constructors and algebras with equalities. [Basold et al. 2017] define an external syntactic scheme
for higher inductive types with only 0-constructors and compute the types of elimination principles.
In [van der Weide 2016] a semantics is given for the same class of HITs but with no recursive
equality constructors. Sojakova [Sojakova 2015] defines a subset of HITs called W-suspensions by
an internal coding scheme similar to W-types. She proves that the induction principle is equivalent
to homotopy initiality. Dybjer and Moeneclaey define a syntactic scheme for some HITs and
show their existence in a groupoid model [Dybjer and Moeneclaey 2018]. In [Awodey et al. 2018],
impredicative encodings of a class of higher inductive types are presented, and we think that this
approach could also be modelled within our framework once we assume an impredicative universe.

Lumsdaine and Shulman give a general specification of models of type theory supporting higher
inductive types [Lumsdaine and Shulman 2017]. They introduce the notion of cell monad with
parameters and characterise the class of models which have intial algebras for a cell monad with
parameters. [Coquand et al. 2018] develop semantics for several HITs (sphere, torus, suspensions,
truncations, pushouts) in certain presheaf toposes, and extend the syntax of cubical type theory
[Cohen et al. 2016] with these HITs.

[Altenkirch et al. 2018] also concerns QIITs. There, signatures are given by a scheme which builds
up complete categories of algebras from lists of functors. This notion of signature is more semantic
than ours, with more overhead in encoding signatures. It also does not enforce strict positivity,
hence the paper does not construct initial algebras. Nonetheless, it is shown that well-behaved
QIIT signatures are covered by this scheme. Also, induction is shown to be equivalent to initiality,
but the notion of induction is given only up to isomorphisms of algebras, in contrast to the current
work, where it is computed strictly.

Cartmell [Cartmell 1986] also used a type-theoretic syntax for a class of theories, called gener-
alised algebraic theories (GATs). GATs cover roughly the same theories as this work does, with the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

2:8 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch

difference that GATs additionally allow equations between sorts. Besides this, there are two main
differences to the current work.
First, regarding the definitions of the signatures: GATs are given by a nameful presyntax along

with well-formedness relations, while our signatures are intrinsically typed and given by structured
categories. This greatly simplifies formal development, makes machine-checked formalisation
feasible, and also clarifies the notion of induction over signatures.
Second, the focus of the current work differs. Cartmell’s main result was the establishment of

contextual categories as classifying categories of GATs. In contrast, we do not discuss classifying
categories. Instead, we present more constructions involving algebras; these include an explicit
initial algebra construction and the CwF model, which yields a small internal type theory of
algebras for each signature, and which in particular allows us to exactly compute eliminators and
homomorphisms as types in the meta type theory.4

Our notion of displayed algebra is analogous to displayed categories in [Ahrens and Lumsdaine
2017], and our definition of total algebras and reindexing is also analogous to the corresponding
notions for displayed categories.

2 METATHEORY AND FORMALISATION

Our metatheory is Martin-Löf type theory with functional extensionality and uniqueness of identity
proofs (UIP). In this section we describe the notation used in this paper and the accompanying
technical appendix and Agda formalisation.

Definitional equality is denoted by ≡. We have a cumulative hierarchy of Russell-style universes
Seti where we usually omit indices (we don’t assume any impredicativity). Dependent function
space is denoted (α : T) → T ′. T → T ′ stands for (α : T) → T ′ if T ′ does not depend on α . We
use (α : T)(α ′ : T ′) → T ′′ as a shorthand for iterated function spaces. We sometimes omit certain
arguments of functions or write them in subscript to lighten the notation. Σ types are denoted
by (α : T) ×T ′ with left-associative ×. The constructor is (ś , ś) and the eliminators are written
proj1 and proj2. The one-element type ⊤ has constructor tt. We have the identity type = with
constructor refl, eliminator J. The notation is Jx .z .P pr e : P[x 7→ α ′

, z 7→ e] for α ,α ′ : T and
x : T , z : α = x ⊢ P : Set and pr : P[x 7→ α , z 7→ refl] and e : α = α ′. We write trP e u : P α ′ for
transport of u : P α along e : α = α ′. Sometimes we omit the parameters in subscript. We also have
coercion coe e α : T ′ whenever e : T = T ′ and the inverse e−1 : α ′

= α for e : α = α ′.
In this paper we use the notation of extensional type theory, that is, after proving an equality

p : α = α ′, in later proofs depending on this equality we treat it as definitional, thus α ≡ α ′

and p ≡ refl. This makes the notation much lighter, as transports disappear: trp u ≡ u for any
proof p. Although we use extensional notation, this can be translated to intensional type theory
extended with functional extensionality and UIP, as we know from [Hofmann 1995a; Oury 2005;
Winterhalter et al. 2018]. In our Agda formalisation, we use these axioms along with rewrite rules
[Cockx et al. 2014]. A rewrite rule allows to turn a previously proven (or postulated) equality
into a definitional one. This provides an alternative way to add inductive types to Agda: one can
postulate the constructors, the eliminator and the computation rules and make the computation
rules definitional by marking them as rewrite rules.
We denote the functional extensionality axiom by funext : (α : A) → f α = д α → f = д. We

also use the term UIP which has type e = e ′ whenever e, e ′ : α = β . We write equational reasoning

proofs by writing the proofs of equalities above the = symbol, e.g. u
e
= u ′ when e : t = t ′ and

u ≡ f t , u ′ ≡ f t ′.

4This is demonstrated in [Kaposi and Kovács 2018], by a Haskell program which takes a signature as input, type checks it,
then outputs the corresponding induction methods and eliminators as an Agda file.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

Constructing Quotient Inductive-Inductive Types 2:9

We also assume the existence of one QIIT, namely the syntax of the type theory of signatures
(Section 3). In our formalisation we postulate its constructors and dependent elimination principle,
adding the computation rules as rewrite rules. This QIIT has equality constructors for the substitu-
tion calculus (see the next section). In this paper, we treat these equalities as definitional (we don’t
write transports along them). Analogously, we add rewrite rules for them in the formalisation.

The Agda formalisation has been checked using Agda 2.5.4. It is available at https://bitbucket.org/
akaposi/finitaryqiit, together with a technical appendix. The Agda formalisation covers sections
3.1, 3.3, 4, the definition of homomorphisms from 5, and also 6, 7.1, 7.2, 7.3, and part of 7.4. The
formalisation also includes additional documentation concerning technicalities.

3 THE TYPE THEORY OF SIGNATURES

In this section we define the syntax for a domain-specific type theory. A context in this type theory
is a signature for a QIIT. We use intrinsic syntax (that is, we only have well-typed terms), de Bruijn
variables and explicit substitutions (substitution is a constructor instead of an operation). The
syntax is given by a QIIT and conversion rules are given by equality constructors in the style of
[Altenkirch and Kaposi 2016]. Our definition of the syntax can be seen as an unfolding of the initial
category with families (CwF) [Dybjer 1996] with certain type formers.

3.1 The Syntax

We have a QIIT with four sorts. Types are indexed over contexts: Ty Γ denotes the well-formed
types which have free variables in Γ. An element of Sub Γ ∆ can be viewed as a list of terms: it
contains one term for each type in ∆ and each of these terms has free variables in Γ. An element of
Tm ΓA is a term of type A with free variables in Γ.

Con : Set contexts

Ty : Con → Set types

Sub : Con → Con → Set substitutions

Tm : (Γ : Con) → Ty Γ → Set terms

The following constructors of the above sorts give the substitution calculus part of the syntax.

· : Con empty context

ś ▷ ś : (Γ : Con) → Ty Γ → Con context extension

ś [ś] : Ty∆ → Sub Γ ∆ → Ty Γ substitution of types

id : Sub Γ Γ identity substitution

ś ◦ ś : SubΘ∆ → Sub Γ Θ → Sub Γ ∆ composition

ϵ : Sub Γ · empty substitution

ś , ś : (σ : Sub Γ ∆) → Tm Γ (A[σ]) → Sub Γ (∆ ▷A) substitution extension

π1 : Sub Γ (∆ ▷A) → Sub Γ ∆ first projection

π2 : (σ : Sub Γ (∆ ▷A)) → Tm Γ (A[π1 σ]) second projection

ś [ś] : Tm∆A → (σ : Sub Γ ∆) → Tm Γ (A[σ]) substitution of terms

[id] : A[id] = A

[◦] : A[σ ◦ δ] = A[σ][δ]

ass : (σ ◦ δ) ◦ ν = σ ◦ (δ ◦ ν)

idl : id ◦ σ = σ

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

https://bitbucket.org/akaposi/finitaryqiit
https://bitbucket.org/akaposi/finitaryqiit

2:10 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch

idr : σ ◦ id = σ

·η : {σ : Sub Γ ·} → σ = ϵ

▷β1 : π1 (σ , t) = σ

▷β2 : π2 (σ , t) = t

▷η : (π1 σ ,π2 σ) = σ

, ◦ : (σ , t) ◦ δ = (σ ◦ δ , t[δ])

ś ▷ ś and ś , ś are left-associative binary operators. Note that ▷β2 is only well-typed because of a
previous equality constructor: the left hand side has type Tm Γ (A[π1 (σ , t)]) and the right hand side
has type Tm Γ (A[σ]), but these types are equal by ▷β1. The case of , ◦ is similar, here t[δ] needs to
have type Tm Γ (A[σ ◦ δ]), however, it has type Tm Γ (A[σ][δ]), but these are equal by [◦].
Using the terminology of CwFs, the substitution calculus can be summarized as follows: we

have a category (Con, Sub, id, ś ◦ ś, ass, idl, idr) with a terminal object (·, ϵ , ·η), a contravariant
functor from this category to the category of families of sets (action on objects given by Ty and
Tm, action on morphisms given by the ś [ś] operators, the functor laws are [id] and [◦]; the
functor laws for term substitution are derivable, see below) and a natural isomorphism between
(σ : Sub Γ ∆) × Tm Γ (A[σ]) and Sub Γ (∆▷A), called comprehension (ś ▷ ś, ś , ś, π1, π2, ▷β1, ▷β2,
▷η, , ◦). It is shown in [Kaposi 2017, p. 63] that this formulation of CwF is equivalent to the original
one [Dybjer 1996].
Usual syntactic constructions such as weakenings, variables (de Bruijn indices) and liftings of

substitutions can be recovered by the definitions below.

wk : Sub (Γ ▷A) Γ :≡ π1 id

vz : Tm (Γ ▷A) (A[wk]) :≡ π2 id

vs (x : Tm ΓA) : Tm (Γ ▷ B) (A[wk]) :≡ x[wk]

⟨t : Tm ΓA⟩ : Sub Γ (Γ ▷A) :≡ (id, t)

(σ : Sub Γ ∆)↑ : Sub (Γ ▷A[σ]) (∆ ▷A) :≡ (σ ◦ wk, vz)

We will denote variables by natural numbers, e.g. 3 :≡ vs (vs (vs vz)).
As an example of using the substitution calculus, we prove the functor laws for terms using

equational reasoning. We use the same names for these laws as for type subsitution: [id] and [◦].

[id] : t[id]

▷β2
−1

= π2 (id, t[id])

idl−1

= π2 (id ◦ id, t[id])

, ◦−1

= π2 ((id, t) ◦ id)

idr

= π2 (id, t)

▷β2

= t

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

Constructing Quotient Inductive-Inductive Types 2:11

[◦] : t[σ ◦ δ]

▷β2
−1

= π2 (σ ◦ δ , t[σ ◦ δ])

idl−1

= π2 (id ◦ (σ ◦ δ), t[σ ◦ δ])

, ◦−1

= π2 ((id, t) ◦ (σ ◦ δ))

ass−1

= π2 (((id, t) ◦ σ) ◦ δ)

, ◦

= π2 ((id ◦ σ , t[σ]) ◦ δ)

, ◦

= π2 ((id ◦ σ) ◦ δ , t[σ][δ])

▷β2

= t[σ][δ]

In addition to the substitution calculus, we have an empty universe given by the following
constructors. This allows us to add sorts to a signature.

U : Ty Γ

El : Tm ΓU → Ty Γ

U[] : U[σ] = U

El[] : (Ela)[σ] = El (a[σ])

We also have a dependent function space with small domain. This can be used to add inductive
arguments to operators in a signature, for example the argument of sucessor for natural numbers.
We have constructors for Π, a categorical application rule and substitution laws.

Π : (a : Tm ΓU) → Ty (Γ ▷ Ela) → Ty Γ

app : Tm Γ (Π a B) → Tm (Γ ▷ Ela)B

Π[] : (Π a B)[σ] = Π (a[σ]) (B[σ ↑])

app[] : (app t)[σ ↑] = app (t[σ])

By restricting the domain to be small, we can only write strictly positive operators (we cannot
write Π (Π a B)C because the first argument of Π needs to be small but (Π a B) itself is large). We
omit lambda abstraction, because there is no essential use for it in signatures, and it follows that
this function type only has neutral elements. We define the non-dependent function space by the
following abbreviation.

(a : Tm ΓU) ⇒ (B : Ty Γ) : Ty Γ :≡ Π a (B[wk])

ś @ ś is left-associative, ś ⇒ ś is right-associative. The usual application can be defined as below.

(t : Tm Γ (Π a B))@ (u : Tm Γ (Ela)) : Tm Γ (B[⟨u⟩]) :≡ (app t)[⟨u⟩]

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

2:12 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch

We have an identity type for elements of a small type, with equality reflection. The identity type
itself is large. This can be used to add equalities to a signature.

Id : (a : Tm ΓU) → Tm Γ (Ela) → Tm Γ (Ela) → Ty Γ

reflect : Tm Γ (Ida t u) → t = u

Id[] : (Ida t u)[σ] = Id (a[σ]) (t[σ]) (u[σ])

Transport can be derived using reflection and the metatheoretic transport tr.

transp (P : Ty (Γ ▷ Ela))(e : Tm Γ (Ida t u)) (w : Tm Γ (P[⟨t⟩])) : Tm Γ (P[⟨u⟩])

:≡ trTm Γ (P [⟨ś ⟩]) (reflect e)w

We have a function space with metatheoretic domain. This can be used to add non-inductive
parameters to a sort or an operator in a signature.

Π̂ : (T : Set) → (T → Ty Γ) → Ty Γ

ś @̂ ś : Tm Γ (Π̂T B) → (α : T) → Tm Γ (B α)

Π̂[] : (Π̂T B)[σ] = Π̂T (λα .(B α)[σ])

@̂[] : (t @̂α)[σ] = (t[σ]) @̂α

We abbreviate Π̂T (λα .B) where B has type Ty Γ as T ⇒̂ B.

3.2 Example Signatures

The signature for natural numbers (Section 1.1) can be given by the following context on the left
hand side. The right hand side is the same context in an informal notation using variable names.

· ▷ U ▷ El 0 ▷ (1 ⇒ El 1) · ▷Nat : U ▷ zero : ElNat ▷ suc : Nat ⇒ ElNat

We start with the empty context ·, use context extension ▷ to add a sort by U. Then we extend the
context with an operator which returns in El 0, that is, in the sort just declared before. The last
operator uses the function space with small domain ⇒. The domain is the sort given earlier (now
it is referred to by index 1) and the codomain is the same (the codomain needs to be large, hence
the use of El).
The signature for integers is the following (Section 1.2).

·▷U ·▷ Int : U

▷N ⇒̂ N ⇒̂ El 0 ▷pair : N ⇒̂ N ⇒̂ El Int

▷ Π̂N λa.Π̂N λb .Π̂N λc .Π̂N λd . ▷ eq : Π̂N λa.Π̂N λb .Π̂N λc .Π̂N λd .

a + d = c + d ⇒̂ a + d = b + c ⇒̂

Id 1 (0 @̂a @̂b) (0 @̂ c @̂d) Id Int (pair @̂a @̂b) (pair @̂ c @̂d)

In this example we use the function space with metatheoretic domain ⇒̂ to express arguments in
the metatheoretic set of natural numbers N. Note the usage of metatheoretic λs for binding the
parameters of the eq constructor.

One might wonder why we need the function space Π̂ when we could just define natural numbers
and integers as one context (Nat : U, zero : ElNat , suc : Nat ⇒ ElNat , Int : U, pair : Nat ⇒

Nat ⇒ El Int , ...). However, we would not be able to extend this signature with the eq constructor,
as it uses + on natural numbers, and the + operation is defined using the recursor for natural
numbers which is not available at this stage.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

Constructing Quotient Inductive-Inductive Types 2:13

The signature for the Con-Ty example is given below (see beginning of Section 1 and Section
1.3).

·▷U ·▷Con : U

▷ 0 ⇒ U ▷Ty : Con ⇒ U

▷ El 1 ▷nil : ElCon

▷Π 2 (2@ 0 ⇒ El 3) ▷ ext : Π(Γ : Con).Ty @ Γ ⇒ ElCon

▷Π 3 (3@ 0) ▷U : Π(Γ : Con).El (Ty @ Γ)

▷Π 4 (Π (4@ 0) ▷Σ : Π(Γ : Con).Π(A : Ty @ Γ).

(5@(3@ 1@ 0) ⇒ El (5@ 1))) Ty @(ext @ Γ @A) ⇒ El (Ty @ Γ)

▷Π 5 (Π (5@ 0) ▷ eq : Π(Γ : Con).Π(A : Ty @ Γ).

(Π (6@(4@ 1@ 0)) Π(B : Ty @(ext @ Γ @A).

(Id 7 (4@(4@ 2@ 1)@ 0) IdCon (ext @(ext @ Γ @A)@B)

(4@ 2@(3@ 2@ 1@ 0)))))) (ext @ Γ @(Σ@ Γ @A@B))

3.3 Defining Functions from the Syntax

In the following sections, we will define functions by induction on the syntax of the theory of
signatures. This amounts to saying what Con, Ty, Sub and Tm are mapped to and providing cases
for all of the 35 constructors from · to @̂[]. Examples of full definitions of some of these functions
are given in Appendix A, the simplest one being the standard interpretation śA.
We refer to [Altenkirch and Kaposi 2016] for a full definition of the elimination principle of a

similar type theory. Alternatively, the elimination principle for the theory of signatures can be
mechanically generated by the methods described in [Kaposi and Kovács 2018].

4 ALGEBRAS AND THE INITIAL ALGEBRA

In this section we define the notion of algebras for signatures and show that an algebra exists for
every signature. We will prove the initiality of these algebras in Section 7.4.

We first compute notions of algebras by induction on the syntax of the theory of signatures. We
denote the operation for this as śA. For types, substitution and terms, śA works as follows.

(Γ : Con)A : Set

(A : Ty Γ)A : ΓA → Set

(σ : Sub Γ ∆)A : ΓA → ∆
A

(t : Tm ΓA)A : (γ : ΓA) → AA γ

The śA operation is the interpretation into the standard model (set-theoretic model, metacircular
model). Object-theoretic constructs are mapped to their metatheoretic counterparts: contexts
become sets, types become famillies of sets, terms become dependent functions.

The above four lines are the specification of the operation śA. Its definition amounts to describing
what it does on all the constructors of the theory of signatures. We start by saying that śA

on the empty context returns the unit type ·A :≡ ⊤, context extension is mapped to Σ, that is
(Γ▷A)A :≡ (γ : ΓA)×AA γ . π1 and π2 are interpreted as first and second projections, respectively, so a
variable projects out the corresponding component, e.g. 2A (γ ,α ,α ′

,α ′′) ≡ α . U is interpreted as Set,
that is, UA γ :≡ Set, a type coming from a code uses the interpretation of the code: (Ela)A γ :≡ aA γ

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

2:14 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch

which has the right type as UA γ ≡ Set. Both function spaces are mapped to metatheoretic function
space: (Π a B)A γ :≡ (α : aA γ) → BA (γ ,α) and (Π̂T B)A γ :≡ (α : T) → (B α)A γ . The identity
type is mapped to the metatheoretic identity type: (Ida t u)A γ :≡ (tA γ = uA γ). The standard
interpretation justifies equality reflection when the metatheory supports functional extensionality:
we need to provide (reflect e)A : tA = uA, and we have eA : (γ : ΓA) → tA γ = uA γ . Hence
(reflect e)A is just given by funext. All the other equality constructors are interpreted by refl. The
full definition for every constructor of the theory of signatures is given in Appendix A.
In the example of natural numbers the carrier of the initial algebra is given by Tm∆ (ElNat)

where ∆ is the signature for natural numbers. We could naively attempt to define the initial algebra
con∆ : ∆A by induction on ∆, however, this is not possible, because we need access to the full ∆
when writing down the carrier Tm∆ (ElNat). Hence, we need to first fix a signature Ω : Con and
define an operation śCΩ , which for a context Γ takes a substitution from Ω to Γ and returns an
element of ΓA. Then, we can recover the initial Ω-algebra as conΩ : ΩA :≡ Ω

CΩ id where id is the
identity substitution.
The motives of śCΩ are given as follows (we omit the Ω subscripts from now on).

(Γ : Con)C : SubΩ Γ → Γ
A

(A : Ty Γ)C : (ν : SubΩ Γ) → TmΩ (A[ν]) → AA (ΓC ν)

(σ : Sub Γ ∆)C : (ν : SubΩ Γ) → ∆
C (σ ◦ ν) = σA (ΓC ν)

(t : Tm ΓA)C : (ν : SubΩ Γ) → AC ν (t[ν]) = tA (ΓC ν)

Once provided with a substitution into the context, contexts are interpreted as algebras. The
interpretation of types is determined by the need for context extension: (Γ ▷ A)C (ν , t) has type
(Γ ▷ A)A ≡ (γ : ΓA) × AA γ . We can provide the γ part by Γ

C ν , so AC has to provide something
of type AA (ΓC ν). Similarly, the interpretation of substitutions and terms are determined by the
requirements of type substitution and substitution extension.
The universe is interpreted by UC ν a :≡ TmΩ (Ela) which results in the sorts being modelled

by terms in the initial algebra. For El, we coerce along the equality aC ν : TmΩ (Ela) = aA (ΓC ν),
and thus (Ela)C ν t :≡ coe (aC ν) t . For Π a B types, we define a function which coerces the input
along aC and uses BC to produce the result in the initial algebra:

(Π a B)C ν t :≡ λα .BC (
ν , coe (aC ν−1)α

) (
t @ coe (aC ν−1)α

)

Equalities of terms and substitutions are trivial in the śC interpretation, as they are equalities
between equalities and these can be just given by UIP.

We refer the interested reader to Appendix A for the full definition of this and later operations.
In the following sections, we will make use of the following two special cases of śC for terms.

First, we know that the set of terms of a small type is equal to the standard interpretation of the
type at the initial algebra. That is, given a term a : TmΩU, we have

aC id : TmΩ (Ela) = aA conΩ .

Second, we know that every term of a small type is equal to its standard interpretation at the initial
algebra. That is, given a t : TmΩ (Ela), we have

tC id : t = tA conΩ .

This equality comes from (Ela)C id t = tC (ΩC id) which computes to coe (aC id) t = tA conΩ , and
forgetting the coercion we get the above equality.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

Constructing Quotient Inductive-Inductive Types 2:15

5 HOMOMORPHISMS AND THE RECURSOR

Given two Γ-algebras γ ,γ ′ : ΓA, we define the notion of homomorphism between them using a
variant of the logical relation interpretation for dependent types [Atkey et al. 2014; Bernardy et al.
2012]. Contexts become binary relations, types become heterogeneous binary relations indexed over
a relation for a context, and substitutions and terms are interpreted as the fundamental theorems
for the logical relation.

(Γ : Con)M : ΓA → Γ
A → Set

(A : Ty Γ)M : ΓM γ 0 γ 1 → AA γ 0 → AA γ 1 → Set

(σ : Sub Γ ∆)M : ΓM γ 0 γ 1 → ∆
M (σA γ 0) (σA γ 1)

(t : Tm ΓA)M : (γM : ΓM γ 0 γ 1) → AM γM (tA γ 0) (tA γ 1)

However, the usual logical relation interpretation does not produce homomorphisms. The moti-
vation of Reynolds [Reynolds 1983] to replace homomorphisms with logical relations was that
homomorphisms do not work for higher order functions. In our case there are no higher-order
functions because the function space Π is strictly positive. Thus, we are able to interpret the
universe by function space instead of relation space. Similarly, the relation for El is the graph of the
corresponding function. Below we list the differences: the left hand side (śM′

) is the usual logical
relation interpretation, the right hand side is the one we use.

UM′

γM
′

T 0 T 1 :≡ T 0 → T 1 → U UM γM T 0 T 1 :≡ T 0 → T 1

(Ela)M
′

γM
′

α 0 α 1 :≡ aM
′

γM
′

α 0 α 1 (Ela)M γM α 0 α 1 :≡ aM γM α 0
= α 1

(Π a B)M
′

γM
′

f 0 f 1 :≡ (αM ′

: aM
′

γM
′

α 0 α 1) → (Π a B)M γM f 0 f 1 :≡ (α 0 : aA γ 0) →

BM′

(γM
′

,αM ′

) (f 0 α 0) BM (γM , refl) (f 0 α 0)

(f 1 α 1) (f 1 (aM γM α 0))

(t @u)M
′

γM
′

:≡ tM
′

(uM
′

γM
′

) (t @u)M γM :≡ J (tM γM (uA γ)) (uM γM)

For Π types, we could use the usual interpretation, but we have a better choice. E.g. for the
successor constructor of the natural numbers, the original formulation would give the condition
(n0 : Nat0)(n1 : Nat1)(nM : NatM n0 = n1) → NatM (suc0 n0) = suc1 n1. The right hand side
variant strictifies this and results in (n0 : Nat0) → NatM (suc1 n0) = suc1 (NatM n0). The price we
have to pay is that interpreting application requires usage of J.

śM is constant ⊤ on the identity type; homomorphisms do not state any conditions between
identity proofs in different algebras because of UIP.
For the recursor, we fix a signature Ω and an algebra ω : ΩA. We write con for conΩ ≡ Ω

C id.
The operation śRω specified as follows.

(Γ : Con)R : (ν : SubΩ Γ) → Γ
M (νA con) (νAω)

(A : Ty Γ)R : (ν : SubΩ Γ)(t : TmΩ (A[ν])) → AM (ΓR ν) (tA con) (tAω)

(σ : Sub Γ ∆)R : (ν : SubΩ Γ) → ∆
R (σ ◦ ν) = σM (ΓR ν)

(t : Tm ΓA)R : (ν : SubΩ Γ) → AR ν (t[ν]) = tM (ΓR ν)

For a context Γ, we get a homomorphism from the constructor (initial algebra) to the given algebra
ω, but both of them have to be transported by the standard interpretation of ν from Ω

A to Γ
A.

For types, we get a heterogeneous homomorphism over the interpretation of the context. For
substitutions and terms, we get naturality conditions expressing that śM and śR commute.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

2:16 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch

UR is given using the standard interpretation śA. Given ν : SubΩ Γ and a : TmΩU we need
something of type (α : aA con) → aAω. We know by aC id that TmΩ (Ela) = aAcon, so coercing α

along this and applying the standard interpretation we get (coe (aC id
−1
)α)Aω : aAω.

For El, we need (Ela)R ν t : aM (ΓR ν) (tA con) = tAω. We use the following equational reasoning
to prove this.

aM (ΓR ν) (tA con)
tC id

−1

= aM (ΓR ν) t
aR ν

−1

= tAω

For the function space, (Π a B)R is defined using aR and BR as follows. (Π a B)R ν t needs to have
type (α : aA (νA con)) → BM (ΓR ν , refl) (tA conα) (tAω (aM (ΓR ν)α)). We can coerce the input
along two equalities:

aA (νA con)
νC id

−1

= aA (ΓC ν)
aC ν

−1

= TmΩ (Ela[ν]),

so thatwe get anu : TmΩ (Ela[ν]). Nowwe use the induction hypothesis forB and getBR (ν ,u) (t @u) :
BM (ΓR ν , refl) (tA con (uA con)) (tAω (uAω)). We can show that this type is equal to the one we need
by coercing along the following two equalities.

uA con
uC id

−1

= u ≡ α uAω
aR ν
= aM (ΓR ν)u ≡ aM (ΓR ν)α

After defining śR, we recover the recursor using the identity substitution:

recΩ (ω : ΩA) : ΩM conΩ ω :≡ Ω
Rω id

In Section 7 we prove uniqueness of the recursor from the existence of the eliminator (which is
proved in Section 6).

6 DISPLAYED ALGEBRAS, SECTIONS AND THE ELIMINATOR

Displayed algebras are given by the unary logical predicate interpretation [Atkey et al. 2014;
Bernardy et al. 2012]. Contexts become predicates over algebras, types become dependent predicates,
and substitutions and terms produce witnesses of the logical predicates once the logical predicate
is witnessed at the context.

(Γ : Con)D : ΓA → Set

(A : Ty Γ)D : ΓD γ → AA γ → Set

(σ : Sub Γ ∆)D : ΓD γ → ∆
D (σA γ)

(t : Tm ΓA)D : (γD : ΓD γ) → AD γD (tA γ)

Here the interpretation of U, El and Π are the usual ones, U becomes predicate space (UD γD T :≡
T → Set), Ela is just a witness of the predicate for a, and function space is interpreted as the
predicate which expresses preservation of logical predicates. The details can be found in Appendix
A.

Sections are dependent variants of the homomorphism interpretation śM described in the
previous section. A context becomes a dependent binary relation where the second argument of the
relation depends on the first one. A type becomes a dependent relation over a dependent relation,
and substitutions and terms become fundamental lemmas.

(Γ : Con)S : (γ : ΓA) → Γ
D γ → Set

(A : Ty Γ)S : ΓS γ γD → (α : AA γ) → AD γD α → Set

(σ : Sub Γ ∆)S : ΓS γ γD → ∆
S (σA γ) (σD γD)

(t : Tm ΓA)S : (γ S : ΓS γ γD) → AS γ S (tA γ) (tD γD)

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

Constructing Quotient Inductive-Inductive Types 2:17

For the eliminator we fix a signature Ω and a displayed algebra over the initial algebra ωD :
Ω
D conΩ . Then we define the operation śE by induction on the syntax. The specification is as

follows.

(Γ : Con)E : (ν : SubΩ Γ) → Γ
S (νA con) (νDωD)

(A : Ty Γ)E : (ν : SubΩ Γ)(t : TmΩ (A[ν])) → AS (ΓE ν) (tA con) (tDωD)

(σ : Sub Γ ∆)E : (ν : SubΩ Γ) → ∆
E (σ ◦ ν) = σ S (ΓE ν)

(t : Tm ΓA)E : (ν : SubΩ Γ) → AE ν (t[ν]) = tS (ΓE ν)

The definition is analogous to that of śR. One difference is that for U we have an additional

transport. The type that we need is (α : aA con) → (aDωD α). The expression coe (aC id
−1
)α

has type TmΩ (Ela). Now, instead of applying the standard interpretation, we apply the logical

predicate interpretation: (coe (aC id
−1
)α)DωD has type aDωD (αA con) which is almost right, so

we need to coerce along αC id which witnesses αA con = α , and we are finished. For details see
Appendix A and the Agda formalisation.

Once we defined the śE operation, we recover the eliminator using the identity substitution:

elimΩ (ωD : ΩD conΩ) : Ω
S conωD :≡ Ω

E
ωD id

7 THE CWFKEq MODEL OF THE THEORY OF SIGNATURES

In the previous sections, we have given a part of the semantics of QIITs, in order to make precise
notions of algebras and induction. However, much is still missing:

• A category of algebras and homomorphisms, with the assorted category operations and laws.
• A proof that the properties of being initial and having induction are equivalent.

If we are aiming to get both, then having just a category of algebras is not sufficient, since it does
not account for displayed algebras and their sections. We need additional structure. Thus, following
the framework of [Nordvall Forsberg 2013], for each signature we construct a category with families,
extended with constant families and extensional equality types. We call such a structure CwFKEq. In

any CwFKEq, there is a simple native definition of induction, and it can be shown to be equivalent to
initiality. In the following, we

• define what a CwFKEq is

• explain how the previously given operations on the theory of signatures yield part of a CwFKEq
model, and present parts of the CwFKEq of natural number algebras as example

• show the equivalence of initiality and induction in any CwFKEq
• construct a model of the theory of signatures, where every Γ : Con is interpreted as a CwFKEq.

7.1 Defining CwFKEq

The core of a CwFKEq is just a CwF, of which the complete definition is already given in Section 3.1
as the substitution calculus of the theory of codes, consisting of twenty-four components from Con
to , ◦. We extend this with two additional structures: constant families and extensional equality. As
we shall see shortly, these are required for the proof that having induction for an object implies its
initiality.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

2:18 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch

Constant families internalize every object (i.e. Con) as a family (Ty and Tm). The rules are as
follows:

K : Con → Ty Γ

K[] : K Γ [σ] = K Γ

mk : Sub Γ ∆ → Tm Γ (K∆)

unk : Tm Γ (K∆) → Sub Γ ∆

Kβ : unk (mkσ) = σ

Kη : mk (unk t) = t

mk[] : (mkσ) [δ] = mk (σ ◦ δ)

The above can be summarized by saying that there is a natural isomorphism between Sub Γ ∆
and Tm Γ (K∆). An alternative definition is given by democratic CwFs [Clairambault and Dybjer
2014], and it was shown in [Nordvall Forsberg 2013] that the two definitions are interderivable.
Extensional equality has a standard definition, although we omit refl for now.

Eq : Tm ΓA → Tm ΓA → Ty Γ

Eq[] : Eq t u [σ] = Eq (t[σ]) (u[σ])

eqreflect : Tm Γ (Eq t u) → t = u

7.2 CwFKEqs of Algebras

Previously given operations on the theory of signatures yield a fragment of a full CwFKEq model.

Algebras become the objects of a CwFKEq, homomorphisms become the morphisms, and displayed
algebras and sections together yield families. However, there are numerous other components in a
CwFKEq which we will consider in Section 7.4, where we construct the model.

To provide some intuition about CwFKEqs of algebras, we give here a tour of some of the definitions

of components of the CwFKEq of natural number algebras. In the following, we shall use the syntactic

names (such as Con, Ty, Tm) for the components of this CwFKEq. This might be somewhat confusing
at first, but we believe that there are advantages to thinking in terms of internal languages and
using familiar type-theoretic syntax when reasoning about arbitrary CwFKEqs.
We start by defining Con as the type of N-algebras, Ty as displayed N-algebras, Sub as N-

homomorphisms and Tm as displayed N-algebra sections, using the same definitions as in section
1.1.

An empty context corresponds to the terminal algebra. For N-algebras, it is just the terminal
set with trivial operations: (⊤,tt, λx . x).
Substitution composition and identity substitution respectively correspond to composition

and identity for homomorphisms. We omit the exact definitions here.
Context extension is taking total algebras of displayed algebras. This is analogous to total

categories of displayed categories [Ahrens and Lumsdaine 2017]. More concretely, we construct
the Σ-type of the carrier set N and the family ND , and glue together the algebra operators with
their displayed counterparts.

ś ▷ ś : (Γ : Con) → Ty Γ → Con

(N , z, s) ▷ (ND
, zD , sD) :≡ (((n : N) × ND n), (z, zD), (λ(x , xD). (s x , sD x xD)))

The first projection of a substitution takes as input a homomorphism into a total algebra, and
returns a homomorphism into the base algebra. The implementation is given by postcomposing

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

Constructing Quotient Inductive-Inductive Types 2:19

the function on carrier sets with proj1.

π1 : Sub Γ (∆ ▷A) → Sub Γ ∆

π1 (N
M
, zM , sM) :≡ ((λn. proj1 (N

M n)), ap proj1 z
M
, (λn. ap proj1 (s

M n)))

Substitution is defined as reindexing of displayed algebras. For the first component of the imple-
mentation, we can turn a predicate on a carrier set to a predicate on another one, by precomposing
a function, and implementations for the other components follow accordingly. Substitution is also
functorial, as witnessed by the definitions of [id] and [◦] which we omit here.

ś [ś] : Ty∆ → Sub Γ ∆ → Ty Γ

(ND
, zD , sD) [(NM

, zM , sM)] :≡

((λn.ND (NM n)), trND (zM −1) zD , (λ n nD . trND (sM n −1) (sD (NM n)nD)))

The second projection of a substitution takes as input a homomorphism into a total alge-
bra, and returns a section of the displayed algebra part. Analogously to the first projection, the
implementation is given by postcomposing the function part of the morphism with proj2, but
here the type is more complicated because of the necessary reindexing of the output (recall that
π2 : (σ : Sub Γ (∆ ▷A)) → Tm Γ (A[π1 σ])).
We shall not elaborate the rest of the CwF components. For the current example of natural

number algebras, it is helpful to keep in mind that if we take all the definitions of first components
(corresponding to the carrier set), we just get the definition of the CwF of sets, and from there the
definitions for the other components follow fairly mechanically.
Constant families for natural numbers are displayed algebras with a constant function for the

predicate. In this case, the type of sections of constant families (Tm Γ (K∆)) is definitionally equal to
the type of homomorphisms (Sub Γ ∆), so mk and unk could be both defined as identity functions.

K : Con → Ty Γ

K (N , z, s) :≡ ((λ _.N), z, (λ _. s))

Equality types are displayed algebras which carry information expressing the equality of two
displayed algebra sections. For the function components of a section, the definition is just pointwise
propositional equality of the functions. For the equality components, the definition is given by
composition (ś � ś) of equalities. Then, reflexivity and equality reflection can be given for this
definition.

Eq : Tm ΓA → Tm ΓA → Ty Γ

Eq (N S0
, zS0, sS0) (N S1

, zS1, sS1) :≡
(
(λn.N S0 n = N S1 n), zS0 � zS1

−1
,

λnp. sS0 n � ap (sD n)p � sS1 n−1
)

7.3 Equivalence of Initiality and Induction

First, we define initiality and induction in an arbitrary CwFKEq.

Initial : Con → Set

Initial Γ :≡ (∆ : Con) → (σ : Sub Γ ∆) × ((δ : Sub Γ ∆) → σ = δ)

Induction : Con → Set

Induction Γ :≡ (A : Ty Γ) → Tm ΓA

Initiality implies induction. Assume that Γ : Con and Γ is initial, and also A : Ty Γ. We aim to
inhabit Tm ΓA. By initiality we get a unique σ : Sub Γ (Γ ▷A). Now, π2 σ has type Tm Γ (A[π1 σ]),

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

2:20 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch

but since π1 σ has type Sub Γ Γ, it must be equal to the identity substitution by uniqueness, and
then we can additionally transport π2 σ over [id] to inhabit Tm ΓA.
Induction implies initiality. Assume that Γ : Con and ind : Induction Γ, and ∆ : Con. We

want to show that there is a unique inhabitant of Sub Γ ∆. Now, define σ as unk (ind (K∆)). Since σ
has the right type, we only need to show its uniqueness. Assume an arbitrary δ : Sub Γ ∆. Now,
ind (Eq (mkδ) (ind (K∆)) has type Tm Γ (Eq (mkδ) (ind (K∆))), and it follows by equality reflection
and Kβ that σ is equal to δ .
Induction is equivalent to initiality. We have established the logical equivalence of initiality

and induction, but we can also show equivalence. Note that initiality is propositional, so we only
need to show the same for induction. For some Γ : Con and ind, ind ′ : Induction Γ, and A : Ty Γ, we
have eqreflect (ind (Eq (ind A) (ind ′A))) with type ind A = ind ′A, so by functional extensionality
ind = ind ′.

7.4 The CwFKEq Model of the Theory of Signatures

For a QIIT signature Ω, in order to show the equivalence of induction (described by Ω
D and Ω

S)
and initiality (described by Ω

M) we need to combine and extend these operations to a full CwFKEq
model. That is, to a model of the theory of signatures in which contexts are interpreted by CwFKEqs.

This involves a large amount of technical work. A CwFKEq contains 24 + 7 + 3 = 34 components
corresponding to the fields of CwF + K + Eq. For all 39 fields of the theory of signatures from Con
to @̂[] we have to define these 34 components. We can imagine filling out a table with 39 rows (one
for each field of the theory of signatures) and 34 columns (one for each component of CwFKEq), see
Figure 1.
There are two ways to present the model: by rows or by columns of the table. Describing the

model by rows is the usual way of saying how contexts are given in the model, then how types are
given, then substitutions, terms, the empty context, context extension and so on. Describing the
model by columns means defining operations which interpret the syntax, and later operations can
depend on previous ones. In Sections 4ś6 we used the column-based method to describe the first
four columns of this table. These were given by śA, śD, śM, and śS (their full definition can be
found in Appendix A).

In this section we follow the row-based approach and describe the rows of the model informally,
while giving the full definition of the first 4 rows (Con, Ty, Sub, Tm) and the rows for U, El and Π in
Appendix B. These are the most interesting parts of the construction. The rest of the construction
is tedious and not very enlightening. The first 4 columns are fully formalised in Agda and most
parts of the category-columns from the CwF-columns are also formalised.
The CwF part of the theory of signatures has to be interpreted as the CwF of CwFKEqs. Hence,

Con is interpreted as just CwFKEq, while Sub is interpreted as the set of strict CwFKEq-morphisms

(which strictly preserve all structure), Ty is interpreted as the set of displayed CwFKEqs, and ś ▷ ś is

interpreted as the total CwFKEq of a displayed one. Previously we illustrated how the CwF of natural

number algebras work in section 7.2. Constructing the CwF of CwFKEqs is an analogous, albeit much
larger work. All in all, this part is a mostly mechanical exercise.
For the universe U we have to give a concrete displayed CwFKEq, since U has type Ty Γ, and

we interpret types as displayed CwFKEqs. However, U does not depend on Γ, so we can give a

non-displayed CwFKEq, and then take the constant displayed CwFKEq for that.

We interpret U as the CwFKEq of sets. It contains the usual category of sets, and has families of
sets and dependent functions for families, function composition for substitution, and extensional

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

Constructing Quotient Inductive-Inductive Types 2:21

śA śD śM ś S ·ś ▷ś ... Kś K[]ś ... Eqś ... śC śR śE

Con

Ty

Sub

Tm

·

▷

...

U

El

...

Π

...

Id

...

Π̂

...

A
pp

en
di
x
A

A
pp

en
di
x
A

Appendix B

Appendix B

Appendix B

CwF (24)

U, El (4)

Π (4)

Id (3)

Π̂ (4)

CwF (24) K (7) Eq (3)

Fig. 1. The components in the CwFKEq model of the theory of signatures. We mark which components are

listed in the appendices.

equality and constant families defined in the obvious way. To see why this is the right choice,
consider the one-element signature containing just a U. Since UA is Set, the full interpretation of
this signature must be the CwFKEq of sets.

For interpretinguniverse decoding Ela, we havea : Tm Γ U andwe need to construct a semantic
Ty Γ, i.e. a displayed CwFKEq. Here, a is a CwFKEq-section of the interpretation of U. However, we

interpreted U as a family which is constantly the CwFKEq of sets, so a can be viewed as a morphism

from Γ to the CwFKEq of sets. Hence, we can define Ela as the discrete displayed CwFKEq where there
are only identity morphisms.

When interpreting the function space with small domain, we need to construct a Ty Γ from
an a : Tm Γ U and a B : Ty (Γ ▷ Ela). The result has to internalise morphisms from a to B. We know
that (Π a B)A γ ≡ (α : aA γ) → BA (γ ,α), which has to be the definition of the displayed objects
in the result (a displayed object is a dependent function), since śA should yield this part of the
CwFKEq model. Note that (α : aA γ) → BA (γ ,α) is just a plain function space, without any conditions
for functorality or structure preservation. Fortunately, we don’t need such conditions because
the domain a is discrete. In the implementation, all of the required displayed CwFKEq structure is
inherited from the codomain; for example, ś ▷ ś is given by using the codomain’s ś ▷ ś pointwise,
and π1 is defined by postcomposing with the codomain’s π1. The interpretation of app generally
follows the currying pattern seen in appA.
The function space with metatheoretic domain is straightforward to interpret. We have a

metatheoretic T : Set and a function B : T → Ty Γ, and we need to create a semantic Ty Γ. The
interpretation of B is a function which returns a displayed CwFKEq, so it can be viewed as a function

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

2:22 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch

returning in a large iterated Σ-type. We can just utilize the equivalence of functions returning a Σ,
and Σs of functions, by pushing the T parameter inside the result components. In short, displayed
CwFKEqs are closed under arbitrary direct products. Then, @ is interpreted as pointwise application
of each component to a metatheoretic argument.
For the identity type, we need to build a displayed CwFKEq representing the equality of t and

u sections of some a discrete displayed CwFKEq. Because of the discreteness, a can be viewed as a

morphism from a Γ CwFKEq to the CwFKEq of sets, and t and u are essentially sections of families
of sets. Hence, we can define the displayed objects in the result as pointwise equality of t and u
(previously given in śA) and displayed displayed algebras as pointwise equalities over equalities
(previously given in śD). Displayed morphisms, sections and all displayed CwFKEq equations become
trivial because of UIP. The interpretation of equality reflection can be given using functional
extensionality.
This concludes the CwFKEq model of the theory of signatures. Now, it follows that for each

signature, there is a CwFKEq of algebras, and thus induction is equivalent to initiality by Section 7.3.
Since for each signature we have constructed an algebra with induction in Section 4 and Section 6,
it follows that the constructed algebras are also initial.

8 CONCLUSIONS AND FURTHER WORK

The present paper develops further the work in [Kaposi and Kovács 2018] where a syntax for HIITs
was presented but no construction for HIITs was given. In the present paper we do construct initial
algebras and (equivalently) eliminators, although in a restricted setting: we only consider quotient
inductive-inductive types, and no higher equalities can be declared.
Note that the current theory of signatures is universal for closed QIITs: this means that the

theory of signatures without Π̂ can describe its own signature. This perhaps opens the way for
type theories with levitated QIIT codes in the style of [Chapman et al. 2010]. Also, the theory of
closed QIIT signatures can be viewed as a fragment of extensional type theory, hence this part of
our work can be viewed as a reduction of closed QIITs to the existence of the syntax of extensional
type theory.

Another limitation of the current work is that we only allow finitary constructors, i.e. we do not
internalise a rule for externally indexed Π-types (Π∗). To obtain infinitary QIITs, we need to add
another Π-type:

Π
∗ : (T : Set) → (T → Tm ΓU) → Tm ΓU

such that there is a natural isomorphism between Tm Γ (El (Π∗T b)) and (α : T) → Tm Γ (El (b α)).
Using the current definition, we are unable to interpret this type former in the construction

of initial algebras, because where we need to derive a propositional equality, we only get an
isomorphism. Since our constructions rely on UIP, we cannot appeal to univalence to solve this.
Hence, we are unable to represent QIITs which are infinitely branching such as W-types or the
Cauchy reals [The Univalent Foundations Program 2013]. A potential solution would be to replace
the propositional equalities in the initial algebra construction (in the interpretation of terms and
substitutions) with isomorphisms in the CwFKEq of algebras. We leave this for future work.
The restriction to QIITs instead of HIITs seems harder to overcome. In any case, since homo-

morphisms of non-truncated algebras are generally not homotopy sets, we would need to handle
higher categories of algebras in the semantics, which poses considerable technical difficulty, and
there is no known practical way to encode them in our currently used metatheory (Martin-Löf type
theory).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

Constructing Quotient Inductive-Inductive Types 2:23

Also, there is a coherence problem when interpreting the theory signatures in a setting without
UIP: in such a setting, we need to set-truncate the syntax, but the metatheoretic universe is not
a set, hence we can’t eliminate into it. This prevents us already from defining the śA operation,
i.e. the standard model. If we want to omit truncation, we need to add coherence laws, e.g. we
need to replace categories with (∞, 1)-categories, which could be defined in a two-level type theory
[Capriotti and Kraus 2017], but it is not clear in general what these coherences should be. However,
if such a higher syntax for signatures is possible, then perhaps the HIIT of higher signatures would
be universal for HIITs.

ACKNOWLEDGMENTS

This work was supported by the European Union, co-financed by the European Social Fund (EFOP-
3.6.3-VEKOP-16-2017-00002) and COST Action EUTypes CA15123.

REFERENCES

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. 2005. Containers Ð Constructing Strictly Positive Types. Theoretical
Computer Science 342 (September 2005), 3ś27. Applied Semantics: Selected Topics.

Benedikt Ahrens and Peter LeFanu Lumsdaine. 2017. Displayed Categories. arXiv:arXiv:1705.04296
Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and Fredrik Nordvall Forsberg. 2018. Quotient inductive-

inductive types. In International Conference on Foundations of Software Science and Computation Structures. Springer,
293ś310.

ThorstenAltenkirch andAmbrus Kaposi. 2016. Type theory in type theory using quotient inductive types. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,

January 20 - 22, 2016, Rastislav Bodik and Rupak Majumdar (Eds.). ACM, 18ś29. https://doi.org/10.1145/2837614.2837638
Robert Atkey, Neil Ghani, and Patricia Johann. 2014. A relationally parametric model of dependent type theory. In The

41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,

January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 503ś516. https://doi.org/10.1145/2535838.2535852
Steve Awodey, Jonas Frey, and Sam Speight. 2018. Impredicative Encodings of (Higher) Inductive Types. In Proceedings

of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS ’18). ACM, New York, NY, USA, 76ś85.
https://doi.org/10.1145/3209108.3209130

Henning Basold and Herman Geuvers. 2016. Type Theory Based on Dependent Inductive and Coinductive Types. In
Proceedings of LICS ’16, Martin Grohe, Eric Koskinen, and Natarajan Shankar (Eds.). ACM, 327ś336. https://doi.org/10.
1145/2933575.2934514

Henning Basold, Herman Geuvers, and Niels van der Weide. 2017. Higher Inductive Types in Programming. Journal of
Universal Computer Science 23, 1 (jan 2017), 63ś88.

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for Free Ð Parametricity for Dependent Types.
Journal of Functional Programming 22, 02 (2012), 107ś152. https://doi.org/10.1017/S0956796812000056

Paolo Capriotti and Nicolai Kraus. 2017. Univalent Higher Categories via Complete Semi-Segal Types. Proc. ACM Program.

Lang. 2, POPL, Article 44 (Dec. 2017), 29 pages. https://doi.org/10.1145/3158132
John Cartmell. 1986. Generalised algebraic theories and contextual categories. Annals of Pure and Applied Logic 32 (1986),

209ś243.
James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. 2010. The gentle art of levitation. ACM Sigplan

Notices 45, 9 (2010), 3ś14.
Pierre Clairambault and Peter Dybjer. 2014. The biequivalence of locally cartesian closed categories and Martin-Löf type

theories. Mathematical Structures in Computer Science 24, 6 (2014).
Jesper Cockx, Dominique Devriese, and Frank Piessens. 2014. Pattern Matching Without K. In Proceedings of the 19th

ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). ACM, New York, NY, USA, 257ś268.
https://doi.org/10.1145/2628136.2628139

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2016. Cubical Type Theory: a constructive interpretation
of the univalence axiom. CoRR abs/1611.02108 (2016). arXiv:1611.02108 http://arxiv.org/abs/1611.02108

Thierry Coquand, Simon Huber, and Anders Mörtberg. 2018. On Higher Inductive Types in Cubical Type Theory. LICS ’18:
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (2018).

Peter Dybjer. 1996. Internal Type Theory. In Lecture Notes in Computer Science. Springer, 120ś134.
Peter Dybjer. 1997. Inductive Families. Formal Aspects of Computing 6 (1997), 440ś465.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

http://arxiv.org/abs/arXiv:1705.04296
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/2535838.2535852
https://doi.org/10.1145/3209108.3209130
https://doi.org/10.1145/2933575.2934514
https://doi.org/10.1145/2933575.2934514
https://doi.org/10.1017/S0956796812000056
https://doi.org/10.1145/3158132
https://doi.org/10.1145/2628136.2628139
http://arxiv.org/abs/1611.02108
http://arxiv.org/abs/1611.02108

2:24 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch

Peter Dybjer. 2000. A General Formulation of Simultaneous Inductive-Recursive Definitions in Type Theory. Journal of
Symbolic Logic 65 (2000), 525ś549.

Peter Dybjer and Hugo Moeneclaey. 2018. Finitary Higher Inductive Types in the Groupoid Model. Electronic Notes

in Theoretical Computer Science 336 (2018), 119 ś 134. https://doi.org/10.1016/j.entcs.2018.03.019 The Thirty-third
Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXIII).

Martin Hofmann. 1995a. Conservativity of Equality Reflection over Intensional Type Theory.. In TYPES 95. 153ś164.
Martin Hofmann. 1995b. Extensional concepts in intensional type theory. University of Edinburgh, Department of Computer

Science. http://books.google.co.uk/books?id=HK3xtgAACAAJ
Ambrus Kaposi. 2017. Type theory in a type theory with quotient inductive types. Ph.D. Dissertation. University of Nottingham.
Ambrus Kaposi and András Kovács. 2018. A Syntax for Higher Inductive-Inductive Types. In 3rd International Conference on

Formal Structures for Computation and Deduction (FSCD 2018) (Leibniz International Proceedings in Informatics (LIPIcs)),
Hélène Kirchner (Ed.), Vol. 108. Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 20:1ś20:18.
https://doi.org/10.4230/LIPIcs.FSCD.2018.20

Peter LeFanu Lumsdaine and Mike Shulman. 2017. Semantics of higher inductive types. arXiv:arXiv:1705.07088
Peter Morris and Thorsten Altenkirch. 2009. Indexed Containers. In Twenty-Fourth IEEE Symposium in Logic in Computer

Science (LICS 2009).
Fredrik Nordvall Forsberg. 2013. Inductive-inductive definitions. Ph.D. Dissertation. Swansea University.
Nicolas Oury. 2005. Extensionality in the calculus of constructions. Springer Berlin Heidelberg, Berlin, Heidelberg, 278ś293.

https://doi.org/10.1007/11541868_18
Christine Paulin-Mohring. 1993. Inductive Definitions in the system Coq Ð Rules and Properties. In Typed Lambda Calculi

and Applications, International Conference on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands,

March 16-18, 1993, Proceedings (Lecture Notes in Computer Science), Marc Bezem and Jan Friso Groote (Eds.), Vol. 664.
Springer, 328ś345. https://doi.org/10.1007/BFb0037116

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In Information Processing 83, Proceedings of the

IFIP 9th World Computer Congress, Paris, September 19-23, 1983, R. E. A. Mason (Ed.). Elsevier Science Publishers B. V.
(North-Holland), Amsterdam, 513ś523.

Kristina Sojakova. 2015. Higher Inductive Types As Homotopy-Initial Algebras. In Proceedings of the 42Nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New York, NY, USA, 31ś42.
https://doi.org/10.1145/2676726.2676983

The Univalent Foundations Program. 2013. Homotopy type theory: Univalent foundations of mathematics. Technical Report.
Institute for Advanced Study.

Niels van der Weide. 2016. Higher Inductive Types. Ph.D. Dissertation. Radboud University, Nijmegen. Master’s thesis.
ThéoWinterhalter, Matthieu Sozeau, and Nicolas Tabareau. 2018. Using reflection to eliminate reflection. In 24th International

Conference on Types for Proofs and Programs, TYPES 2018, José Espírito Santo and Luís Pinto (Eds.). University of Minho.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 2. Publication date: January 2019.

https://doi.org/10.1016/j.entcs.2018.03.019
http://books.google.co.uk/books?id=HK3xtgAACAAJ
https://doi.org/10.4230/LIPIcs.FSCD.2018.20
http://arxiv.org/abs/arXiv:1705.07088
https://doi.org/10.1007/11541868_18
https://doi.org/10.1007/BFb0037116
https://doi.org/10.1145/2676726.2676983

	Abstract
	1 Introduction
	1.1 Natural Numbers
	1.2 Integers
	1.3 Contexts and Types
	1.4 Overview of the Rest of the Paper
	1.5 Related Work

	2 Metatheory and formalisation
	3 The type theory of signatures
	3.1 The Syntax
	3.2 Example Signatures
	3.3 Defining Functions from the Syntax

	4 Algebras and the initial algebra
	5 Homomorphisms and the recursor
	6 Displayed algebras, sections and the eliminator
	7 The CwFKEq model of the theory of signatures
	7.1 Defining CwFKEq
	7.2 CwFKEqs of Algebras
	7.3 Equivalence of Initiality and Induction
	7.4 The CwFKEq Model of the Theory of Signatures

	8 Conclusions and further work
	Acknowledgments
	References

