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Abstract The goal of this paper is to provide estimators of the tail index
and extreme quantiles of a heavy-tailed random variable when it is right-
truncated. The weak consistency and asymptotic normality of the estimators
are established. The finite sample performance of our estimators is illustrated
on a simulation study and we showcase our estimators on a real set of failure
data.

Keywords Asymptotic normality · consistency · extreme quantile · heavy-
tailed distribution · tail index
Mathematics Subject Classification (2000) 62G05 · 62G20 · 62G30 ·
62G32

1 Introduction

Studying extreme events is relevant in numerous fields of statistical applica-
tions. One can think about hydrology, where one may want to estimate the
maximum level reached by seawater along a coast over a given period, or to
study extreme rainfall at a given location; in actuarial science, a pivotal prob-
lem for an insurance firm is to estimate the probability that a claim so large
that it represents a threat to its solvency is filed. In this type of problem, the
focus is not in the estimation of “central” parameters of the random variable
of interest, such as its mean or median, but rather in the understanding of its
behavior in its right tail.
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A particular relevant case is when the random variable of interest, Y , is heavy-
tailed, namely, when its survival function F can be written F (y) = y−1/γL(y)
for all y > 0; here, γ > 0 shall be referred to as the tail index and L is a
slowly varying function at infinity, meaning that it satisfies L(λy)/L(y) → 1
as y → ∞ for all λ > 0. In this case, γ clearly drives the tail behavior of F and
its knowledge is necessary if, for instance, we are interested in the estimation
of extreme quantiles of Y . The estimation of the tail index is thus one of the
central topics in extreme value theory, which is why this problem has been
extensively studied in the literature. Recent overviews on univariate tail index
estimation can be found in the monographs of Beirlant et al. (2004) and de
Haan and Ferreira (2006).
A further challenge arises when facing incomplete data. An example of such
a situation is the estimation of (extreme) survival times based on a follow-up
study of patients suffering from a given illness. If at the time the data are
collected a patient is still alive, then his/her survival time is not available to
the researcher, although it is known that the patient survived until the end of
the study. This case is the archetypal example of right-censoring. Estimating
the tail index in this situation is much more difficult than when having com-
plete data, since information about the right tail of the variable of interest is
missing. In this setting, the estimation of the tail index and extreme quantiles
has been considered by Beirlant and Guillou (2001), Beirlant et al. (2007),
Beirlant et al. (2010), Einmahl et al. (2008), Gomes and Neves (2011) and
Worms and Worms (2014).
In this paper, we consider the case when the data are right-truncated. In this
framework, one observes the variable of interest if and only if it is less than
or equal to a truncation variable T . This situation is different from right-
censoring since nothing is known about Y in the case Y > T , which adds a
further difficulty to the analysis of the right tail of Y . Truncated data may be
collected in various cases, for instance when estimating incubation times for
a given disease, see Kalbfleisch and Lawless (1989, 1991) and Lagakos et al.
(1988); when studying the luminosity of astronomical objects such as quasars,
see Jackson (1974) and Lynden-Bell (1971); when accounting for reporting
lags in insurance data, also referred to as the incurred but not yet reported
problem, see Herbst (1999), Kaminsky (1987) and Lawless (1994); or when
considering failure or warranty data, see Hu and Lawless (1996a, 1996b) and
the monographs by Meeker and Escobar (1998) and Lawless (2002). To the
best of our knowledge, the estimation of the tail index and extreme quantiles
in this context is, up to now, still an open question.
The outline of this paper is as follows. In Section 2, we give a precise definition
of our model and define our estimators of the tail index and of the extreme
quantiles of a truncated random variable. Some asymptotic properties of our
estimators are stated in Section 3. The finite sample performance of the ex-
treme quantile estimator is studied in Section 4. A real set of brake failure
data is analyzed in Section 5. We offer some concluding remarks in Section 6.
Proofs of the main results are deferred to Section 7, while the preliminary
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results are deferred to the Appendix. Proofs of the preliminary results can be
found in a supplementary material.

2 Framework

Let (Y1, T1), . . . , (Yn, Tn) be n independent copies of a random pair (Y, T ) ∈
[y0,∞) × [t0,∞), where Y and T are independent and y0, t0 ≥ 0 are the left
endpoints of Y and T . The right endpoints of Y and T are supposed to be
infinite. The joint cumulative distribution function (cdf) of the random pair
(Y, T ) is then given for all (y, t) ∈ R

2 by H(y, t) := P(Y ≤ y, T ≤ t) =
F (y)G(t), where F and G are the cdfs of Y and T . The focus of this paper is
on extreme quantiles of Y and, as a first step, on the estimation of the cdf F .
Of course, because we only record the Yi and Ti such that Yi ≤ Ti, the classical
nonparametric estimator of F cannot be used. However, the conditional cdfs of
Y and T given Y ≤ T , respectively denoted by F ∗ and G∗, may be estimated
in a nonparametric way. Let N be the total (random) number of observed pairs
(Yi, Ti) such that Yi ≤ Ti and notice that N is a binomial random variable
with parameters n and p := P(Y ≤ T ). Such pairs shall be denoted in the
sequel as (Y ∗

i , T
∗
i ), 1 ≤ i ≤ N . It can be shown (see Lemma 1) that the

conditional distribution of {(Y ∗
i , T

∗
i ), i = 1, . . . , N} given N = m is equal to

the distribution of m independent copies of a random vector (Y ∗, T ∗) with cdf
H∗ given by H∗(y, t) = P(Y ≤ y, T ≤ t|Y ≤ T ). The standard estimators of
the conditional cdfs of Y and T are then

F̂ ∗
N (y) =

1

N

N∑

i=1

I{Y ∗

i
≤y} and Ĝ∗

N (t) =
1

N

N∑

i=1

I{T∗

i
≤t}.

Note now that, in order to estimate F , it is sufficient to estimate the function
ΛF := − logF . The following result, whose proof can be found in Woodroofe
(1985, p.166), shows that this quantity is in fact linked to F ∗ and G∗:

Proposition 1 Let C∗ := F ∗ − G∗. Then C∗(y) = p−1F (y)(1 − G(y)) > 0
for all y > y0, and

ΛF (y) =

∫ ∞

y

dF (z)

F (z)
=

∫ ∞

y

dF ∗(z)

C∗(z)
.

This result can be used to build an estimator of the function ΛF and conse-
quently of the cdf F : if y > y0, we may estimate ΛF (y) by

Λ̂F
N(y) =

1

N

N∑

i=1

I{Y ∗

i
>y}

Ĉ∗
N (Y ∗

i )

when N > 0 and 0 otherwise. The survival function F := 1 − F and its
associated quantile function α 7→ q(α) := inf{y ≥ y0 |F (y) ≤ α}, which is the

right-continuous inverse of F , are then estimated by F̂N (y) = exp(−Λ̂F
N (y))
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and q̂N (α) = inf{y ≥ y0 | F̂N (y) ≤ α}, where we let F̂N = 1 − F̂N . The
first aim of this paper is to study the asymptotic behavior of the estimator
q̂N (αn) where αn → 0 as n→ ∞. We shall tackle this problem in a framework
of regular variation: we write that a function Ψ ∈ RV1(a), a ∈ R, if Ψ is
nonnegative on (0,∞) and for all λ > 0, we have Ψ(λy)/Ψ(y) → λa as y → ∞.
We thus consider the following model:

(M) We have F ∈ RV1(−1/γF ) and G ∈ RV1(−1/γG), with 0 < γF ≤ γG.

Model (M) is a standard extreme-value model adapted to right-truncated
data; see also Beirlant et al. (2007) and Einmahl et al. (2008) for closely
related models when there is right-censoring. The cdfs of Y and T are thus
heavy-tailed with respective tail indices γF and γG. The condition γF ≤ γG
ensures that we have at our disposal enough observations pertaining to the
right tail of Y . In this context, the quantile estimator q̂N (αn) is consistent if
αn → 0 slowly enough, see Theorem 2. In order to remove the restriction on
the rate of convergence of αn, we note that under model (M), the quantile
function q is regularly varying at 0 (see Corollary 1.2.10 p.23 in de Haan and
Ferreira 2006), so that if βn < αn are two positive sequences tending to 0 such
that βn/αn → 0 then q(βn) ≈ q(αn) (αn/βn)

γF when n is large. In order to
derive an estimator of an extreme quantile q(βn) from that, we first need to
build an estimator of γF . With this aim in mind, we remark that F ∗ and G∗

are heavy-tailed with respective tail indices γF∗ := γF γG/(γF + γG) and γG
(see Lemma 3) and we introduce the Hill-type estimators (see Hill 1975)

γ̂N,F∗(kN ) =
1

kN

kN∑

i=1

log
Y ∗
N−i+1,N

Y ∗
N−kN ,N

and γ̂N,G(k
′
N ) =

1

k′N

k′

N∑

i=1

log
T ∗
N−i+1,N

T ∗
N−k′

N
,N

.

Here we let, given N = m, kN = km and k′N = k′m, where km and k′m are
integers which belong to {1, . . . ,m− 1}, and Y ∗

1,N ≤ . . . ≤ Y ∗
N,N , T ∗

1,N ≤ . . . ≤
T ∗
N,N are the order statistics deduced from the samples (Y ∗

i )1≤i≤N , (T ∗
i )1≤i≤N .

It is fairly easy to prove (see Lemma 9) that γ̂N,F∗(kN ) and γ̂N,G(k
′
N ) are

consistent estimators of γF∗ and γG under mild conditions. This leads us to
introduce the class of estimators

γ̂N,F (kN , k
′
N ) =

γ̂N,F∗(kN )γ̂N,G(k
′
N )

γ̂N,G(k′N )− γ̂N,F∗(kN )
. (1)

Under some conditions on (km) and (k′m), the quantity γ̂N,F (kN , k
′
N ) is then

a consistent estimator of γF , see Theorem 3. This motivates the following
Weissman-type estimator (see Weissman 1978) for a quantile having arbitrary
order βn → 0:

q̂WN (βn |αn, kN , k
′
N ) = q̂N (αn) (αn/βn)

γ̂N,F (kN ,k′

N ) (2)

where αn → 0 converges slowly enough. The asymptotic properties of this
estimator are discussed in Theorem 4.
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3 Main results

In this section, we examine the asymptotic properties of our estimators. In

order to establish the asymptotic normality of F̂N (yn), we introduce the fol-
lowing additional condition:

∫ ∞

y0

dF (z)

G(z)
<∞. (3)

This assumption is classical in the study of the estimator of the cdf of a trun-
cated random variable, see for instance Stute and Wang (2008) and Woodroofe
(1985) for related hypotheses when there is left-truncation. Note that under
model (M), it is a consequence of Lemma 2 with ϕ = 1/G and ψ = F that (3)
automatically holds if γF < γG. Besides, it is easy to check that (3) fails to
hold if γF > γG.

Theorem 1 Let yn → ∞. Assume that (M) and (3) hold, and that nv2(yn)
converges to infinity where

v(y) := F (y)

(∫ ∞

y

dF (z)

G(z)

)−1/2

.

Then

v(yn)
√
n

(
F̂N (yn)

F (yn)
− 1

)
=

{
ξn if γF < γG,

OP(1) if γF = γG,

where ξn is a random variable which is asymptotically standard Gaussian dis-
tributed.

We now establish the asymptotic normality of q̂N (αn).

Theorem 2 Let αn → 0. Assume that F is a differentiable function in a
neighborhood of infinity such that yF ′(y)/F (y) → 1/γF as y → ∞, that (M)
and (3) hold, and that nv2(q(αn)) → ∞. Then

v(q(αn))
√
n

(
q̂N (αn)

q(αn)
− 1

)
=

{
ζn if γF < γG,

OP(1) if γF = γG,

where ζn is a random variable which is asymptotically Gaussian centered with
variance γ2F .

Theorem 2 is a convergence result for the intermediate quantile estimator
q̂N (αn), provided nv

2(q(αn)) → ∞, which ensures that αn → 0 slowly enough.
To examine the asymptotic properties of the extreme quantile estimator (2), we
start by proving a couple of results on the tail index estimator γ̂N,F (kN , k

′
N ).

Before that, we introduce some notation: we will write Ψ ∈ RV2(a,∆) where
a ∈ R and ∆ is a bounded measurable function having ultimately constant
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sign and converging to 0 at infinity, such that |∆| is an ultimately monotonic
and regularly varying function, if there exists a positive constant c such that

Ψ(y) = cya exp

(∫ y

1

∆̃(z)

z
dz

)
with ∆̃(y) = ∆(y)(1 + o(1)) as y → ∞.

The following second-order condition is required:

(C) We have F ∈ RV2(−1/γF , ∆F ) and G ∈ RV2(−1/γG, ∆G) where γF ,
γG > 0 and |∆F | ∈ RV1(ρF ), |∆G| ∈ RV1(ρG) with ρF , ρG ≤ 0.

It can be shown (see Lemma 8) that if (C) holds, then provided ρF 6= ρG and
ρG 6= −1/γF , an analogue of condition (C) also holds for F ∗ and G∗.
Finally, let UF∗ , UG∗ be the left-continuous inverses of 1/F ∗ and 1/G∗. The
following result, in which we write s ∨ t and s ∧ t for the maximum and the
minimum of two real numbers s and t and ⌊·⌋ for the floor function, examines
the asymptotic properties of γ̂N,F (kN , k

′
N ).

Theorem 3 Let (kn), (k
′
n) be such that kn ∧ k′n → ∞ and (kn ∨ k′n)/n → 0.

Assume that (M) holds. Then we have γ̂N,F (kN , k
′
N )

P−→ γF . Suppose more-
over that (C) holds, that ρF 6= ρG and ρG 6= −1/γF , that kn∆

2
F∗(UF∗(n/kn))∨

k′n∆
2
G∗(UG∗(n/k′n)) → 0 and

sup
r,s∈In

∣∣∣∣
kr ∧ k′r
ks ∧ k′s

− 1

∣∣∣∣→ 0 where In = [np(1− n−1/4), np(1 + n−1/4)]. (4)

Then if either kn/k
′
n → 0 or k′n/kn → 0, we have

√
k⌊np⌋ ∧ k′⌊np⌋ (γ̂N,F (kN , k

′
N )− γF )

d−→ N
(
0, σ2

F

)
, (5)

where σ2
F is equal to γ2F (1 + γF /γG)

2 if kn/k
′
n → 0 and γ4F /γ

2
G if k′n/kn → 0.

In the case kn/k
′
n → 1, then we have

√
k⌊np⌋ (γ̂N,F (kN , k

′
N )− γF ) = OP(1). (6)

A careful examination of the proof reveals that contrary to Theorems 1 and 2,
Theorem 3 also holds when γF > γG. Before combining Theorems 2 and 3 to
obtain the rate of convergence of the estimator q̂WN (βn |αn, kN , k

′
N ), we state

three remarks about Theorem 3.

Remark 1 Note that without assuming condition (4) the rate of convergence
in Theorem 3 would be the random quantity

√
kN ∧ k′N , see the proof for fur-

ther details.

Remark 2 Conditions kn∆
2
F∗(UF∗(n/kn)) → 0 and k′n∆

2
G∗(UG∗(n/k′n)) → 0

are analogues of the condition classically used to prove the asymptotic normal-
ity of the Hill estimator. They ensure that the bias of the estimator is negligible
with respect to its standard deviation.
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Remark 3 Since in the case kn/k
′
n → 1 the correlation between γ̂N,F∗(kN )

and γ̂N,G(k
′
N ) is very difficult to evaluate, Theorem 3 only provides the rate

of convergence of γ̂N,F (kN , k
′
N ) − γF to zero. This case is interesting when

γF < γG, i.e. if the tail of T is larger than the tail of Y , because then the tail
of Y would not be too contaminated as a result of truncation. On the contrary,
in the case when the tail of Y is the heaviest (which we cannot consider for
the estimation of extreme quantiles), there would be higher confidence in the
estimation of γG than in that of γF∗ , which would lead us to take kn/k

′
n → 0.

The final result of this section gives some asymptotic properties of the estima-
tor q̂WN (βn |αn, kN , k

′
N ):

Theorem 4 Let αn → 0, βn → 0, kn ∧ k′n → ∞ and (kn ∨ k′n)/n → 0.
Assume that (M), (3) and (C) hold. Assume that ρF 6= ρG and ρG 6=
−1/γF , that βn/αn → 0, nv2(q(αn)) → ∞, nv2(q(αn))∆

2
F (q(αn)) → 0,

kn∆
2
F∗(UF∗(n/kn)) ∨ k′n∆2

G∗(UG∗(n/k′n)) → 0,

(k⌊np⌋ ∧ k′⌊np⌋)/nv2(q(αn)) → 1 and sup
r,s∈In

∣∣∣∣
kr ∧ k′r
ks ∧ k′s

− 1

∣∣∣∣→ 0.

Then, if γF < γG and either kn/k
′
n → 0 or k′n/kn → 0, we have

v(q(αn))
√
n

log(αn/βn)

(
q̂WN (βn |αn, kN , k

′
N )

q(βn)
− 1

)
d−→ N

(
0, σ2

F

)
. (7)

In the case kn/k
′
n → 1, or if γF = γG and either kn/k

′
n → 0 or k′n/kn → 0,

we have
v(q(αn))

√
n

log(αn/βn)

(
q̂WN (βn |αn, kN , k

′
N )

q(βn)
− 1

)
= OP(1). (8)

4 Simulation study

To illustrate the behavior of our estimators, we shall use the following model:

∀y, t > 0, F (y) = (1 + y1/δ)−δ/γF and G(t) = (1 + t1/δ)−δ/γG ,

where δ > 0 and 0 < γF < γG. Note that in this situation, ρF = ρG = −1/δ.
Thus, the larger the value of δ, the smaller the values of |ρF | and |ρG| and the
slower γ̂N,F (kN , k

′
N ) converges to γF , see e.g. de Haan and Ferreira (2006, p.77)

for the related situation when there is no truncation. An important bias in the
estimation of q(βn) can then be expected to appear if δ is large. Moreover, the
truncation probability is given in our setting by 1− p with p = γG/(γF + γG).
In this simulation study, we examine the finite sample behavior of several es-
timators of the extreme quantile q(βn) for βn varying in (0, 0.15]. We first
consider the two estimators introduced in the present paper, namely q̂N (βn)

and q̂WN (βn|αn) = q̂N (αn) (αn/βn)
γ̂N,F (αn), where (αn) is a sequence in (0, 1)

and γ̂N,F (αn) is the estimator of the tail-index γF defined in (1) with kN =
k′N = ⌊Nαn⌋. In order to evaluate how important it is to take into account
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the fact that the data are right-truncated, we also consider the naive esti-

mators q̂∗N (βn) = inf{y ≥ y0|F̂
∗

N (y) ≤ βn}, and its extrapolated version

q̂W,∗
N (βn) = q̂∗N (α∗

n) (α
∗
n/βn)

γ̂N,F∗ (α∗

n), where (α∗
n) is a sequence in (0, 1) and

γ̂N,F∗(α∗
n) = γ̂N,F∗(⌊Nα∗

n⌋). These last two estimators are computed using
only the observations {Y ∗

i , i = 1, . . . , N}, ignoring the fact that these obser-
vations are in fact truncated. Note finally that the Weissman-type estimators
only depend on the choice of the parameters αn or α∗

n.
In this simulation study, we generate R = 1000 samples of size n = 200
from the distributions F and G with δ ∈ {1/3, 1}, for γF ∈ {1/4, 1/2, 1} and
p ∈ {0.7, 0.8, 0.9, 0.95}. In each case and for given αn, α

∗
n and βn, we obtain the

observations (q̂
(r)
N (βn), q̂

W,(r)
N (βn|αn), q̂

(r),∗
N (βn), q̂

W,(r),∗
N (βn|α∗

n)), r = 1, . . . , R
of the estimators. For each replication, αn and α∗

n are then taken as

α
(r)
opt := argmin

α∈(0.04,0.15]

∫ 0.15

0.04

log2

(
q̂
(r)
N (β)

q̂
W,(r)
N (β|α)

)
dβ,

and α
(r),∗
opt := argmin

α∈(0.04,0.15]

∫ 0.15

0.04

log2

(
q̂
(r),∗
N (β)

q̂
W,(r),∗
N (β|α)

)
dβ.

The idea behind these criteria is that for quantiles which are not too large,

the estimators q̂
(r)
N (resp. q̂

(r),∗
N ) and q̂

W,(r)
N (.|αn) (resp. q̂

W,(r),∗
N (.|α∗

n)) should
be close if αn (resp. α∗

n) is well chosen. Next, we compute the errors

E(q̌(r)) :=

∫ 0.15

0

log2
(
q̌(r)(β)

q(β)

)
dβ,

where q̌(r) is either q̂
(r)
N , q̂

(r),∗
N , q̂

W,(r)
N (.|α(r)

opt) or q̂
W,(r),∗
N (.|α(r),∗

opt ). The error E
is a measure of the overall performance of a quantile estimator when esti-
mating extreme quantiles. For θ = {0.1, 0.5, 0.9}, let r(θ) (resp. s(θ), r∗(θ)
and s∗(θ)) be the replication corresponding to the quantile of order θ of the

set {E(q̂
(r)
N ), r = 1, . . . , R} (resp. {E(q̂

W,(r)
N ), r = 1, . . . , R}, {E(q̂

(r),∗
N ), r =

1, . . . , R} and {E(q̂
W,(r),∗
N ), r = 1, . . . , R}). In each situation, the errors cor-

responding to these replications are given respectively in Tables 1, 2, 3 and 4.
It appears that the Weissman-type estimators perform better than the others,
which is not surprising since these estimators are specifically adapted to the
estimation of extreme quantiles. Besides, we can see that the smaller is the
probability p, the larger is the bias of the estimators. This was also expected
since in our setting, a smaller probability p means a greater number of obser-
vations missing in the right tail of Y . Note also that the importance to take
into account the fact that the data are right-truncated appears clearly for the
Weissman-type estimators when p is small. For large values of p, the naive es-
timators and the estimators proposed in this paper have similar performances.
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5 Real data example

The dataset we work on here deals with the lifetime of automobile brake pads.
It was already considered by Lawless (2002, Example 2.4.2) and obtained in
the following way: in order to study the brake pad lifetime, a car manufacturer
selected a random sample of cars which were sold over the previous year. In
this situation, one way to obtain the brake pad lifetime is to conduct frequent
assessments of the brake pad until it is found to be so worn out that it re-
quires replacement, but this procedure is too time-consuming and difficult to
implement. Instead, this lifetime was estimated by the manufacturer, based on
a measure of the brake pad thickness. For each car, the observed mileage M
and the estimated lifetime L were collected, and only the cars with a response
variable L larger than M , or equivalently cars whose brake pad thickness was
so large that the brake pads did not require immediate replacement, were kept.
The random variables L andM can reasonably be assumed to be independent.
At the end of this process, only N = 98 estimated lifetimes {L∗

i , i = 1, . . . , N}
and mileages {M∗

i , i = 1, . . . , N} remained in the sample. Note that since the
variable of interest is the brake pad lifetime, this is actually a randomly left-
truncated sample. In order to work within the framework of the present paper,
the following transformation is used: for i ∈ {1, . . . , N}, we define

Y ∗
i = (L∗

i −mN − εt)−1 and T ∗
i = (M∗

i −mN − ε)−1,

where mN = min{M∗
1 , . . . ,M

∗
N} and ε = 0.05. Thus, (Y ∗

1 , T
∗
1 ), . . . , (Y

∗
N , T

∗
N )

can be seen as randomly right-truncated observations from a random sample of
independent copies of a random pair (Y, T ), whose size n is unknown. We now
need to check that this random sample presents some evidence of heavy tails.
To this aim, using our Hill-type estimators, the estimations of the tail indices
γF∗ and γG (using the same notation as before) are represented on Figure 7
as functions of kN ∈ {1, . . . , 90}. It appears clearly that the estimated values
are positive and, for intermediate values of kN , the estimations of γF∗ and
γG seem to be fairly stable. We thus are led to believe that there is indeed
evidence of heavy tails for this random sample.

We now estimate the extreme quantiles of Y using the Weissman-type esti-
mator q̂N (βn|αn), where αn is chosen as in the simulation study. The selected
value of αn for this dataset is 0.123, corresponding to kN = 12. The tail in-
dices γF∗ , γF and γG are respectively estimated to be 0.32, 0.60 and 0.69.
In particular, the estimate of γF is less than that of γG, which seems to in-
dicate that condition (M) is satisfied. On Figure 7, the estimated quantile
q̂N (βn|αn) for βn ∈ (0, 0.15) and the one associated to the original data,

namely q̃N (1− βn|αn) = (q̂N (βn|αn))
−1

+mN − ε are represented. In partic-
ular, we may see on the right panel of Figure 7 that the brake pad lifetime is
estimated to be less than 13 500 kilometers for only 1% of the cars.
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6 Conclusion

In this paper, we introduced and studied an extreme quantile estimator for
randomly right-truncated data. This estimator is built upon an empirical high
quantile estimator and a tail index estimator which are both adapted for ran-
dom right-truncation. Our extreme quantile estimator has satisfying perfor-
mances, be them theoretical or practical.

Future work on our estimator includes obtaining the asymptotic normality of
the tail index estimator and the extreme quantile estimator when kn = k′n.
This is not only a stimulating theoretical problem but also an interesting prac-
tical one, since we consider this case in our simulation study and data analysis.
Another question worthy of research would be to build and study extreme-
value index estimators and extreme quantile estimators when the distribution
functions of Y and T belong to an arbitrary max-domain of attraction (de
Haan and Ferreira 2006). This would certainly be useful in practical applica-
tions, for instance when trying to handle random samples whose underlying
marginal distributions are believed to be short-tailed.

7 Proofs of the main results

Proof of Theorem 1. As a preliminary step, note that when N > 0 (which
is true with arbitrarily large probability as n→ ∞, by Lemma 1), one has

Λ̂F
N (yn)− ΛF (yn)

F (yn)
= Sn,1 + Sn,2 + Sn,3 −

ΛF (yn)

F (yn)
I{Y ∗

N,N
≤yn}

where Sn,1 = I{Y ∗

N,N
>yn}

(
1

n

[
N∑

i=1

I{Y ∗

i
>yn}

pF (yn)C∗(Y ∗
i )

]
− ΛF (yn)

F (yn)

)
,

Sn,2 =

(
p

N
− 1

n

)( N∑

i=1

I{Y ∗

i
>yn}

pF (yn)C∗(Y ∗
i )

)
I{Y ∗

N,N
>yn}

and Sn,3 =
I{Y ∗

N,N
>yn}

NF (yn)

N∑

i=1

I{Y ∗

i
>yn}

(
1

Ĉ∗
N (Y ∗

i )
− 1

C∗(Y ∗
i )

)
.

Lemma 4 entails that I{Y ∗

N,N
≤yn} is zero with arbitrarily large probability as

n→ ∞ and thus:

v(yn)
√
n

(
Λ̂F
N(yn)− ΛF (yn)

F (yn)

)
= v(yn)

√
n

3∑

j=1

Sn,j + oP(1).

Let us first focus on the term Sn,1 which we can rewrite as

Sn,1 =
I{Y ∗

N,N
>yn}

n

n∑

i=1

Wn,i where Wn,i :=
I{Yi>yn}I{Yi≤Ti}

pF (yn)C∗(Yi)
− ΛF (yn)

F (yn)
. (9)
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It is easy to check that the Wn,i are independent, identically distributed and
centered random variables. From (9) we get

E(W 2
n,1) =

1

p2F
2
(yn)

E

(
I{Y >yn}I{Y≤T}

(C∗(Y ))2

)
−
(
ΛF (yn)

F (yn)

)2

. (10)

We now use the fact that since F is nondecreasing and F (yn) → 1, we have

ΛF (yn)

F (yn)
− 1 =

1

F (yn)

∫ ∞

yn

F (z)

F (z)
dF (z) = O(F (yn)) (11)

and by Proposition 1, C∗ = p−1FG so that

1

p2
E

(
I{Y >yn}I{Y ≤T}

(C∗(Y ))2

)
=

∫ ∞

yn

dF (z)

G(z)F 2(z)
=

∫ ∞

yn

dF (z)

G(z)
(1 + o(1)). (12)

• In the case γF < γG, noting that dF (z) = −dF (z), we get from (10),
(11), (12) and (27) (see the Appendix):

E(W 2
n,1) =

γG
γG − γF

1

F (yn)G(yn)
(1 + o(1)). (13)

Furthermore, because γF < γG, one can pick δ > 0 such that (1 + δ)/γG −
1/γF < 0. Hölder’s inequality then gives

E[|Wn,1|2+δ] ≤ 21+δ

(
E

(
I{Yi>yn}I{Yi≤Ti}

pF (yn)C∗(Yi)

)2+δ

+ 1 + o(1)

)
,

where (11) was used. Besides, since F is nondecreasing and F (yn) → 1, we

obtain by Lemma 2 with ϕ = 1/G
1+δ

and ψ = F :

E

(
I{Yi>yn}I{Yi≤Ti}

pC∗(Yi)

)2+δ

=

∫ ∞

yn

dF (z)

G
1+δ

(z)F 2+δ(z)
= O

(
F (yn)

G
1+δ

(yn)

)
. (14)

It follows from (13), (14) and (27) that

n−δ/2 E[|Wn,1|2+δ]

[Var(Wn,1)]1+δ/2
= O

(
[nF (yn)G(yn)]

−δ
)
= O

(
[v(yn)

√
n]−δ

)
→ 0.

Since the Wn,i are independent, identically distributed and centered random
variables, Lyapunov’s central limit theorem (see e.g. Billingsley 1979, p.312)

entails
√
nSn,1/

√
Var(Wn,1)

d−→ N (0, 1). Using (13) and the convergence
I{Y ∗

N,N
>yn} → 1 leads to

v(yn)
√
nSn,1

d−→ N (0, 1) when γF < γG. (15)
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• When γF = γG, we note that using condition (3), the second part of
Lemma 2 with ϕ = 1/G and ψ = F entails that the function v is regularly
varying with index −1/γF < 0. This yields

1

F
2
(yn)

∫ ∞

yn

dF (z)

G(z)
→ ∞. (16)

Consequently, from (10), (11) and (16), we get E(W 2
n,1) = O(1/v2(yn)), which

entails
v(yn)

√
nSn,1 = OP(1) when γF = γG. (17)

Let us now focus on the term Sn,2. From the previous results, it is clear that

1

n

N∑

i=1

I{Y ∗

i
>yn}

pF (yn)C∗(Y ∗
i )

I{Y ∗

N,N
>yn}

P−→ 1.

Since np/N = 1 + OP

(
n−1/2

)
from Lemma 1, one has, using Lemma 4, that

Sn,2 = OP

(
n−1/2

)
. Using the convergence v(yn) → 0 it is now obvious that

v(yn)
√
nSn,2 = oP(1). (18)

Let us now control Sn,3. Note that (see Woodroofe 1985, pp.172–173):

√
n sup

z∈R

∣∣∣F̂ ∗
N (z)− F ∗(z)

∣∣∣ = OP(1) and
√
n sup

z∈R

∣∣∣Ĝ∗
N (z)−G∗(z)

∣∣∣ = OP(1).

Therefore, it comes that

√
n sup

1≤i≤N

∣∣∣Ĉ∗
N (Y ∗

i )− C∗(Y ∗
i )
∣∣∣ I{Y ∗

i
>yn} = OP(1).

By Lemmas 1 and 5, we thus obtain:

v(yn)
√
nSn,3 = OP

(
v(yn)

nF (yn)

N∑

i=1

I{Y ∗

i
>yn}

(C∗(Y ∗
i ))

2
I{Y ∗

N,N
>yn}

)
. (19)

Since
N∑

i=1

I{Y ∗

i
>yn}

(C∗(Y ∗
i ))

2
=

n∑

i=1

I{Yi>yn}I{Yi≤Ti}

(C∗(Yi))2
,

it follows from (12) that

E

(
v(yn)

nF (yn)

N∑

i=1

I{Y ∗

i
>yn}

(C∗(Y ∗
i ))

2

)
= p2

√∫ ∞

yn

dF (z)

G(z)
(1 + o(1)) → 0, (20)

because the integral in the right-hand side converges to 0. Using (19) and (20)
entails

v(yn)
√
nSn,3 = OP

(
v(yn)

nF (yn)

N∑

i=1

I{Y ∗

i
>yn}

(C∗(Y ∗
i ))

2
I{Y ∗

N,N
≥yn}

)
= oP(1). (21)
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Use finally (15), (17), (18) and (21) together to get

v(yn)
√
n

(
Λ̂F
N(yn)− ΛF (yn)

F (yn)

)
=

{
ξn if γF < γG,

OP(1) if γF = γG,

where ξn is a random variable which is asymptotically standard Gaussian
distributed. Using the delta-method concludes the proof of Theorem 1.

Proof of Theorem 2. We start by the case γF < γG and we define σn =
q(αn)/[v(q(αn))

√
n]. It is enough to show that Φn(z) := P(σ−1

n (q̂N (αn) −
q(αn)) ≤ z) → Φ(z), for every z ∈ R, where Φ is the cdf of a N (0, γ2F )
distribution. Let us introduce the sequence ϑn := γF v(q(αn))

√
n/αn. It is

easy to check that Φn(z) = P(Wn ≤ zn), where

Wn = ϑn

(
F̂N (q̃n)− F (q̃n)

)
and zn = ϑn(αn − F (q̃n)),

with q̃n = q(αn) + σnz. Let us first focus on the nonrandom term zn. Since
F is a differentiable function, there exists θn ∈ (0, 1) such that αn − F (q̃n) =
σnzF

′(q(αn)+θnσnz). Since σn/q(αn) → 0 as n→ ∞, we may use the conver-
gence yF ′(y)/F (y) → 1/γF to get F ′(q(αn)+θnσnz) = γ−1

F αn/q(αn)(1+o(1)).
Hence the following equality holds:

zn = ϑnσnz
1

γF

αn

q(αn)
(1 + o(1)) = z(1 + o(1)). (22)

We now consider the random term Wn. One has

Wn =
ϑnF (q̃n)

v(q̃n)
√
n
Zn where Zn = v(q̃n)

√
n

(
F̂N (q̃n)

F (q̃n)
− 1

)
.

Note that from model (M), F (q̃n) = αn(1 + o(1)). Moreover, it is a conse-
quence of Lemma 2 that the function v is regularly varying, so that v(q̃n) =
v(q(αn))(1 + o(1)). Consequently ϑnF (q̃n) = γF v(q̃n)

√
n(1 + o(1)). Apply

then Theorem 1 with yn = q̃n to obtain that Zn
d−→ N (0, 1) and thus

Wn
d−→ N (0, γ2F ), which concludes the proof in the case γF < γG.

Now, if γF = γG, we start by showing that if (εn) is an arbitrary nonran-
dom positive sequence tending to 0 at infinity such that εnv(q(αn))

√
n =

εnq(αn)/σn → ∞, we have

εnσ
−1
n |q̂N (αn)− q(αn)| P−→ 0. (23)

Pick then an arbitrary z > 0. We shall show that ϕn(z) := P(εnσ
−1
n |q̂N (αn)−

q(αn)| > z) → 0.With ϑn as above, it is easy to check that ϕn(z) = P(Wn,+ >
zn,+) + P(Wn,− < zn,−), where

Wn,± = ϑn

(
F̂N (q̃n)− F (q̃n)

)
and zn,± = ϑn(αn − F (q̃n)),
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where we redefine q̃n := q(αn)± ε−1
n σnz. Let us first focus on the nonrandom

term zn,±. Mimicking the arguments leading to (22) in the proof of the first
part of Theorem 2, we get that

zn,± = ±ϑnε−1
n σnz

1

γF

αn

q(αn)
(1 + o(1)) = ±ε−1

n z(1 + o(1)). (24)

We now consider the random term Wn,±. One has

Wn,± =
ϑnF (q̃n)

v(q̃n)
√
n
Zn,± where Zn,± = v(q̃n)

√
n

(
F̂N (q̃n)

F (q̃n)
− 1

)
.

Since F and v are regularly varying, we have F (q̃n) = αn(1+o(1)) and v(q̃n) =
v(q(αn))(1 + o(1)) which leads to ϑnF (q̃n) = γF v(q̃n)

√
n(1 + o(1)). On the

other hand, the second part of Theorem 1 implies that εnZn,± = oP(1), so
that using (24) we obtain for n large enough

ϕn(z) ≤ P(εnZn,+ > z/2) + P(εnZn,− < −z/2) → 0

and the proof of (23) is complete. Note now that if (εn) is an arbitrary non-

random positive sequence, we have εn ≤ ε′n := εn ∨ (v(q(αn))
√
n)

−1/2
with

ε′nv(q(αn))
√
n→ ∞. It can thus easily be seen that in fact (23) holds for every

positive sequence (εn); applying Lemma 6 completes the proof of Theorem 2.

Proof of Theorem 3. Use Lemma 1 to get P(N ∈ In) → 1, where In
is defined in equation (4). The consistency statement is thus an immediate
consequence of Lemmas 3 and 9.

To prove (5) and (6), write

γ̂n,F (kN , k
′
N )− γF =

γ̂N,F∗(kN )γ̂N,G(k
′
N )

γ̂N,G(k′N )− γ̂N,F∗(kN )
− γF∗γG
γG − γF∗

.

Since γ̂N,F∗(kN )
P−→ γF∗ and γ̂N,G(k

′
N )

P−→ γG, it is straightforward to obtain
the equality

γ̂n,F (kN , k
′
N )− γF =

(
1 +

γF
γG

)2

(γ̂N,F∗(kN )− γF∗)− γ2F
γ2G

(γ̂N,G(k
′
N )− γG)

+ oP(γ̂N,F∗(kN )− γF∗) + oP(γ̂N,G(k
′
N )− γG).

Applying Lemma 8 proves that F ∗ and G∗ satisfy the conditions of Lemma 9.
Using then Lemma 9 twice concludes the proof.

Proof of Theorem 4. From condition (C), note that we may write

∀y > 0, F (y) = y−1/γFLF (y) with LF (y) = cF exp

(∫ y

1

∆̃F (v)

v
dv

)
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where cF is a positive constant and ∆̃F is asymptotically equivalent to ∆F .
Further, since q is the (generalized) inverse function of F , it satisfies the equa-
tion

∀α ∈ (0, 1), q(α) = α−γFLγF

F (q(α)). (25)

Note that since |∆̃F | is asymptotically equivalent to the ultimately monotonic
function |∆F |, one has for n large enough

εn :=
1

log(αn/βn)

∣∣∣∣log
(
LF (q(βn))

LF (q(αn))

)∣∣∣∣ ≤ 2
|∆F (q(αn))|
log(αn/βn)

log

(
q(βn)

q(αn)

)
.

By (25) we obtain for n large enough εn ≤ 2γF |∆F (q(αn))|(1 + εn), which
entails

εn ≤ 2γF |∆F (q(αn))|
1− 2γF |∆F (q(αn))|

= O(|∆F (q(αn))|) .

Using once again (25), we get

log

(
q̂WN (βn |αn, kN , k

′
N )

q(βn)

)
= log

(
q̂N (αn)

q(αn)

)
+ (γ̂N,F (kN , k

′
N )− γF ) log

(
αn

βn

)

+ O(|∆F (q(αn))|) . (26)

To prove (7), remark that since log(αn/βn) → ∞, applying Theorems 2 and 3
together with Slutsky’s lemma yields, if either kn/k

′
n → 0 or k′n/kn → 0 with

γF < γG:

v(q(αn))
√
n

log(αn/βn)
log

(
q̂WN (βn |αn, kN , k

′
N )

q(βn)

)
d−→ N (0, σ2

F ).

Using the delta-method ends the proof of (7). To prove (8) if kn/k
′
n → 1 or

γF = γG, use (26), Theorems 2 and 3 to get

v(q(αn))
√
n

log(αn/βn)
log

(
q̂WN (βn |αn, kN , k

′
N )

q(βn)

)
= OP(1).

Applying the mean-value theorem to the exponential function ends the proof
of Theorem 4.
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Appendix - Preliminary results

The first result gives an equivalent of the random variable N and the condi-
tional distribution of (Y ∗

1 , T
∗
1 ), . . . , (Y

∗
N , T

∗
N) given N .
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Lemma 1 We have N/np = 1 + OP(n
−1/2). Furthermore, the conditional

distribution of (Y ∗
1 , T

∗
1 ), . . . , (Y

∗
N , T

∗
N ) given N = m > 0 is equal to the distri-

bution of m independent copies of a random vector (Y ∗, T ∗) with cdf H∗.

Lemma 2 is dedicated to the study of a kind of integrals that appear frequently
in the proof of Theorem 1. For related results, see Proposition 1.5.9b and
Theorem 1.6.5 in Bingham et al. (1987).

Lemma 2 Let ϕ ∈ RV1(α) and ψ ∈ RV1(−β) with α ∈ R and β > 0. Assume
that ψ is right-continuous and nonincreasing on some interval [A,∞), A ≥ 0.

– If α < β then the function ϕ is integrable with respect to ψ on a neighbor-
hood of infinity and

∫ ∞

y

ϕ(z)dψ(z) = − β

β − α
ϕ(y)ψ(y)(1 + o(1)) as y → ∞.

– If α = β and
∫∞

A
ϕ(z)dψ(z) < ∞ then y 7→ −

∫∞

y
ϕ(z)dψ(z) is slowly

varying at infinity and

− 1

ϕ(y)ψ(y)

∫ ∞

y

ϕ(z)dψ(z) → ∞ as y → ∞.

If assumption (3) holds true, using Lemma 2 with ϕ = 1/G and ψ = F entails

√
F (y)G(y)

v(y)
→
{√

γG/(γG − γF ) if γF < γG

∞ if γF = γG
as y → ∞, (27)

with the notation of Theorem 1, which is a result that shall be used several
times in our proofs.

Lemma 3 shows that the survival functions F ∗ and G∗ are regularly varying
at infinity.

Lemma 3 Assume that F ∈ RV1(−1/γF ), G ∈ RV1(−1/γG) where γF , γG >
0. Then as y, t→ ∞:

F ∗(y)

F (y)G(y)
→ 1

p

γG
γF + γG

and
G∗(t)

G(t)
→ 1

p
.

Lemma 4 essentially implies that under the conditions of Theorem 1, the quan-
tity Λ̂F

N(yn) is nonzero with probability tending to one.

Lemma 4 For all y ≥ y0, P(Y
∗
N,N ≤ y) =

(
1− pF

∗
(y)
)n

. Consequently, if

(M) holds, yn → ∞ and nv2(yn) → ∞ then P(Y ∗
N,N ≤ yn) → 0.

Lemma 5 below is needed to control the ratios C∗(Y ∗
i )/Ĉ

∗
N (Y ∗

i ), i ∈ {1, . . . , N}
in the proof of Theorem 1. Its proof is similar to that of Lemma 1.2 in
Stute (1993).
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Lemma 5 If yn → ∞ then

sup
1≤i≤N
Y ∗

i >yn

C∗(Y ∗
i )

Ĉ∗
N (Y ∗

i )
= OP(1).

Lemma 6 is the last step in the proof of the second part of Theorem 2.

Lemma 6 Let (Xn) be a sequence of positive real-valued random variables
such that for every positive nonrandom sequence (δn) converging to 0, the
random sequence (δnXn) converges to 0 in probability. Then Xn = OP(1).

For an arbitrary Borel measurable function ψ such that ψ(y) 6= 0 for y large
enough and such that z 7→ ψ(z)/z is integrable in a neighborhood of infinity,
we define

I(ψ, y) =
1

ψ(y)

∫ ∞

y

ψ(z)

z
dz.

Lemma 7 is a second-order asymptotic expansion of this type of integrals when
ψ belongs to the class RV2.

Lemma 7 Let ψ ∈ RV2(−α,∆) with α > 0 and |∆| ∈ RV1(ρ). Then we have

I(ψ, y) =
1

α
+

1

α(α− ρ)
∆(y)(1 + o(1)) as y → ∞.

Lemma 8 examines the second-order properties of the regularly varying sur-
vival functions F ∗ and G∗.

Lemma 8 Assume that (C) holds. Let ρF∗ = ρF ∨ ρG and define for all y,
t > 0:

∆F∗(y) =

(
1

1− γF∗ρF∗

− γF ρF
1− γF∗ρF

)
∆F (y) +

∆G(y)

1− γF∗ρF∗

and ∆G∗(t) =
F (t)

γF + γG
+∆G(t).

If ρF 6= ρG and ρG 6= −1/γF then, defining ρG∗ = (−1/γF ) ∨ ρG, we have
|∆F∗ | ∈ RV1(ρF∗), |∆G∗ | ∈ RV1(ρG∗) and F ∗ ∈ RV2(−1/γF∗ , ∆F∗), G∗ ∈
RV2(−1/γG, ∆G∗).

Lemma 9 is a key argument to examine the consistency of γ̂N .

Lemma 9 Let γ > 0 and Z be a random variable whose survival function Ψ
belongs to RV1(−1/γ). Assume that:

– N := N(n) is a sequence of integer-valued random variables such that
there exists a positive sequence (un) of integers tending to infinity with

N/un
P−→ ∞;
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– γ̂N(kN ) is a random variable such that the distribution of γ̂N (kN ) given
N = m is that of

γ̃m(km) =
1

km

km∑

i=1

log
Zm−i+1,m

Zm−km,m

where Z1,m ≤ · · · ≤ Zm,m are the order statistics related to a sample of
independent and identically distributed copies Z1, . . . , Zm of Z.

Then for every sequence (kn) such that kn → ∞ and kn/n → 0, we have

γ̂N (kN )
P−→ γ. Assume further that Ψ ∈ RV2(−1/γ,∆); then if kn → ∞,

kn/n → 0 and kn∆
2(U(n/kn)) → 0 where U is the left-continuous inverse

of 1/Ψ , the random variable
√
kN (γ̂N (kN )− γ) is asymptotically Gaussian

centered with variance γ2.

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.08 0.10 0.16 0.07 0.08 0.12 0.06 0.07 0.10 0.05 0.06 0.08
γF = 1/2 0.31 0.38 0.60 0.26 0.31 0.45 0.23 0.27 0.36 0.21 0.25 0.32
γF = 1 1.22 1.53 2.27 1.05 1.28 1.82 0.91 1.08 1.49 0.85 0.99 1.29

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.11 0.17 0.36 0.09 0.12 0.25 0.07 0.1 0.16 0.07 0.09 0.13
γF = 1/2 0.34 0.46 0.85 0.28 0.36 0.55 0.24 0.29 0.43 0.22 0.27 0.37
γF = 1 1.22 1.55 2.46 1.05 1.29 1.9 0.92 1.09 1.46 0.86 1.01 1.33

Table 1 Errors associated with the estimator q̂
(r(θ))
N

for δ = 1/3 (top) and δ = 1 (bottom).

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.004 0.03 0.22 0.003 0.02 0.10 0.002 0.01 0.06 0.002 0.01 0.04
γF = 1/2 0.01 0.10 0.50 0.007 0.05 0.27 0.004 0.03 0.16 0.004 0.03 0.12
γF = 1 0.04 0.39 1.71 0.03 0.25 1.15 0.02 0.13 0.61 0.01 0.09 0.39

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.05 0.22 2.84 0.04 0.17 1.00 0.03 0.12 0.49 0.03 0.10 0.30
γF = 1/2 0.04 0.24 2.43 0.03 0.14 0.85 0.02 0.09 0.42 0.02 0.07 0.27
γF = 1 0.05 0.46 2.65 0.03 0.25 1.42 0.02 0.15 0.66 0.02 0.11 0.53

Table 2 Errors associated with the estimator q̂
W,(s(θ))
N

(.|α
(s(θ))
opt ) for δ = 1/3 (top) and

δ = 1 (bottom).
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p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.10 0.15 0.21 0.07 0.10 0.14 0.05 0.07 0.10 0.05 0.06 0.08
γF = 1/2 0.36 0.51 0.69 0.26 0.36 0.51 0.21 0.27 0.37 0.20 0.24 0.32
γF = 1 1.43 1.97 2.64 1.00 1.42 1.95 0.85 1.06 1.48 0.80 0.98 1.31

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.19 0.33 0.53 0.10 0.18 0.31 0.07 0.1 0.18 0.06 0.08 0.13
γF = 1/2 0.46 0.71 1.03 0.29 0.45 0.69 0.23 0.30 0.46 0.21 0.26 0.38
γF = 1 1.43 2.13 2.91 1.06 1.48 2.09 0.86 1.10 1.53 0.81 0.99 1.33

Table 3 Errors associated with the estimator q̂
(r∗(θ)),∗
N

for δ = 1/3 (top) and δ = 1
(bottom).

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.04 0.08 0.14 0.01 0.04 0.08 0.003 0.01 0.04 0.002 0.01 0.03
γF = 1/2 0.12 0.28 0.49 0.04 0.14 0.29 0.007 0.04 0.15 0.004 0.03 0.10
γF = 1 0.5 1.11 1.90 0.12 0.52 1.14 0.03 0.18 0.61 0.01 0.12 0.45

p 0.7 0.8 0.9 0.95
θ 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

γF = 1/4 0.14 0.26 0.44 0.06 0.14 0.25 0.03 0.08 0.16 0.02 0.06 0.14
γF = 1/2 0.22 0.42 0.75 0.07 0.20 0.41 0.02 0.08 0.21 0.02 0.06 0.16
γF = 1 0.47 1.16 2.04 0.16 0.53 1.15 0.03 0.21 0.60 0.02 0.12 0.43

Table 4 Errors associated with the estimator q̂
W,(s∗(θ)),∗
N

(.|α
(s∗(θ)),∗
opt ) for δ = 1/3 (top)

and δ = 1 (bottom).
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Fig. 1 Hill estimators of γG (full line) and γF∗ (dashed line) as functions of kN .
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Fig. 2 Estimated quantiles for the transformed data (left) and the original data (right).


