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A bi-objective programming model for carbon emission quota 

allocation: Evidence from the Pearl River Delta region 

 

Abstract: As a core component of the emission trading scheme (ETS), the initial allocation of 

carbon quotas is extremely important. Currently, most allocation methods mainly focus on the 

realization of a single performance goal, which will result in conflicts between different levels 

of participants. To overcome this deficiency, this paper develops a bi-objective programming 

model (BPM) with two sub-objective functions of abatement costs and carbon assets. 

Meanwhile, cost-oriented model (CM) and asset-oriented model (AM) are implemented as 

comparison approaches that represent the minimization of regional abatement costs and the 

maximization of individual interests, respectively. The empirical results of the Pearl River Delta 

(PRD) region reveal that BPM is the most efficient and feasible approach to some extent. More 

precisely, BPM can motivate the enthusiasm of all participants while optimizing abatement 

costs. With the increase of regional total quotas, the advantage of BPM becomes more and more 

prominent. The contribution of this paper is to present a novel method for carbon emission 

quota allocation, which fills the gap in the existing literature. Furthermore, the proposed method 

that can be deployed in other similar regions assists policymakers in enacting an effective 

emission reduction policy and in better understanding the objectives of economy, energy and 

environment. 

 

Keywords: Carbon emission quota allocation; Bi-objective programming model; Cost-oriented 

model; Asset-oriented model; Pearl River Delta 
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Nomenclature 

Abbreviations Latin symbols 

ADF Augmented Dickey-Fuller 𝐴 Abatement volume (tons) 

AM Asset-oriented Model 𝐶𝐼 Carbon intensity (ton/104 𝑌𝑢𝑎𝑛) 

BPM Bi-objective Programming Model 𝐸𝐶 
Energy consumption (104 tons of 

standard coal) 

BSGP 
Bureau of Statistics of Guangdong 

Province 
𝐺𝐷𝑃 

Gross Domestic Product 

(108 𝑌𝑢𝑎𝑛) 

CCTN China Carbon Trading Network 𝑀𝐴𝐶 
Marginal Abatement Costs (𝑌𝑢𝑎𝑛/

𝑡𝑜𝑛) 

CM Cost-oriented Model 𝑝  Carbon price (𝑌𝑢𝑎𝑛/𝑡𝑜𝑛) 

CO2 Carbon dioxide 𝑄 Quotas (tons) 

CSC China State Council  𝑅2 Goodness of Fit 

EKC Environmental Kuznets Curve 𝑅 National abatement rate (%) 

EROI Energy Return on Investment 𝑟 Abscissa 

ETS Emission Trading Scheme 𝑇𝐴𝐶 Total Abatement Costs (104 𝑌𝑢𝑎𝑛) 

EU 

ETS 

European Union Emissions Trading 

System  
𝑉 Carbon assists (104 𝑌𝑢𝑎𝑛) 

IPCC 
Intergovernmental Panel on Climate 

Change 
  

MAPE Mean Absolute Percentage Error Subscripts/ Superscript 

MCDA Multi-criteria Decision Analysis 𝑏𝑎𝑠𝑒 Base year 

NBSC 
National Bureau of Statistics of 

China 
𝑖 Participant’s number 

OLS Ordinary Least Square 𝑙 Lower bound  

PRD Pearl River Delta  𝑡 Year 

UNDP 
United Nations Development 

Programme 
𝑢 Upper bound  

    

Greek symbols   

𝜇 Regional abatement rate (%)   
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1. Introduction 

With the development of industrialization and urbanization, carbon dioxide (CO2) 

emissions have risen sharply during the past decade (IPCC, 2014). To maintain the worldwide 

sustainable development, various organizations and countries have enacted relevant laws and 

regulations to limit CO2 emissions (Zhou et al., 2017a; UNDP, 2015). Among the three major 

regulation policy tools including emission trading scheme (ETS), administrative order policy 

and carbon tax, ETS is regarded as the most economical and effective mechanism (Liu et al., 

2015; Sartor et al., 2014). China, the largest CO2 emitter, is preparing to establish a unified 

national ETS by the end of 2017 (Xia and Tang, 2017). Once the unified national ETS is 

completed, China will surpass the European Union Emissions Trading System (EU ETS) to 

become the largest ETS in the world (Zhao et al., 2017). 

As a core element of the ETS, the initial allocation of carbon quotas is extremely important. 

Currently, the main allocation methods for China’s ETS in practice are grandfathering derived 

from historical carbon emissions and benchmarking derived from industrial average carbon 

emissions (Ji et al., 2017). However, both of the above methods have some drawbacks. For 

example, grandfathering cannot cover the new capacity of enterprises (Fan et al., 2016), while 

the standard of benchmarking is difficult to determine because of data shortage (Liu et al., 2015). 

Therefore, how to design a suitable allocation method tailored to the real circumstance has 

become a huge task for the Chinese government.  

To optimize the initial allocation of carbon quotas, many scholars have explored different 

allocation methods in theory, including indicator approach, optimization model, game model 

and hybrid methods (Zhou and Wang, 2016). Based on different equality perspectives, historical 



5 

carbon emissions, population, GDP/per capita GDP are usually selected as indicators that 

represent the principles of sovereignty/grandfathering, egalitarianism and ability to pay/ 

economic activity, respectively (Zhou et al., 2013; Zhao et al., 2010; Phylipsen et al., 1998). 

Combining different principles together, multi-criteria decision analysis (MCDA) that is 

dominated by information entropy method (Li et al., 2018; Qin et al., 2017) has become the 

mainstream of the composite indicator approach. However, the composite indicator approach 

cannot reflect the specific goal that policymakers want to achieve, nor does it have a uniform 

standard to determine the weight of each indicator (Zhou and Wang, 2016). Consequently, 

optimization model and game model are developed. 

With respect to optimization model, efficiency and abatement costs are two conventional 

optimization goals. To maximize allocation efficiency, Zeng et al. (2016) allocated carbon 

quotas among 30 provinces in China by hiring a ZSG-DEA model with fixed carbon emissions 

and non-fossil energy consumption. Zhang and Hao (2017) also applied an input-oriented ZSG-

DEA model, but their allocation was built on the industry level. With the aim of reducing 

abatement costs, Fan et al. (2016) simulated the marginal emission abatement cost curve of 

China in 2015 and 2020 with a CHINAGEM model and calculated the equilibrium carbon price. 

Liu and Lin (2017) estimated the marginal emission abatement cost curves by a parametric 

directional output distance functions and proposed a novel nonlinear programming model in 

China’s building construction industry. In terms of game model, the Shapley value method is 

the most common method in empirical research. Zhang et al. (2014) adopted the gravity model 

to calculate the regional connection and assigned initial quotas using the Shapley value method. 

Liao et al. (2015) further compared the discrepancies among the Shapley value method, 
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grandfathering and benchmarking, and pointed out that the Shapley value method was 

considered to be a theoretical equity reference. However, because the Shapley value method is 

an alliance cooperation game (Chang et al., 2016), it will lead to unfairness if the participants 

of ETS are different types of enterprises. Furthermore, the marginal profit of each participant 

is difficult to ascertain. Therefore, the Shapley value method is only for reference and has less 

available in practice. Finally, some methods (e.g., Zhou et al., 2017b) that combine multiple 

groups of the above methods together can be regarded as the hybrid methods. 

Although the above literature provides unique ideas for the allocation of carbon quotas, 

most of them mainly focus on a single performance goal, such as realizing fairness allocation 

(Chen et al., 2016), minimizing abatement costs (Liu and Lin, 2017) and maximizing profits 

(Liao et al., 2015) or efficiency (Zhang and Hao, 2017). However, different performance goals 

sometimes are incongruous or even contradictory (Salehi et al., 2017). For example, 

sovereignty principle and ability to pay principle, egalitarianism principle and economic 

activity principle, as well as minimizing abatement costs and maximizing efficiency. 

Consequently, carbon emission quota allocation is not an isolated process for achieving a single 

performance goal, it should be a comprehensive process in which all levels of participants work 

together and reach a consensus. Remarkably, there are two significant factors that cannot be 

overlooked among various performance goals. One is the cost factor (i.e., abatement costs) that 

is the purpose of the existence of ETS (Fan et al., 2016), and the other is the enthusiasm of the 

participants (i.e., individual interests) that is the basis for the operation of ETS (Liu et al., 2015). 

However, these two factors sometimes will create conflicts because the clean participants 

usually have a higher economic level, while the dirty participants often locate in developing 
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stage. Therefore, the purpose of this paper is to find a balance between overall interests (i.e., 

social abatement costs) and individual interests, so as to realize an effective and feasible 

allocation of carbon quotas. 

Technically, this paper develops a bi-objective programming model (BPM) with two sub-

objective functions of abatement costs and carbon assets. Meanwhile, cost-oriented model (CM) 

and asset-oriented model (AM) are applied as comparison approaches, which represent the 

minimization of social abatement costs and the maximization of individual interests, 

respectively. To verify the validity of the proposed method, this paper selects the Pearl River 

Delta (PRD) region where the intraregional development is extremely imbalanced as a 

representative example. The empirical results show that BPM is the most efficient and feasible 

approach to some extent, because the allocation of BPM is a non-inferior solution (Hombach 

and Walther, 2015) that can achieve a trade-off between overall interests and individual interests. 

In general, this paper presents a novel method for carbon emission quota allocation, which fills 

the gap in the existing literature. Simultaneously, the proposed method that can be implemented 

in other similar regions assists policymakers in enacting an effective emission reduction policy 

and in better understanding the objectives of economy, energy and environment.   

The layout of this paper is shown as follows: Section 2 introduces the general framework 

and methodology. Section 3 presents the situation and data sources of the PRD region. Section 

4 discusses the allocation results using different approaches. Section 5 provides a sensitivity 

analysis of changes in regional total quotas. Section 6 summarizes the conclusions and proposes 

some policy implications. 

 



8 

2. Methodology  

2.1 Research framework 

Fig. 1 shows the general framework of this paper. Firstly, based on the previous literature, 

this paper reviews two traditional allocation approaches and proposes a novel approach. 

Secondly, the grey system model and the Environmental Kuznets Curve (EKC) are taken to 

determine the bounds of initial quotas, and scenario analysis is used to predict GDP in 2020. 

Thirdly, because of the imbalanced development of the region, the PRD region is chosen as a 

representative example to reflect the discrepancies among different allocation approaches. 

Fourthly, to demonstrate the advantages of the proposed method, BPM is compared with CM 

and AM that represent overall interests and individual interests, respectively. Lastly, according 

to the comparison results and sensitivity analysis, several policy implications for improving the 

performance of pilot work and measurements for emission reduction are provided. 

 

Fig. 1. The general framework of carbon emission quota allocation 
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2.2 Quota allocation by CM 

It is assumed that there are n participants (e.g., cities or enterprises) within a regional ETS, 

and the initial carbon quotas for these participants are freely available. According to the 

provision of the central government, the initial regional total quotas for the target year (i.e., 

2020) are,  

𝐶𝐼𝑖𝑡 =
𝑄𝑖𝑡

𝐺𝐷𝑃𝑖𝑡
, 𝑖 = 1,2,3, … , 𝑛                         (1) 

𝐶𝐼𝑏𝑎𝑠𝑒 =
∑ 𝑄𝑖𝑏𝑎𝑠𝑒

𝑛
𝑖=1

∑ 𝐺𝐷𝑃𝑖𝑏𝑎𝑠𝑒
𝑛
𝑖=1

                             (2) 

𝐺𝐷𝑃𝑖2020 = 𝐺𝐷𝑃𝑖2016 × (1 + 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒)4                   (3) 

𝐺𝐷𝑃2020 = ∑ 𝐺𝐷𝑃𝑖2020
𝑛
𝑖=1                             (4) 

𝑄2020 = (1 − 𝜇)𝐶𝐼𝑏𝑎𝑠𝑒𝐺𝐷𝑃2020                         (5) 

where 𝑄𝑖𝑡, 𝐺𝐷𝑃𝑖𝑡 and 𝐶𝐼𝑖𝑡 represent the carbon emissions (quotas), Gross Domestic Product 

(GDP) and carbon intensity of participant 𝑖 in the year 𝑡, respectively; 𝐶𝐼𝑏𝑎𝑠𝑒 is the regional 

carbon intensity in the base year; 𝜇 is the regional carbon intensity reduction rate. In this paper, 

carbon emissions (quotas) are the abbreviation of CO2 emissions (quotas). 

As a cost-effective mechanism, ETS uses market instruments to encourage the participants 

with lower abatement costs to undertake more emission reduction tasks, while the participants 

with higher abatement costs must purchase quotas for completing abatement tasks (Fang et al., 

2018; Xiong et al., 2017). Therefore, a reasonable allocation method should take the cost factor 

into account. Usually, marginal abatement costs (MAC) and total abatement costs (TAC) are 

two common factors that cannot be overlooked (Liu and Lin, 2017). From the regional 

perspective, the TACs for all participants should be minimized to realize low-cost target. To 

estimate the MAC and TAC of each participant in the target year (i.e., 2020), this paper follows 
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the research of Fan et al. (2016) who estimated the MAC of China in 2020, as shown in Eq. (6). 

𝑀𝐴𝐶2020 = −679.63ln (1 − 𝑅)                      (6) 

where 𝑅 is the abatement rate of China in 2020, and the unit of 𝑀𝐴𝐶2020 is Yuan (at the 2002 

constant price index) per tCO2. Because the GDP indexes from 2003 to 2005 are 114.8, 114.8 

and 113.8, respectively (NBSC, 2017), the MAC of China at the 2005 constant price index can 

be transferred into Eq. (7). Moreover, the MAC and TAC of each participant can be obtained 

by coordinate translation method (Chang et al., 2016), as shown in Eqs. (8) to (10). 

𝑀𝐴𝐶𝑖2020 = −453.15 ln(1 − 𝑅𝑖2020) = −453.15 ln (1 −
𝐴𝑖2020

𝑄𝑖2020
𝑢 (1−𝑟𝑖)

)    (7) 

𝑟𝑖2020 = 1 −
𝐶𝐼𝑖2020

𝐶𝐼̅̅ ̅2020
                             (8) 

𝐴𝑖2020 = 𝑄𝑖2020
𝑢 − 𝑄𝑖2020                          (9) 

𝑇𝐴𝐶𝑖2020 = ∫ [−453.15 ln (1 −
𝑥

𝑄𝑖2020
𝑢 (1−𝑟𝑖)

)] 𝑑𝑥
𝐴𝑖2020

0
                            (10) 

         = 453.15[𝑄𝑖2020
𝑢 (1 − 𝑟𝑖) − 𝐴𝑖2020] ln (1 −

𝐴𝑖2020

𝑄𝑖2020
𝑢 (1−𝑟𝑖)

) + 453.15𝐴𝑖2020            

where 𝑟𝑖2020 and 𝐴𝑖2020 are the abscissa and the abatement volume of participant 𝑖 in 2020, 

respectively; the unit of 𝑀𝐴𝐶𝑖2020 and 𝑇𝐴𝐶𝑖2020 are Yuan (at the 2005 constant price index) 

per tCO2; 𝑄𝑖2020
𝑢  is the upper bound of participant 𝑖’s carbon quotas in 2020, which is equal 

to the carbon emissions without policy constraint. 𝐶𝐼̅̅̅
2020 is the average carbon intensity of 

China in 2020 (i.e., 1.77 ton per 104 Yuan, which can be estimated by the national emission 

reduction plan, namely 40%-45% carbon intensity will be reduced by 2020 based on the 2005 

level (Liu and Lin, 2017). 

To estimate 𝑄𝑖2020
𝑢  for each participant, a grey system model called GM (1, 1) is adopted 

due to the advantages of less required sample data, high short-term prediction accuracy and 

testability (Ren and Gu, 2016). Because the prediction of GM (1, 1) is based on the internal 
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growth trend of the data, it can be regarded as a natural growth of carbon emissions without 

policy constraints. The main prediction steps of GM (1, 1) can be found in Ye et al. (2018)’s 

work. Moreover, the mean absolute percentage error (𝑀𝐴𝑃𝐸𝑖)  of participant 𝑖  can be 

calculated as follow: 

𝑀𝐴𝑃𝐸𝑖 =
1

𝑛
∑ |

𝑄𝑖
(0)

(j)−𝑄𝑖
(2)

(j)

𝑄𝑖
(0)

(j)
| × 100%𝑛

𝑗=1                   (11) 

where 𝑄𝑖
(0)

 and 𝑄𝑖
(2)

 are the original sequence and forecast set, respectively. 𝑀𝐴𝑃𝐸𝑖 < 10% 

means that the predication has high accuracy (Lewis, 1982).  

Hence, this paper adopts a nonlinear programming model called CM to minimize the 

regional abatement costs, and the solution is described in Appendix A.1.  

𝑀𝑖𝑛 ∑ 𝑇𝐴𝐶𝑖2020
𝑛
𝑖=1                             (12) 

𝑠. 𝑡.  ∑ 𝑄𝑖2020 ≤ 𝑄2020
𝑛
𝑖=1                               

 𝑄𝑖2020
𝑙 ≤ 𝑄𝑖2020 ≤ 𝑄𝑖2020

𝑢                               

where 𝑄𝑖2020
𝑙  is the lower bound of carbon quotas in 2020 (see Section 2.3).  

 

2.3 Quota allocation by AM 

With the enactment of the Kyoto protocol, the carbon emission right has become a scarce 

resource with tradable attributes (Li and Jia, 2017). Currently, economic development and 

carbon emissions cannot be decoupled significantly, and thus carbon emission space is the space 

for development (Fan et al., 2016). To measure the relationship between economic development 

and carbon emissions, EKC that considers the decreasing of carbon emissions with economic 

growth is wildly studied by numerous scholars (Zhao and Du, 2015). Because the natural 

logarithmic form can reduce volatility and linearize the trend without changing the original co-
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integration relationship (Li et al., 2016), this paper adopts the natural logarithmic form of EKC 

as described in Eq. (13).  

ln𝑄𝑖2020 = α𝑖 + 𝛽1ln𝐺𝐷𝑃𝑖2020 + 𝛽2ln𝐺𝐷𝑃𝑖2020
2 + 𝛽3ln𝐺𝐷𝑃𝑖2020

3        (13) 

where α𝑖  is the constant term, 𝛽1, 𝛽2  and 𝛽3  are the estimated coefficients. According to 

Kaika and Zervas (2013)’s research, there are six forms of EKC. If 𝛽1 > 0, 𝛽2 < 0 and 𝛽3 =

0, then inverted U relationship exists, indicating that carbon emissions have the highest point 

and the turning point can be calculated as follow: 

ln𝐺𝐷𝑃𝑖2020
∗ = −

𝛽1

2𝛽2
                          (14) 

Song et al. (2013) had proved that the inverted U relationship of EKC existed in some 

regions of China, such as Guangdong (the PRD region), Hunan, Shanxi, etc. Meanwhile, the 

Chinese government committed to reaching the peak of carbon emissions by 2030 (CSC, 2016). 

Therefore, this paper assumes that the inverted U relationship of EKC exists for the participants 

in the region. Because the promotion of economic growth is the first priority for China, carbon 

emissions that satisfy economic development are regarded as the lower bound of carbon quotas, 

namely, 𝑄𝑖2020
𝑙  is calculated by Eqs. (3) and (13). Practically, the regional government will 

allocate slightly more initial quotas than the minimum carbon emissions to mitigate abatement 

pressure of each participant, and thus the value of these increment quotas is regarded as carbon 

assets which are defined in Eq. (15).    

𝑉𝑖2020 = 𝑝𝐼𝑖2020 = 𝑝(𝑄𝑖2020 − 𝑄𝑖2020
𝑙 )                (15) 

where 𝐼𝑖2020  is the increment quotas of participant 𝑖  in 2020, and 𝑝  is the carbon price. 

According to Fig. 2, 𝑝 is assumed to be 20 Yuan per tCO2 that is the relatively stable price of 

Guangdong pilot ETS during the last three years (CCTN, 2017). Although carbon price is 
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closely related to the number of quotas, this paper mainly focuses on the allocation of carbon 

quotas rather than the trading in the secondary market. Therefore, carbon assets can be 

considered as values corresponding to the current market price. Actually, the change of 𝑝𝑒 

does not affect the conclusions of this paper, it only influences the relative value of 𝑉𝑖2020. 

 

Fig. 2. Carbon K-line of Guangdong pilot ETS  

From the individual perspective, each participant with high GDP wants to expand its 

carbon assets due to the contribution to the economy. Because the promotion of economic 

growth is the first priority for China, a reasonable allocation method should be built on 

economic activity principle (Zhou and Wang, 2016). To reflect the negotiation process among 

diverse participants, this paper adopts the Nash bargaining model (Harsanyi and Selten, 1972; 

Nash, 1950) and selects GDP as a weight indicator. The reason is that the Nash bargaining 

model is a non-coalition cooperation game which can reflect the fairness of the negotiation 

process. Simultaneously, it can ensure each participant’s profit to become better after 

negotiation (Jiang et al., 2017), so that each participant is willing to join the negotiation. 

Because 𝑝  is an exogenous variable and carbon quotas are risk neutral, maximizing the 
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increment quotas is equivalent to maximizing the carbon assets. Hence, AM is outlined in Eq. 

(16), and the solution is shown in Appendix A.2. 

𝑀𝑎𝑥 ∏ (𝑄𝑖2020 − 𝑄𝑖2020
𝑙 )𝑤𝑖𝑛

𝑖=1                       (16) 

𝑠. 𝑡.  ∑ 𝑄𝑖2020 ≤ 𝑄2020
𝑛
𝑖=1                               

𝑄𝑖2020
𝑙 ≤ 𝑄𝑖2020 ≤ 𝑄𝑖2020

𝑢                           

∑ 𝑤𝑖 = 1𝑛
𝑖=1                                      

𝑤𝑖 =
𝐺𝐷𝑃𝑖2020

∑ 𝐺𝐷𝑃𝑖2020
𝑛
𝑖=1

 

where 𝑤𝑖 represents the bargaining power (weight) of participant 𝑖. 

 

2.4 Quota allocation by BPM 

With the concept of sustainable development, more and more scholars consider a trade-off 

between environmental and financial indicators (Al-E-Hashem et al., 2013), but it is difficult to 

judge a scheme by a single goal because various goals are sometimes incongruous and even 

contradictory (Salehi et al., 2017). For instance, expected costs and carbon emissions are two 

common factors (Konur et al., 2016; Zhao and Li, 2016), but cutting carbon emissions comes 

at a cost. So the core is to find a non-inferior solution that balance ecological and economic 

goals (Sazvar et al., 2014). In terms of China, the total amount of carbon quotas is certain. 

Therefore, the core issue is how to save abatement costs among various levels, so that both 

regional government and individual participant are satisfied. 

More precisely, minimizing the regional TAC is the chief priority for policymakers. 

However, it may be opposed by some individual participants, because they need to shoulder 

some extra emission reduction tasks for other participants with high MAC. On the contrary, 
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from the individual perspective, each participant with high GDP expects to obtain more initial 

quotas because of the contribution to economic growth. Due to the discrepancies among 

different participants, a reasonable allocation approach in practice cannot merely consider 

unilateral opinions. To achieve a win-win situation between the regional government and the 

individual participant, this paper simultaneously takes both regional and individual interests 

into account, and thus BPM is described in Eq. (17), and the solution is shown in Appendix A.3.  

𝑀𝑖𝑛 ∑ 𝑇𝐴𝐶𝑖2020
𝑛
𝑖=1                               (17) 

𝑀𝑎𝑥 ∏ (𝑄𝑖2020 − 𝑄𝑖2020
𝑙 )𝑤𝑖𝑛

𝑖=1                            

𝑠. 𝑡.  ∑ 𝑄𝑖2020 ≤ 𝑄2020
𝑛
𝑖=1                               

                     ∑ 𝑤𝑖 = 1𝑛
𝑖=1                                  

𝑄𝑖2020
𝑙 ≤ 𝑄𝑖2020 ≤ 𝑄𝑖2020

𝑢                            

 

3. Case study 

3.1 Overview of the case study 

The PRD region, as the economic, political and cultural center of Guangdong Province, 

belongs to one of the five major urban agglomerations in China (see Fig.3), accounting for 5% 

and 12% of the national population and GDP, respectively (NBSC, 2017). Although the PRD 

region has a large amount of economy, the distribution of GDP and population within the region 

is extremely imbalanced. Most of the contributions come from Guangzhou, Shenzhen, Foshan 

and Dongguan, while the GDP and population of the remaining cities only account for 20% and 

31%, respectively (see Fig.4).  

Moreover, due to the rapid economic development, energy consumption of the PRD region 

has increased significantly. The energy consumption in 2005 is 140.39 million tons of standard 
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coal while this figure reaches 263.97 million tons of standard coal in 2016 (BSGP, 2017). 

Similar to China, coal is still the primary energy source for the PRD region although the 

proportion of renewable energy is increasing every year. Because the exploitation and 

utilization of fossil fuels have caused environmental pollution and ecological destruction, it is 

dramatically necessary for the PRD region to draft a reasonable emission reduction strategy. 

The motivations for selecting the PRD region are shown as follows: (1) the internal 

development of the PRD region is imbalanced, and thus the allocation of initial carbon quotas 

should take both individual and regional interests into account; (2) the PRD region covers two 

pilot ETSs (see Fig. 3), so a special case study not only improves the ETS’s performance in the 

PRD region but also provides references for other ETSs; (3) this study will contribute to the 

coordinated development of the energy-environment-economy system in the PRD region, so as 

to realize the adjustment of industrial and energy structure. 

 

Fig. 3. Five major urban agglomerations and seven pilot ETSs of China 
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Fig. 4. GDP and population of the PRD region in 2016 

 

3.2 Data collection  

Urban GDP data during the period of 2005-2016 are sourced from Guangdong Statistical 

Yearbook, and the historical GDP of each city has been measured at the constant price of 2005. 

Combining Eq. (3) and GDP growth rate (see Table 1) together, this paper estimates the GDP 

of each city in 2020 through the scenario analysis method. Moreover, according to the 13th 

Five-Year Plan (2016-2020) announced by the Chinese government, Guangdong province is 

required to reduce its carbon emissions per unit of GDP by 20.5% of the 2015 level by 2020 

(CSC, 2016), namely, the 𝜇 in Eq. (5) is equal to 20.5%. 

Table 1 The GDP growth rate during the 13th Five-Year Plan 

Number City 
GDP in 2016 

(100 million Yuan) 

Annual growth rate 

(%) 

1 Guangzhou 16980.17  7.5 

2 Shenzhen 15956.74  8.2 

3 Foshan 8663.03  7.5 

4 Dongguan 6451.73  8 

5 Huizhou 3137.38  9.5 

6 Zhongshan 2953.88  8.5 

7 Jiangmen 2487.14  9 

8 Zhaoqing 1633.81  9 
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Number City 
GDP in 2016 

(100 million Yuan) 

Annual growth rate 

(%) 

9 Zhuhai 1978.76  9 

Data source: The author summarized based on each municipal government’s 13th Five-Year Plan. 

Note: GDP is calculated at the 2005 constant price index. 

Different from other air pollutions, the Chinese government does not publish CO2 data 

directly. Nevertheless, most studies estimate the carbon emissions through the coefficient 

method (𝑄𝑖 = ∑ 𝑓𝑗
𝑛
𝑗=1 × 𝐸𝐶𝑖𝑗) , namely, energy consumption is multiplied by the respective 

carbon emission coefficient. Because most previous studies are based on the provincial level, 

various energy consumption data can be obtained from the provincial statistical yearbooks. 

However, this paper is a research at the city level. Due to the different statistical standards of 

urban yearbooks, some cities (e.g., Foshan, Dongguan) only count the total energy consumption 

of industries above the scale, and do not disclose the total energy consumption of the city and 

various energy consumption data. Although some scholars use GDP or population ratios to 

estimate energy consumption in cities, such estimates are also inaccurate. Based on the above 

reasons, this paper adopts the comprehensive factor method (Liao et al., 2015) instead of the 

traditional coefficient method to estimate the carbon emissions, as shown in Eq. (18). 

𝑄𝑖𝑡 = 𝑓 × 𝐸𝐶𝑖𝑡, 𝑖 = 1,2,3, … ,9                      (18) 

where 𝑄𝑖𝑡 and 𝐸𝐶𝑖𝑡 represent the carbon emissions (104 tons) and total energy consumption 

( 104  tons of standard coal) of city 𝑖  in year 𝑡 , respectively. 𝑓  is the coefficient for 

conversion of standard coal to CO2. Based on the announcement of Energy Institute of China 

National Development and Reform Committee, the carbon content of one ton of standard coal 

is 0.67, namely 2.457 tons of CO2 (1 × 0.67 × 44/12 = 2.457, Liao et al., 2015). Besides, 

according to the development plan of China’s ETS, the main participants in the ETS are 
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enterprises and other economic organizations that have annual emissions of 26,000 tons of CO2 

equivalent or total energy consumption of 10,000 tons of standard coal (CCTN, 2017). This 

coefficient (i.e., 2.6) is very close to Liao et al (2015)’s. Because the value of comprehensive 

factor does not influence the final conclusions (i.e., comparison of three allocation approaches), 

it only proportionally affects the relative value of the estimates. Therefore, similar to Liao et al 

(2015), in this paper, 𝑓 is assumed to be 2.457.  

Finally, because Guangdong Statistical Yearbook does not directly announce the total 

energy consumption data of each city, this paper calculates the total energy consumption of 

each city based on energy intensity data (energy consumption per unit of GDP) and its growth 

rate. The year 2005 is chosen as the base year, which is consistent with the statistical caliber of 

GDPs. Hence, the carbon intensity of each city and the regional total quotas in 2020 can be 

calculated based on Eqs. (1) to (5) and (18). 

 

4. Empirical results and discussions 

4.1 Allocation results of CM 

Table 2 shows the simulation results of nine cities in the PRD region. All predictions of 

GM (1, 1) that are regarded as the upper bound have achieved high accuracy because all MAPEs 

are ranging from [1.79%, 4.03%] and less than 10%. Therefore, these predictions can be used 

for the subsequent analysis. In addition, Table 2 intuitively reflects that the larger the GDPs, the 

greater the carbon emissions. 

Table 2 Simulation result of the nine cities on the baseline scenario 

Cities 
GDP in 2020 

(100 million Yuan) 

𝑄𝑖2020
𝑢

 

(10 thousand tons) 

𝑀𝐴𝑃𝐸𝑖 

(%) 

Guangzhou 22676.49 21118.78 2.19 
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Cities 
GDP in 2020 

(100 million Yuan) 

𝑄𝑖2020
𝑢

 

(10 thousand tons) 

𝑀𝐴𝑃𝐸𝑖 

(%) 

Shenzhen 21870.23 18756.68 2.23 

Foshan 11569.21 11001.89 2.08 

Dongguan 8777.50 8582.44 2.79 

Huizhou 4510.49 7051.21 3.67 

Zhongshan 4093.66 4185.45 1.79 

Jiangmen 3510.80 3477.12 2.24 

Zhaoqing 2306.25 2831.32 4.03 

Zhuhai 2793.18 2379.06 1.94 

Total 82107.82 79383.96 / 

Fig. 5 presents the trends of GDP, carbon emissions and carbon intensity of the PRD region 

from 2005 to 2020. Firstly, the regional GDP and carbon emissions from 2005 to 2020 both 

show a rising trend, but GDP growth rate is faster than the carbon emissions growth rate. 

Therefore, the carbon intensity of the PRD region from 2005 to 2020 decreases gradually. 

Secondly, the carbon intensity of the PRD region in 2020 is 0.97 ton per ten thousand Yuan, 

which is higher than the emission reduction target (0.9 ton per ten thousand Yuan) required by 

the state. Similarly, Table 2 also reflects that the total carbon emissions of the PRD region 

without policy constraint (79383.96 ten thousand tons) is much higher than the policy constraint 

value (𝑄2020 = 73741.60 ten thousand tons). Therefore, an efficient and feasible emission 

reduction strategy should be taken in the PRD region instead of simply relying on the natural 

decreasing of carbon intensity. 
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Fig. 5. The trends of GDP, carbon emissions and carbon intensity  

Table 3 reveals the allocation results, abatement costs and carbon assets of CM. It can be 

seen that the initial quotas of Guangzhou and Shenzhen are much larger than other cities 

because they are more developed than other cities. Although Guangzhou and Shenzhen are 

assigned more initial quotas, both of them undertake more emission reductions, accounting for 

24.94% and 20.40% of the total emission reduction tasks, respectively. Nevertheless, these 

emission reduction tasks will not have a significant impact on these two cities, because the 

proportions of TAC to carbon assets of Guangzhou and Shenzhen are 1.46 and 1.09, respectively. 

However, the figures of Zhongshan and Zhuhai are 2.44 and 2.24, respectively, indicating that 

emission reduction tasks have the greatest impact on these two cities. Moreover, because the 

goal of CM is tantamount to minimize the TAC of the PRD region, each city has the same MAC 

which should be equal to the equilibrium carbon trading price (Fan et al., 2016). However, the 

current carbon trading price in the last three years (see Fig. 2) is far below the equilibrium 

carbon price (61.42 Yuan per tCO2). Under these circumstances, each city will be a priority for 

its own interests, and the optimization of CM will not occur in the real world. Therefore, CM is 

only a theoretical optimal allocation approach.  
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Table 3 Allocation results of CM 

Cities 

𝑄𝑖2020 

(10,000 

tons) 

Abatement costs Carbon assets 
𝑇𝐴𝐶𝑖2020

/𝑉𝑖2020 𝐴𝑖2020 

(10,000 tons) 

𝑀𝐴𝐶𝑖2020 

(Yuan per ton) 

𝑇𝐴𝐶𝑖2020 

(10,000 Yuan) 

𝐼𝑖2020 

(10,000 tons) 

𝑉𝑖2020 

(10,000 Yuan) 

Guangzhou 19711.50 1407.28 61.42 42240.72 1448.50 28970.10 1.46 

Shenzhen 17605.67 1151.01 61.42 34548.38 1586.48 31729.51 1.09 

Foshan 10253.29 748.60 61.42 22469.88 707.27 14145.44 1.59 

Dongguan 7982.00 600.44 61.42 18022.71 776.66 15533.27 1.16 

Huizhou 6262.49 788.72 61.42 23674.05 1223.80 24476.03 0.97 

Zhongshan 3879.26 306.19 61.42 9190.56 188.65 3773.03 2.44 

Jiangmen 3230.71 246.41 61.42 7396.06 291.14 5822.79 1.27 

Zhaoqing 2582.61 248.71 61.42 7465.16 386.55 7731.08 0.97 

Zhuhai 2234.07 144.99 61.42 4351.91 97.12 1942.32 2.24 

Total 73741.60 5642.35 / 169359.42 6706.18 134123.57 1.26 

 

4.2 Allocation results of AM 

Due to the large volatility of the time series, unit root test is an essential step in time series 

analysis. If all test series have the same difference and cointegration relationship, Ordinary 

Least Square (OLS) method can be directly used to determine the model parameters (Li et al., 

2017). Therefore, this section first discusses the fittness of EKC. Appendix Table B.1 shows 

that all test series have passed the Augmented Dickey-Fuller (ADF) test, and Appendix Table 

B.2 proves that all EKCs have passed the Johansen Cointegration Test at the 0.05 level except 

Zhuhai at the 0.1 level. Therefore, it is feasible to estimate the EKC of various cities by the 

OLS method. According to Eqs. (13), (14) and Table 1, Table 4 displays the simulation results 

of each city's EKC curve, the lower bound and the peak year. 

Table 4 Simulation results of EKC curves 

Cities EKC  
R 

Square 

𝑄𝑖2020
𝑙  

(10 thousand tons) 
Peak year 

Guangzhou 
20.1698 3.5602 8.814y x x   

 
0.9790 18262.99  2026 
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Cities EKC  
R 

Square 

𝑄𝑖2020
𝑙  

(10 thousand tons) 
Peak year 

Shenzhen 
20.221 4.6231 14.448y x x     

0.9963 16019.20  2026 

Foshan 
20.1852 3.4916 7.2921y x x     

0.9640 9546.02  2021 

Dongguan 
20.3683 6.4972  19.747y x x     

0.9931 7205.33  2017 

Huizhou 
20.3822 6.3708  18.021y x x     

0.9869 5038.69  2019 

Zhongshan 
20.119 2.3035 2.7132y x x     

0.9936 3690.61  2037 

Jiangmen 
20.2657 4.2899  9.3276y x x     

0.9824 2939.57  2019 

Zhaoqing 
20.2803 4.3333  9.0532y x x     

0.9805 2196.06  2020 

Zhuhai 
20.1618 2.8067 4.4164y x x     

0.9842 2136.96  2029 

From Table 4, it can be seen that all EKC curves can well reflect the relationship between 

carbon emissions and GDP because the Goodness of Fit (𝑅2) of all curves has exceeded 0.96. 

In addition, the order of the lower bound is the same as the order of upper bound. It indicates 

that even if a large volume of initial quotas are given to those small and medium-sized cities 

(e.g., Zhaoqing and Zhuhai), their GDPs will not grow indefinitely because of other constraints. 

It is worth noting that Zhongshan might reach its carbon emission peak in 2037, while other 

cities can reach the peak before 2030. Therefore, Zhongshan must strengthen its low-carbon 

technological innovation in order to reach the peak in advance. 

Table 5 Allocation results of AM 

Cities 

𝑄𝑖2020 

(10,000 

tons) 

Abatement costs Carbon assets 
𝑇𝐴𝐶𝑖2020

/𝑉𝑖2020 𝐴𝑖2020 

(10,000 tons) 

𝑀𝐴𝐶𝑖2020 

(Yuan per ton) 

𝑇𝐴𝐶𝑖2020 

(10,000 Yuan) 

𝐼𝑖2020 

(10,000 tons) 

𝑉𝑖2020 

(10,000 Yuan) 

Guangzhou 20076.91 1041.87 44.65 22879.50 1813.92 36278.39 0.63 

Shenzhen 17768.76 987.92 52.19 25286.66 1749.56 34991.24 0.72 

Foshan 10471.37 530.52 42.65 11136.23 925.35 18507.05 0.6 

Dongguan 7907.39 675.05 69.67 22912 702.05 14041.04 1.63 
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Huizhou 5399.24 1651.97 139.82 109556.5 360.55 7211.06 15.19 

Zhongshan 4156.42 29.03 5.48 79.34 465.82 9316.33 0.01 

Jiangmen 3220.66 256.46 64.11 8027.36 281.08 5621.63 1.43 

Zhaoqing 2380.6 450.72 118.26 25493.71 184.55 3690.93 6.91 

Zhuhai 2360.25 18.81 7.51 70.46 223.30 4465.91 0.02 

Total 73741.6 5642.35 / 225441.8 6706.18 134123.6 1.68 

Table 5 shows the results of AM. It can be seen that Guangzhou and Shenzhen still have 

the largest initial quotas due to higher bargaining power (i.e., economic level). Besides, the 

increment quotas of Guangzhou and Shenzhen are much higher than other cities, indicating that 

the TACs of these two cities will have less impact on their economic growth. Furthermore, 

besides Huizhou, Jiangmen, Zhaoqing and Dongguan, the MACs of other cities are lower than 

the equilibrium carbon price, indicating that they are more likely to profit from ETS. On the 

contrary, the MACs of Huizhou and Zhaoqing are 139.82 and 118.26 Yuan per ton respectively, 

which are much higher than other cities. To this end, the proportions of TAC to carbon assets 

of Huizhou and Zhaoqing are 15.19 and 6.91, respectively, but the figures of Zhongshan and 

Zhuhai are close to zero, reflecting the unfair share of TAC. All the above results indicate that 

AM is to promote the development of other cities by sacrificing the development of Huizhou 

and Zhaoqing, which is not conducive to the coordinated development of the PRD region. 

 

4.3 Allocation results of BPM 

The allocation results using BPM are shown in Table 6. On the one hand, similar to CM 

and AM, although Guangzhou and Shenzhen still have the largest initial quotas, they also need 

to undertake the largest reduction tasks, accounting for 31.46% and 25.98% of the total tasks, 

respectively. Moreover, the MACs of Guangzhou and Shenzhen are slightly higher than the 

equilibrium carbon price, and the TACs of Guangzhou and Shenzhen in BPM are 68016.95 and 
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56741.00 ten thousand Yuan, respectively. To this end, the proportions of TAC to carbon assets 

of Guangzhou and Shenzhen are 3.15 and 2.23, respectively. Although Guangzhou and 

Shenzhen assume more responsibility, it has little impact on their economic development 

because of the high economic level. Actually, Guangzhou and Shenzhen, the most developed 

cities in the PRD region, have released most of the CO2 in history. Therefore, shouldering more 

emission reduction tasks is the embodiment of “polluter pay principle” (Fan et al., 2016).  

Table 6 Allocation results of BPM 

Cities 

𝑄𝑖2020 

(10,000 

tons) 

Abatement costs Carbon assets 
𝑇𝐴𝐶𝑖2020

/𝑉𝑖2020 𝐴𝑖2020 

(10,000 tons) 

𝑀𝐴𝐶𝑖2020 

(Yuan per ton) 

𝑇𝐴𝐶𝑖2020 

(10,000 Yuan) 

𝐼𝑖2020 

(10,000 tons) 

𝑉𝑖2020 

(10,000 Yuan) 

Guangzhou 19343.89 1774.89 78.93 68016.95 1080.9 21618.06 3.15 

Shenzhen 17291.02 1465.66 79.77 56741.00 1271.82 25436.45 2.23 

Foshan 10492.59 509.30 40.87 10250.22 946.57 18931.40 0.54 

Dongguan 8298.52 283.92 28.01 3934.89 1093.19 21863.79 0.18 

Huizhou 6344.74 706.47 54.61 18903.06 1306.05 26121.03 0.72 

Zhongshan 3887.96 297.49 59.55 8664.43 197.35 3947.00 2.20 

Jiangmen 3238.47 238.65 59.35 6927.78 298.89 5977.89 1.16 

Zhaoqing 2590.26 241.06 59.40 7003.20 394.20 7884.02 0.89 

Zhuhai 2254.15 124.91 52.40 3209.43 117.20 2343.93 1.37 

Total 73741.60 5642.35 / 183651 6706.18 134123.6 1.37 

On the other hand, BPM can help to promote the development of small and medium-sized 

cities, so as to achieve the coordinated development of the PRD region. First, the MACs of the 

remaining cities are lower than the equilibrium carbon price, indicating that the small and 

medium-sized cities have more potential to take advantage of the initial quotas. Moreover, the 

regional TAC in BPM is 183650.97 ten thousand Yuan, which is 14291.54 ten thousand Yuan 

higher than the TAC in CM. Nevertheless, all of the extra abatement costs are borne by 

Guangzhou and Shenzhen. Therefore, small and medium-sized cities can obtain more emission 

space to promote their economic development. 
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4.4 Comparison of different allocation results 

According to the above analysis, it can be seen that CM has the lowest regional TAC 

(169359.42 ten thousand Yuan), while the regional TACs of AM and BPM are 225441.8 and 

183651 ten thousand Yuan, respectively. Therefore, from the PRD region’s perspective, CM is 

the best allocation approach, and BPM can be regarded as a sub-optimal solution, although it 

requires an additional payment of 142.9154 million Yuan. 

Table 7 Comparisons of different allocation models 

Cities 
CM AM BPM 

𝑄𝑖2020 Proportions 𝑄𝑖2020 Proportions 𝑄𝑖2020 Proportions 

Guangzhou 19711.50 26.73% 20076.91 27.23% 19343.89 26.23% 

Shenzhen 17605.67 23.87% 17768.76 24.10% 17291.02 23.45% 

Foshan 10253.29 13.90% 10471.37 14.20% 10492.59 14.23% 

Dongguan 7982.00 10.82% 7907.39 10.72% 8298.52 11.25% 

Huizhou 6262.49 8.49% 5399.24 7.32% 6344.74 8.60% 

Zhongshan 3879.26 5.26% 4156.42 5.64% 3887.96 5.27% 

Jiangmen 3230.71 4.38% 3220.66 4.37% 3238.47 4.39% 

Zhaoqing 2582.61 3.50% 2380.60 3.23% 2590.26 3.51% 

Zhuhai 2234.07 3.03% 2360.25 3.20% 2254.15 3.06% 

Total 73741.60 100% 73741.60 100% 73741.60 100% 

Because the total initial quotas of the PRD region in 2020 are fixed, namely 73741.60 ten 

thousand tons. If a city is assigned more initial quotas, other cities will be allocated less. 

Consequently, each city will prefer the allocation model that will give it more initial quotas. 

From the individual perspective, this paper finds some opposite conclusions corresponding to 

the regional perspective (see Table 7). Guangzhou, Shenzhen, Zhongshan and Zhuhai prefer 

AM and the remaining cities prefer BPM. Although CM has the lowest regional TAC, none of 

the cities prefer it, indicating that if all the cities only consider the maximization of their own 

interests, it will hinder the realization of low-cost emission reduction in the PRD region. In 
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addition, BPM is the sub-optimal allocation approach for Zhongshan and Zhuhai, while it is the 

worst approach for Guangzhou and Shenzhen.  

 

Fig. 6. The ratio of each city’s abatement costs to the carbon assets 

Fig. 6 shows the ratio of each city’s TAC to carbon assets. Obviously, the distribution of 

AM is extreme. The ratios of Huizhou and Zhaoqing in AM are15.19 and 6.91 respectively, 

while the ratios of Zhuhai and Zhongshan in AM are close to zero. It indicates that the emission 

reduction tasks of Huizhou and Zhaoqing have a negative impact on their economic growth, 

which will hinder the long-term coordinated development of the PRD region. In terms of CM, 

although the ratios of Zhongshan and Zhuhai are still high, CM can mitigate the extreme 

distribution of abatement costs, which can reflect the fairness of quota allocation. Compared 

with AM, BPM is also a feasible model, because Guangzhou and Shenzhen undertake more 

emission reduction tasks, making the distribution of different cities tend to average. 

At present, there are two main measures to reduce CO2 concentration. One is to reduce 

carbon sources by implementing low-carbon technologies, and the other is to increase carbon 

sinks (Han et al., 2016). Forest, as a major reservoir in the atmospheric carbon cycle, is the 

main body of carbon sink function in the terrestrial ecosystem (Peck et al., 2017). Therefore, 
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the quota allocation should both take into account the investment cost of low carbon 

technologies and the number of carbon sinks in each city. Fig. 7 shows the forest coverage rate 

of different cities in the PRD region (JNU, 2018). The darker the color, the higher the forest 

coverage rate. Obviously, forest coverage rates of Zhaoqing and Huizhou are much higher than 

other cities, accounting for 70.30% and 62.34% of the total urban area, respectively. It indicates 

that these two cities have made a great contribution to the absorption of carbon emissions. 

However, in terms of AM, the initial quotas of Huizhou and Zhaoqing are 5399.24 and 2380.60 

ten thousand tons, accounting for 7.32% and 3.23% of the total initial quotas, respectively. It 

has greatly affected the enthusiasm of these two cities to reduce emission. On the contrary, in 

BPM, these two cities have the lowest TACs, so as to mobilize the emission reduction 

enthusiasm of these two cities and set an example for other cities. 

 

Fig. 7. The forest coverage rate of nine cities in the PRD region  

Furthermore, based on the urban Statistical Yearbook, this paper analyses the spatial 

distribution of various types of pollutants. A principal finding is that SO2 is concentrated in 

Guangzhou, Dongguan and Foshan, while CO2, NOX, PM 10 and PM 2.5 are mainly distributed 
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in Dongguan, Guangzhou, Foshan and Shenzhen. All the mentioned cities have high industrial 

level, energy consumption, and population density. Based on the “polluter pays principle”, a 

city with higher economic level and historical carbon emissions should shoulder more 

responsibilities and obligations to reduce emissions (Fan et al., 2016). From Table 3, 5 and 6, it 

can be seen that the total abatement volume of the above four cities in BPM is 4033.77 ten 

thousand tons, while those figures in CM and AM are 3907.34 and 3235.37 ten thousand tons, 

respectively. Therefore, BPM can best reflect the “polluter pays principle”, making the 

allocation results more acceptable to various cities. 

 

5. Sensitivity analysis 

For the sake of analysis, this paper assumes that the initial quotas for participants are 100% 

freely available. However, in the context of China’s carbon resource management, the ratio of 

free quota is from 95% to 97% (Li and Jia, 2016). Besides, due to the uncertainty of GDP 

growth and energy consumption, the regional total quotas by 2020 may be less or exceed the 

policy constraint value assumed (i.e., 73741.60 ten thousand tons). Therefore, in this section, a 

sensitivity analysis will be carried out on the change of regional total quotas. Remarkably, 

carbon quotas obtained by each participant must be within its boundaries (i.e., 𝑄𝑖2020
𝑙 ≤

𝑄𝑖2020 ≤ 𝑄𝑖2020
𝑢 ), which is an important prerequisite for this paper. Following this principle, 

three scenarios are considered, namely, the regional total quotas change by +4%, −4% and 

−8%, respectively. The latter two scenarios can be regarded as 96% or 92% of quotas are freely 

allocated. 

To provide a clear explanation from the individual perspective, two important relationships 
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are shown as follows: (i) the ranking of absolute emission reductions (𝑄𝑖2020
𝑢 − 𝑄𝑖2020

𝑙 , unit: ten 

thousand tons) is, Guangzhou (2855.79) > Shenzhen (2737.48) > Huizhou (2012.52) > Foshan 

(1455.87) > Dongguan (1377.11) > Zhaoqing (635.26) > Jiangmen (537.55) > Zhongshan 

(494.84) > Zhuhai (242.10); (ii) the ranking of bargaining power (𝑤𝑖) is, Guangzhou (0.2762) > 

Shenzhen (0.2664) > Foshan (0.1409) > Dongguan (0.1069) > Huizhou (0.0549) > Zhongshan 

(0.0499) > Jiangmen (0.0428) > Zhuhai (0.0340) > Zhaoqing (0.0281). From Fig. 8, it can be 

seen that no matter how the total quotas changes, Guangzhou, Zhongshan and Zhuhai always 

prefer AM because their economic level is higher than other cities of the same class. For 

Shenzhen, when the regional total quotas are tightened, it will tend to CM due to relatively large 

absolute emission reductions and the principle of first meeting the minimum quota for each city. 

This situation will not occur in Guangzhou, because the lower bound of Guangzhou is 2243.80 

ten thousand tons higher than Shenzhen. With the increase of regional total quotas, Shenzhen’s 

economic advantage is gradually reflected, so it will turn to AM. Similar to Shenzhen, Huizhou 

and Zhaoqing will choose CM when the regional total quotas are tightened. Separately, with 

the loosening of regional total quotas, they can only maximize their interests through BPM 

because of the economic constraints. Remarkably, when regional carbon quotas are particularly 

abundant (i.e., +4% scenario), Huizhou will once again choose CM that is dominated by its 

emission reduction. Even so, Huizhou’s carbon quotas under BPM are only 27.71 ten thousand 

tons less than that under CM, which is a sub-optimal choice for Huizhou. Finally, with respect 

to the remaining cities, their choices will vary between AM and BPM, because their 

characteristics are not prominent. 
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Fig. 8 Changes in individual selection patterns 

Fig. 9 reveals the trend of regional TAC as a function of regional total quotas. Undoubtedly, 

regardless of the allocation method, the regional TAC will decrease as the total quotas increase, 

and the regional TAC of three approaches can always be ranked as follows: CM < BPM < AM. 

Moreover, with the increase of regional total quotas, the cost gap between different allocation 

methods is gradually increasing. Specifically, when the regional total quotas are reduced by 8%, 

the cost gap between AM and BPM (BPM and CM) is 21199.69 (65.19) ten thousand Yuan; 

however, when the regional total quotas are increased by 4%, the cost gap between AM and 

BPM (BPM and CM) is increased to 65281.43 (8560.64) ten thousand Yuan. Therefore, from 

the PRD region’s perspective, CM is always the best allocation approach, and BPM is a sub-

optimal solution. 
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Fig. 9 Changes in regional total abatement costs 

In brief, when the regional total quotas are tightened, the advantage of the economic level 

is not obvious because the emission reduction tasks dominate, reflected in the small regional 

TAC gap. However, with the increase of regional total quotas, those cities with high economic 

levels will use their bargaining power to secure more quotas, which lead to the expansion of the 

cost gap. Undoubtedly, it will widen the gap between developed and developing cities. 

Fortunately, BPM achieves a trade-off between regional TAC and individual interests. Although 

the regional TAC has been slightly increased, it provides more development space for cities that 

contribute more to urban greening (e.g., Huizhou and Zhaoqing). This feature of BPM becomes 

increasingly apparent as the total quotas increase. Based on the above analysis, BPM is 

considered to be the most appropriate approach. 

 

6. Conclusions and Policy implications 

6.1 Main conclusions 

As a core component of the ETS, the allocation of initial carbon quotas will make a 

profound impact on the ETS’s operation. The existing literature mostly allocates the initial 
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quotas from a single perspective. However, carbon emission reduction is a comprehensive 

process regarding the coordinated development of economy, energy and environment (Chang 

and Lee, 2016). Simply considering a single goal of emission reduction is not enough in the 

actual implementation process. On the basis of that, this paper presents a BPM to allocate the 

initial carbon quotas, which consider a trade-off between overall interests and individual 

interests. To show the advantages of the proposed model, this paper selects the PRD region as 

an example and compares the results with CM and AM. The main findings are shown as follows. 

First, simply relying on the natural decreasing of carbon intensity will not achieve the 

national emission reduction targets. In terms of the PRD region, the carbon intensity in 2020 

without policy constraint is 0.97 ton per ten thousand Yuan, whereas the national target is 0.9 

ton per ten thousand Yuan. Therefore, an effective and feasible emission reduction strategy is 

particularly important for the PRD region.  

Moreover, the allocation results with different allocation approaches reveal that the 

regional government will prefer CM, which always has the lowest regional TAC. But it might 

have some obstacles in actual implementation because each participant is rational and wants to 

maximize its interests. From the individual perspective, more cities prefer AM while Huizhou 

and Zhaoqing will refuse it because of high abatement costs and the great contribution of forest 

coverage rate. There is no doubt that AM runs counter to the coordinate development goal of 

the PRD region, especially when the regional total quotas are sufficient. Therefore, it is 

necessary for the PRD region to design an appropriate allocation approach from a multi-

perspective, which can achieve a trade-off between overall interests and individual interests. 

Last but not least, BPM is regarded as an efficient and feasible allocation approach. Firstly, 
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it can coordinate the relationship between abatement costs and carbon assets, because the cost 

gap between BPM and CM is much smaller than the cost gap between AM and BPM. Secondly, 

it gives more development space to cities with large green contributions, which is an affirmation 

and recognition of their green contributions. Thirdly, compared with AM, the additional quota 

increments for small and medium-sized cities are mainly from those developed cities that have 

high industrial level and energy consumption. Therefore, BPM can better reflect the “polluter 

pays principle” and narrow the development gaps between different cities. 

 

6.2 Policy implications 

To better promote emission reduction, this paper provides some useful implications for 

policymakers in the context of ETS’s operation. First, the PRD region should optimize the 

design of carbon emission quota allocation, because carbon emission space is the space for 

development. However, current allocation methods mainly focus on a single perspective, which 

will lead to unfair allocation. Therefore, to ensure the allocation method trailed to the actual 

circumstance, the policymakers should take into account different objectives (e.g., abatement 

costs, carbon assets, energy consumption level and social welfare), so as to achieve the 

coordinated development of environment, energy and economy, and the balance of overall and 

individual interests.  

Moreover, the PRD region should promote energy market reform and ETS legislation, so 

as to secure the effective operation of the ETS. One of the preconditions for the effective ETS 

is that all cities have the same MAC that is equal to the equilibrium carbon prices. However, 

the current carbon trading price of the PRD region is much lower than the equilibrium carbon 
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prices. Therefore, policymakers need to strengthen ETS legislation to ensure the stability of the 

carbon trading price. In addition, policymakers also need to enact specific regulations (e.g., 

monitoring, reporting and verification) for each aspect of carbon emissions, so that the carbon 

emission reduction action can be effectively implemented. 

Finally, to achieve the emission reduction target, on the one hand, the PRD region needs 

to reduce carbon emissions at the source. For example, nuclear energy, as a clean energy with 

high Energy Return on Investment (EROI), should gradually replace coal as the main source of 

energy supply (Wang et al., 2016). Moreover, electric vehicle technologies (Walmsley et al., 

2015) and carbon capture and storage technologies (Zhou et al., 2014) should be vigorously 

promoted to reduce the carbon emissions from the transport sector and the energy sector, 

respectively. On the other hand, the PRD region also needs to increase the channel of carbon 

sinks, such as expanding the urban green area and the forest coverage rate. With the 

implementation of emission reduction, the emission reduction space in the future will continue 

to shrink. Therefore, it is necessary for the PRD region to expand the ETS coverage and to 

incorporate different types of industrial exhaust, such as SO2, NOX, PM 10 and PM 2.5, so as 

to achieve a steady decline for atmospheric pollutants. 

 

6.3 Limitations and future research directions 

Due to the different statistical caliber, this paper estimates the carbon emissions of each 

city based on the comprehensive factor method and the development plan of China’s ETS. More 

accurate statistics will help expand the contribution of this paper. In addition, the solution of 

the bi-objective programming model is by using the function of fgoalattain in Matlab R2016a, 
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which is based on the goal attainment method. Other calculation principles, such as the linear 

weighting method, the sum of the square weighting method and the constraint model, can be 

investigated in the future. Finally, this paper only considers two goals of abatement costs and 

carbon assets, more reasonable goals (e.g., employment rate, carbon sources, and sinks) can be 

incorporated into future work. 
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Appendix A 

A.1 Program of CM 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓1  =  𝑇𝐴𝐶(𝑥)                                                    

𝑓1  = ∑ 453.15[𝑄𝑖2020
𝑢 (1 − 𝑟𝑖) − (𝑄𝑖2020

𝑢 − 𝑥𝑖)] ln (1 −
𝑄𝑖2020

𝑢 − 𝑥𝑖

𝑄𝑖2020
𝑢 (1 − 𝑟𝑖)

) + 453.15(𝑄𝑖2020
𝑢 − 𝑥𝑖)

𝑛

𝑖=1

 

𝑥𝑜  = [𝑄12020
𝑙 , 𝑄22020

𝑙 , … 𝑄𝑖2020
𝑙 ]′                 

𝑙𝑏 = 𝑥𝑜;  𝐴 = 𝑜𝑛𝑒𝑠(1, 𝑛);  𝑏 = [𝑄2020];                                 

𝑢𝑏 = [𝑄12020
𝑢 , 𝑄22020

𝑢 , … 𝑄𝑖2020
𝑢 ]′                  

[𝑥, 𝑓𝑣𝑎𝑙]  =  𝑓𝑚𝑖𝑛𝑐𝑜𝑛(@𝑇𝐴𝐶, 𝑥𝑜 , 𝐴, 𝑏, [], [], 𝑙𝑏, 𝑢𝑏)             

A.2 Program of AM 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓2  =  𝑎𝑠𝑠𝑒𝑡(𝑥)                     

 𝑓2  =  − ∏ (𝑥𝑖 − 𝑄𝑖2020
𝑙 )𝑤𝑖9

𝑖=1                            

𝑥𝑜  = [𝑄12020
𝑙 , 𝑄22020

𝑙 , … 𝑄𝑖2020
𝑙 ]′                  

𝑙𝑏 = 𝑥𝑜;  𝐴 = 𝑜𝑛𝑒𝑠(1, 𝑛);  𝑏 = [𝑄2020];                                 

𝑢𝑏 = [𝑄12020
𝑢 , 𝑄22020

𝑢 , … 𝑄𝑖2020
𝑢 ]′     

[𝑥, 𝑓𝑣𝑎𝑙]  =  𝑓𝑚𝑖𝑛𝑐𝑜𝑛(@𝑎𝑠𝑠𝑒𝑡, 𝑥𝑜 , 𝐴, 𝑏, [], [], 𝑙𝑏, 𝑢𝑏)            

A.3 Program of BPM 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓3  =  𝐵𝑃𝑀(𝑥)                      

 𝑓(1) = ∑ 453.15[𝑄𝑖2020
𝑢 (1 − 𝑟𝑖) − (𝑄𝑖2020

𝑢 − 𝑥𝑖)] ln (1 −
𝑄𝑖2020

𝑢 −𝑥𝑖

𝑄𝑖2020
𝑢 (1−𝑟𝑖)

) + 453.15(𝑄𝑖2020
𝑢 − 𝑥𝑖)9

𝑖=1   

 𝑓(2)  =  − ∏ (𝑥𝑖 − 𝑄𝑖2020
𝑙 )𝑤𝑖9

𝑖=1                            

𝑔𝑜𝑎𝑙 = [𝑓1
∗ 𝑓2

∗]                              

𝑤𝑒𝑖𝑔ℎ𝑡 = [𝑓1
∗ 𝑓2

∗]     

𝑥𝑜  = [𝑄12020
𝑙 , 𝑄22020

𝑙 , … 𝑄𝑖2020
𝑙 ]′                  
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𝑙𝑏 = 𝑥𝑜;  𝐴 = 𝑜𝑛𝑒𝑠(1, 𝑛);  𝑏 = [𝑄2020];                                 

𝑢𝑏 = [𝑄12020
𝑢 , 𝑄22020

𝑢 , … 𝑄𝑖2020
𝑢 ]′     

[𝑥, 𝑓𝑣𝑎𝑙] = 𝑓𝑔𝑜𝑎𝑙𝑎𝑡𝑡𝑎𝑖𝑛(@𝐵𝑃𝑀, 𝑥𝑜 , 𝑔𝑜𝑎𝑙, 𝑤𝑒𝑖𝑔ℎ𝑡, 𝐴, 𝑏, [], [], 𝑙𝑏, 𝑢𝑏)    

 

Appendix B 

Table B.1 Unit root test results 

Cities Variables 
Difference 

times 
(C, T, K) ADF 

5% 

level 

1% 

level 
Results 

Guangzhou 

ln𝑄𝑖2020 2nd （0,0,1） -3.035 -1.996 -2.886 𝐼∗∗(2) 

ln𝐺𝐷𝑃𝑖2020 2nd （0,0,1） -2.633 -1.996 -2.886 𝐼∗(2) 

ln𝐺𝐷𝑃𝑖2020
2  2nd （0,0,1） -2.956 -1.996 -2.886 𝐼∗∗(2) 

Shenzhen 

ln𝑄𝑖2020 2nd （0,0,1） -2.508 -1.996 -2.886 𝐼∗(2) 

ln𝐺𝐷𝑃𝑖2020 2nd （0,0,1） -2.674 -1.996 -2.886 𝐼∗(2) 

ln𝐺𝐷𝑃𝑖2020
2  2nd （0,0,1） -2.903 -1.996 -2.886 𝐼∗∗(2) 

Foshan 

ln𝑄𝑖2020 1st （C,0,2） -5.518 -3.321 -4.583 𝐼∗∗(1) 

ln𝐺𝐷𝑃𝑖2020 1st （0,0,2） -2.850 -1.996 -2.886 𝐼∗(1) 

ln𝐺𝐷𝑃𝑖2020
2  1st （0,0,2） -2.674 -1.996 -2.886 𝐼∗(1) 

Dongguan 

ln𝑄𝑖2020 Zero （C,0,1） -4.414 -3.213 -4.297 𝐼∗∗(0) 

ln𝐺𝐷𝑃𝑖2020 Zero （C,T,2） -11.318 -4.108 -5.522 𝐼∗∗(0) 

ln𝐺𝐷𝑃𝑖2020
2  Zero （C,T,2） -8.270 -4.108 -5.522 𝐼∗∗(0) 

Huizhou 

ln𝑄𝑖2020 2nd （0,0,2） -6.654 -1.996 -2.886 𝐼∗∗(2) 

ln𝐺𝐷𝑃𝑖2020 2nd （0,0,2） -3.913 -1.996 -2.886 𝐼∗∗(2) 

ln𝐺𝐷𝑃𝑖2020
2  2nd （0,0,2） -3.866 -1.996 -2.886 𝐼∗∗(2) 

Jiangmen 

ln𝑄𝑖2020 2nd （0,0,1） -5.796 -1.996 -2.886 𝐼∗∗(2) 

ln𝐺𝐷𝑃𝑖2020 2nd （0,0,1） -3.697 -1.996 -2.886 𝐼∗∗(2) 

ln𝐺𝐷𝑃𝑖2020
2  2nd （0,0,1） -3.835 -1.996 -2.886 𝐼∗∗(2) 

Zhongshan 

ln𝑄𝑖2020 2nd （0,0,1） -4.360 -1.996 -2.886 𝐼∗∗(2) 

ln𝐺𝐷𝑃𝑖2020 2nd （0,0,1） -4.185 -1.996 -2.886 𝐼∗∗(2) 

ln𝐺𝐷𝑃𝑖2020
2  2nd （0,0,1） -4.228 -1.996 -2.886 𝐼∗∗(2) 

Zhaoqing 

ln𝑄𝑖2020 2nd （0,0,1） -2.817 -1.996 -2.886 𝐼∗∗(2) 

ln𝐺𝐷𝑃𝑖2020 2nd （0,0,1） -3.597 -1.996 -2.886 𝐼∗(2) 

ln𝐺𝐷𝑃𝑖2020
2  2nd （0,0,1） -3.245 -1.996 -2.886 𝐼∗∗(2) 

Zhuhai 

ln𝑄𝑖2020 2nd （0,0,1） -3.158 -1.996 -2.886 𝐼∗∗(2) 

ln𝐺𝐷𝑃𝑖2020 2nd （0,0,1） -5.748 -1.996 -2.886 𝐼∗∗(2) 

ln𝐺𝐷𝑃𝑖2020
2  2nd （0,0,1） -5.949 -1.996 -2.886 𝐼∗∗(2) 

∗∗ represents that variables passed ADF test at the 1% level, and ∗ represents that variables passed 

ADF test at the 5% level. 
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Table B.2 The results of Johansen Cointegration Test between 𝒍𝒏𝑸𝒊𝟐𝟎𝟐𝟎 and explanatory variables  

Cities J-Statistic 
0.05  

Critical Value 

0.1  

Critical Value 
 

Prob. 

Guangzhou 25.5572 24.2760 21.7772 0.0343 

Shenzhen 40.7443 24.2760 21.7772 0.0002 

Foshan 34.1228 24.2760 21.7772 0.0021 

Dongguan 64.0706 24.2760 21.7772 0.0000 

Huizhou 36.9750 24.2760 21.7772 0.0008 

Jiangmen 27.3003 24.2760 21.7772 0.0202 

Zhongshan 25.8851 24.2760 21.7772 0.0311 

Zhaoqing 50.5797 24.2760 21.7772 0.0000 

Zhuhai 22.2523 24.2760 21.7772 0.0881 
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