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Abstract
In the domestic IoT domain, data is often collected by phys-
ical sensors and actuators embedded in the household and
used to provide contextually relevant services to end users.
Given that this data is often personal, the EU’s General
Data Protection Regulation can implicate IoT app devel-
opers, requiring them to adhere to "data protection by de-
sign and default" to ensure safeguards that protect a data
subject’s rights. Yet the simple-to-use task-oriented de-
velopment environments that are commonly used to build
domestic IoT apps provide little support for developers to
engage with data protection measures. In this paper we
present an overview of an IoT development environment
that has been designed to help developers engage with
data protection at app design time. We describe a data
tracking feature, which makes all personal flows in an app
explicit at development time and which provides the foun-
dation for an additonal set of data protection measures,
including personal data disclosure risk assessments, trans-
parency of processing and runtime inspection.
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Introduction
As IoT devices proliferate, we are seeing an increase in
both the quantity and type of personal data being generated
and processed. This has led to an increase in (principally
cloud-based) silos of personal data, owned and managed
by a wide variety of organisations and individuals. The
growth of IoT therefore raises serious concerns around
privacy and surveillance, and a number of approaches
are being adopted in an effort to help protect a data sub-
ject’s rights. Technical solutions include Personal Informa-
tion Management Systems that centralise the processing,
storage and management of personal data, either on aug-
mented or dedicated devices in the home such as a home
router or set-top box [2, 10], or a secure cloud environment
[3, 4]. The purpose is to empower users by giving them
greater control over their personal data, enabling them to
both acquire their data and then move it around. In home-
based environments, data may be processed in situ, reduc-
ing (or even dispensing with) the need for personal data to
leave the environment in which it was generated. A typical
setup, might consist of a home IoT hub, to which sensors
and devices are connected, and a sandboxed execution en-
vironment in which data processors (apps) are, on a case-
by-case basis, provided with a restricted set of operations
that they may perform over portions of a data subject’s per-
sonal data. Though these environments enable support for
privacy-preserving data processing, app developers, when
writing code that processes personal data, must provide
measures to protect a data subject’s rights. Where data
is exported "off the box", app developers are implicated
by GDPRs requirement for "data protection by design and
default" (Article 25). Recital 78 states that "developing, de-

signing [..] products that are based on the processing of
personal data [..] producers of the products, services and
applications should be encouraged to take into account the
right to data protection [...] to make sure that controllers
and processors are able to fulfil their data protection obliga-
tions".

Though GDPR sets out a range of data protection obliga-
tions for controllers; our emphasis is upon two broad areas
where app developers may help controllers fulfil a set of
their data protection obligations: (i) transparency and (ii)
assessing and reducing risk. These, in turn, require that
developers (i) have a clear understanding their code and
the personal data that they are processing and (ii) pos-
sess the means to clearly articulate the operation of their
app. One may assume that, having built an app, or written
code, by implication, developers will understand what it is
that they have built. However, with the rise in simple-to-use
development environments [8, 16, 21, 22] aimed at "citi-
zen developers" - i.e. makers, hobbyists and enthusiasts;
developers may themselves not entirely understand the im-
plications of code they have written. This paper, therefore,
considers a set of features that will help developers (i) rea-
son about their use of personal data, (ii) assess the risks
their code may pose to data subjects and (iii) articulate the
operation of their apps. We present a integrated develop-
ment environment (IDE) for constructing apps that run on
our own edge-based privacy preserving system (Databox)
[2]. This paper has two contributions: (i) to make the case
for privacy-oriented development practice (ii) to provide an
overview of the design and implementation of a set of de-
velopment features that enable developers to meaningfully
enagage with data protection and help data controllers fulfil
a set of GDPR obligations.



Related work
We briefly consider two related areas of work: (i) privacy
preserving environments and (ii) developer support.

Privacy preserving environments
Perhaps the most active innovation around privacy preserv-
ing environments is in response to problems of aggressive
data collection by the online advertising industry. A range
of cloud-based services (Personal Information Manage-
ment System / Personal Data Stores) have emerged, that
exploit an ‘infomediary’ to bridge between third parties and
user data. These are aimed at helping a data subject to
retain “ownership” of data and provide it to third parties
on demand; examples include Mydex [3] and openPDS
[4]. These systems offer some degree of accountability
and control but only insofar as the service provider can be
trusted.

The Databox platform is a privacy preserving domestic
smart hub that permits controlled access to a data-subject’s
personal data, set out in explicit user-agreed contracts
(SLAs). It enables local (rather than cloud-based) storage
and processing of personal data and promotes data min-
imisation, whereby only the smallest unit of personal data
that satisfies a query is (with full consent of a data-subject)
transferred outside the home (outside the direct control of a
data subject). Take, for example, a health insurance broker
who wishes to provide a tailored quote derived from a cus-
tomer’s activity, diet, and health data. Rather than shipping
this personal data to the broker for processing, the broker
could run an app in the customer’s home to process the
data in situ and generate a quote; the broker need never
have sight (or responsibility for) the raw personal data. The
platform provides abstractions for data sources (IoT devices
or cloud-based services such as Twitter), drivers (privileged
code that communicates with datasources), datastores

(local repositories of data) and apps (code that performs
processing locally on data). Apps are untrusted code, and
can only ever communicate with datastores (to read data
or actuate a device) with explicit consent from a data sub-
ject. The wider databox ecology consists of an app store (a
repository of databox apps that can be downloaded to an
individual Databox), and our IDE. Though our IDE is written
to work with the Databox platform; the platform’s signifi-
cance in this paper is as an approach to enable data sub-
jects to manage controlled access to their personal data by
third parties, rather than as a particular architectural solu-
tion. In addition we do not not argue that the platform offers
a generic solution to problems of IoT privacy or security; it
does not, for example, prevent IoT devices from bypassing
the Databox and transferring data directly to third parties.

Developer support
The matter of developer support for IoT hubs is not straight-
forward. Commercial and open source ecosystems pro-
vide development environments that support the creation
of new product integrations or bespoke functionality ori-
ented around a product’s features [12, 19, 1, 15, 20] and
are typically targeted at competent and/or professional
programmers. However, Newman [13] has noted that the
burgeoning array of connected domestic devices makes
it intractable for developers to build applications to keep
pace with the needs of users. He thus argues for the need
to support end-user programming to allow a diverse co-
hort of people to “compose the functionality that they need”.
Perhaps as a result of these observations, we have seen a
proliferation of graphical end-user programing environments
[8, 16, 21, 22] aimed at masking device/service/protocol
heterogeneity and helping connect IoT and webservices in
new and interesting ways. These environments have dra-
matically increased the numbers of users or “citizen devel-
opers”, yet their emphasis is upon simplicity and utilty rather



than privacy. So long as privacy remains a “secondary fea-
ture”, there is a risk that the products of these environments
will cause unintended exposure of personal information.
If This Then That (IFTTT), a service for creating rules to
automate smart homes, enjoys a large user base, yet its
high-level abstractions can create disparity between expec-
tations and reality, making it challenging to reason about ex-
pected behaviours [7] and vulnerable to privacy breaches.
Surbatovich et al. [17] found that 50% of the nearly 20,000
IFTTT ‘recipes’ they examined contained secrecy or in-
tegrity violations. In a related domain, a recent study into
popular mobile development environments, responsible for
a high proportion of apps on the Android app store, shows
that code is often generated that places a data subject’s
sensitive data at risk [14]. In household IoT environments
where personal data is commonly processed, the risks of
personal data misuse or unintended disclosure are arguably
further amplified.

Implications of GDPR on developers
Though, in the majority of cases, app developers are not
data controllers (unless they are involved in processing
data exported off the box), Article 25 (Data protection by
design and default) requires that developers "build appropri-
ate technical or organisational safeguards into the system,
taking into account the state of the art, cost of implementa-
tion, and nature, scope and purpose of processing". Recital
78 also stipulates that producers of applications that pro-
cess personal data (i.e. app developers)"make sure that
controllers and processors are able to fulfil their data
protection obligations". We focus on three broad con-
troller obligations that developers may help fulfil: (i) artic-
ulation and reduction of risk. (ii) transparency with regard
to the functions and processing of personal data and (iii)
enabling the data subject to monitor the data processing.
Article 25 (1) explicitly requires controllers perform risk as-

sessment and reduction “at the time of the determination
of the means for processing”, i.e. at app development time.
Though GDPR’s risk concerns relate to data disclosure and
automated profiling, other risks such as physical risk (e.g.
switching on an empty kettle, closing an automatic garage
door), fall outside its scope, though clearly must be given
due consideration by developers.

Underpinning the entirety of the regulation, is the definition
of “personal data” as “any information relating to an iden-
tifiable person who can be directly or indirectly identified
in particular by reference to an identifier”. How might this
definition be taken into practice by developers? Data gener-
ated by sensors or devices will be composed of several at-
tributes, where combinations thereof may or may not consti-
tute personal data. Take for example, mobile accelerometer
data, which provides x, y and z components of a device’s
motion. Taken together, these three components may be
used to infer personal information such as height, weight or
gender [18], yet a single component or pair of components
may not, so should not be deemed personal. The problem
of interpretation is further exacerbated as data is manipu-
lated as it flows through an app; it may be combined with
additional personal data and transformed in any number of
ways, losing or gaining personal characteristics along the
way. We argue, therefore, that a useful feature of a devel-
opment environment would be the ability to track the flow of
personal data through an app (and reason about its use).
Stemming from this feature are a range of other potentially
useful developer services: generation of information related
to the functions and processing of personal data, ongoing
risk assessments and runtime inspection. We provide a lit-
tle more detail on these in the section on Features Enabled
By Personal Data Tracking.



The Databox IDE
The Databox IDE is a fully featured web-based environ-
ment for building domestic privacy preserving IoT apps. It
provides facilities for testing, tools for data visualisation,
context-sensitive help, skeleton code generation, basic
static type checking and code management.

The IDE models apps as information flows (inspired by the
flow-based programming paradigm [11]) and abstracts the
Databox platform architecture into four ‘node’ types: datas-
tores, processors, profilers and outputs (Fig.1). Datastores
represent all devices (or services) that generate data. Pro-
cessor nodes operate on data; it is here custom behaviours
and logic are encoded. Processor nodes typically consume
one or more inputs and send results to one or more out-
puts. Profiler nodes are a special category of processing
node that infer new personal information about a data sub-
ject. In treating profilers differently from processing nodes,
we aim (in subsequent iterations of the IDE) to sensitise
developers to GDPR’s more restrictive covenants around
the use of “automated profiling” (Article 22) by providing fa-
cilities to assess the fairness of profiling on data subjects
[6]. Output nodes perform an action, such as actuation, vi-
sualization, or data export. When developers publish an
app from the IDE, they are prompted for information which
is used to inform data subjects about the data being ac-
cessed, the purpose, benefits, and risks that attach to it.
Some of this information is auto-generated by the IDE.

Tracking personal data

Figure 1: IDE main node types

To sensitise developers to the risks of personal data dis-
closure, at a minimum, we require they are able to (i) differ-
entiate between data that is personal, sensitive or neither
and (ii) track the flow of personal data within the app, to
flag areas for consideration (such as when personal data
is exported, or combinations of attributes present inference

label type ordinal description
i1 identifier primary data that directly identifies a

data subject
i2 identifier secondary data that indirectly identifies a

data subject
p1 personal primary data that is evidently personal
p2 personal secondary inferred personal data
s1 sensitive primary GDPR special categories of

data
s2 sensitive secondary inferred sensitive data

Table 1: 6 personal data types

opportunities).Note that the purpose of tracking is to flag
areas of concern to a developer at design time, rather than
to restrict/prevent information flow at runtime (a research
area in its own right [9]). To this end, all datasource nodes
in our IDE provide a schema that defines the personal data
they emit. Processing nodes contain logic to generate new
output schemas based on transforms they run on their input
data. For example, the combine processing node whose
job is to merge attributes from its inputs, auto-generates an
output schema by combining the schemas of all input at-
tributes to be merged. Note that we do not claim that our
schema covers (or will ever cover) all possible categories of
personal data or all possible inferences, but that, even with
these limitations, it will help developers reason about the
use of personal data.

As a start, inspired by GDPR, we specify six top-level per-
sonal data types (Table 1). In our schema (Table 2), the
(type, ordinal) attributes establish the top-level type. The
category, subtype and description attributes (originated by
us) provide further context. The schema has a required
attribute to denote which attributes must be present for a
schema to apply. For example, if an IoT camera provides



attribute description
type identifier | sensitive | personal
ordinal primary | secondary
category physical | education | professional | state |

contact | consumption...
subtype sensitive will include biometric, health, sex-

ual, criminal. Personal includes education,
profession, consumption.

description details of this particular item of personal data
(and method of inference if secondary)

required list of attributes of this data that must be
present in order for this to constitute as
personal data

Table 2: personal data schema

a timestamp, bitmap and light reading, only the bitmap at-
tribute is required for the data to be treated as personal.
The schema is extended for secondary (i.e. inferred) types,
to specify the conditions that must be satisfied to make an
inference possible (Table 3).

We currently define two types of condition: (i) attributes –
the additional set of items of personal data items that, when
combined could lead to a new inference and (ii) granular-
ity – the threshold sampling frequency required to make an
inference. When multiple attribute and/or granularity con-
ditions are combined, all must hold for an inference to be
satisfied.

Finally our status attribute distinguishes between personal
data where (i) an inference has been made, and (ii) the
data is available to make inference possible. For example,
browsing data and gender may be enough to infer whether
an individual is pregnant (i.e. these two items combined

attribute description
confidence an accuracy score for this particular infer-

ence, ranging from 0 to 1
conditions list of granularity | attribute
evidence where possible, a set of links to any evi-

dence that details a particular inference
method

status inferred | inferrable

Table 3: secondary personal data schema

attribute description
type personal
subtype gender
ordinal secondary
required [x,y,z]
conditions type: granularity, threshold: 15, unit:

Hz

Table 4: part of the accelerometer datastore personal schema

make pregnancy inferable) but if a node makes an actual
determination on pregnancy, then the resulting data is in-
ferred. To illustrate a basic example in the IDE, consider
Table 4 which outlines the relevant parts of the accelerome-
ter schema for the flows in Fig.2. In the left-hand flow, p2
is output from the accelerometer to show that personal
data (i.e. a data subject’s gender) is inferable from the x,y,z
components of its data (it is semi-transparent to denote it
is inferable rather than inferred). Similarly, with the profile
node, i1 is output to show fullname is a primary identifier.
When these are merged in the combine processor, the out-
put schema will contain the accelerometer’s p2, and the
profile’s i1. In the right-hand flow, the combine node is con-
figured to only combine the x and y components of the ac-
celerometer data with the profile data. Since x,y and z are



Figure 2: combining personal data in the Databox IDE

all marked as required (Table 4) for a gender inference to
be possible, the combine node’s output schema will only
contain i1 (and not p2). The IDE automatically recalculates
and re-represent the flow of personal data whenever a node
or edge is removed, added or reconfigured. As flows get
more complex this becomes invaluable; it helps developers
to quickly determine how changes in configuration affect
the flow of personal data. The IDE also flags points in an
app that may require further attention from the developer,
e.g: when personal data is being exported off the box (i.e.
connected to the export node).

Features enabled by personal data tracking
In this section we briefly cover other privacy oriented fea-
tures of our IDE that use our data tracking work.

Transparency with regard to the functions and processing
GDPR’s Articles 12-18 relate to information to be provided
by controllers to data subjects when their personal data
are processed. By drawing upon the configuration of apps

and the personal data flowing through them, we are able
to auto-generate portions of multi-layered consent notices,
presented to data subjects at install time that provide clear
information on the personal data being processed, thus
helping controllers fulfil these obligations. Moreover, given
that GDPR requires that “when the processing has multiple
purposes, consent should be given for all of them”, when
an app processes multiple data sources, the developer is
invited to mark each flow from each source as compulsory
or optional, which is translated to a set of granular consent
options at install time. All that remains is for the developer
to provide a description of the app and its benefits, and the
statutory information required by GDPR.

Runtime inspection
We use our personal data schema at runtime to create in-
terfaces that enable data subjects to monitor the process-
ing of their personal data; i.e., which specific personal data
is flowing to which outputs in which app. As data passes
through each node in an app, the path is recorded and



made available to each downstream node. The “output”
nodes (e.g. export, visualisation, device actuation) then
match the path and payload structure against the personal
data schema to determine which elements of the data (if
any) are personal. This information is then written to a
datastore, and visualized by a dedicated app (Fig. 3). Note
that data subjects cannot monitor data once it is exported,
though the platform does provides an audit trail of all data
exports.

Ongoing risk assessment
Our development environment generates an overall risk
rating for apps, based on the aggregate risk of the nodes
from which it is composed. Our environment also reflects
risks that fall outside the remit of GDPR (such as physical
risks mentioned earlier). Each node in the development en-
vironment has an in-built risk schema (provided by the en-
vironment, not the developer) that provides, amongst other
things, a risk score and breakdown based upon the current
configuration (e.g., the hardware it works with, the proposed
data rate, the particular actuation to be performed). As con-
figuration options are modified and nodes are introduced
or removed, the score and breakdown will update to reflect
the changes. In conceptualising even a crude notion of risk,
the IDE will sensitise developers to important concerns in
the course of building apps. We view our risk overview as a
“placeholder” and expect that further research and subse-
quent iterations lead to improved calculations.

Figure 3: runtime personal
dataflow inspection

Future research
A number of interesting challenges have emerged which
we are keen to explore in greater detail and which are, we
think, of broad relevance.

Algorithmic Intelligibility for Developers.
We are unaware of any research into how personal data
processing can be made intelligible to developers (rather
than data subjects). End-user oriented development envi-
ronments reduce the competencies necessary for creating
apps and expand the cohort of potential app developers.
In addition, access to machine learning toolkits such as
Google’s TensorFlow enable developers to utilise complex
machine learning algorithms whilst remaining divorced from
all but a rudimentary understanding of the models and logic
involved. This makes it increasingly easy for developers to
make naïve use of machine-learning algorithms that lead
to unfair, incorrect, and ultimately harmful outcomes. Ed-
ucating and sensitising developers to the implications of
the code they create is therefore a worthy goal. As [5] suc-
cinctly state: “in many cases what the data subject wants is
not an explanation—but rather for the disclosure, decision
or action simply not to have occurred”.

Articulation of risk.
Our work on risk assessment in the IDE argues for sensi-
tising developers to the implications of their choices during
app construction. Yet, as discussed, our conception of risk
is relatively simple. We aim to improve upon this by repre-
senting risk as two metrics: likelihood (what is the probabil-
ity of occurrence?) and harm (what bad things will happen if
it does occur?). To make this tractable, the IDE will need to
take into account the app’s intended deployment context in
addition to the personal data it operates on.

Developer evaluation.
The Databox IDE, as with the underlying platform itself, is
very much a work in flight and has not been amenable to
a usability evaluation in any meaningful way. We have pre-
sented versions of the Databox IDE to various communities,
including: PhD students in small lab sessions, industry pro-



fessionals at industry events and developers and enthusi-
asts at hackerthons and technology conferences. However
we are plan to undertake a systematic evaluation to under-
stand how developers respond to the IDE’s privacy-oriented
features and the effect they have on the design of Databox
apps.

Conclusion
We have presented an overview of a development envi-
ronment for building privacy aware IoT apps that run in
domestic environments. Unlike most citizen-oriented de-
veloper environments in use today, our IDE embeds a set
of privacy-preserving features aimed at engaging devel-
opers with concerns around personal data processing and
helping data controllers fulfil a set of GDPR obligations. In
building upon a popular flow-based programing paradigm,
it is relatively simple to envisage how the features we have
developed could be integrated into similar environments
that process personal data. This work is at an early stage,
but, we believe, takes a step towards understanding how
privacy by design and default can be embedded within a
developer’s workflow.
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