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Abstract—The recent introduction of advanced magnetic resonance (MR) imaging techniques to characterize
focal and global degeneration in multiple sclerosis (MS), like the Composite Hindered and Restricted Model of Dif-
fusion, or CHARMED, diffusional kurtosis imaging (DKI) and Neurite Orientation Dispersion and Density Imaging
(NODDI) made available new tools to image axonal pathology non-invasively in vivo. These methods already
showed greater sensitivity and specificity compared to conventional diffusion tensor-based metrics (e.g., frac-
tional anisotropy), overcoming some of its limitations. While previous studies uncovered global and focal axo-
nal degeneration in MS patients compared to healthy controls, here our aim is to investigate and compare
different diffusion MRI acquisition protocols in their ability to highlight microstructural differences between MS
and control tissue over several much used models. For comparison, we contrasted the ability of fractional aniso-
tropy measurements to uncover differences between lesion, normal-appearing white matter (WM), gray matter and
healthy tissue under the same imaging protocols. We show that: (1) focal and diffuse differences in several
microstructural parameters are observed under clinical settings; (2) advanced models (CHARMED, DKI and
NODDI) have increased specificity and sensitivity to neurodegeneration when compared to fractional anisotropy
measurements; and (3) both high (3 T) and ultra-high fields (7 T) are viable options for imaging tissue change in
MS lesions and normal appearing WM, while higher b-values are less beneficial under the tested short-time
(10 min acquisition) conditions.
This article is part of a Special Issue entitled: MRI and Neuroinflammation. � 2018 The Author(s). Published by Elsevier Ltd on

behalf of IBRO. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

Multiple sclerosis (MS) is a human neurological disorder

with an onset most often in young adulthood that affects

almost 2.5 million individuals worldwide, involving focal

demyelination and axonal loss (Weinshenker, 1996;
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of Diffusion; DIR, Double Inversion Recovery; DTI, diffusion tensor
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Noseworthy et al., 2000; Ellwardt and Zipp, 2014). With

its ability to image soft tissues in vivo noninvasively, diffu-

sion tensor imaging (DTI; Basser et al., 1994) has shown

high sensitivity in detecting brain damage in MS. Using

DTI, abnormalities in diffusivity patterns have been

detected in focal MS lesions, normal-appearing white

matter (NAWM) and gray matter (GM) (Werring et al.,

1999; Vrenken et al., 2006). However, DTI-derived scalar

indices such as fractional anisotropy (FA) (Basser and

Pierpaoli, 1996) lack specificity to different sub-

compartments of white matter (WM) microstructure: in

the context of MS, both demyelination and axonal loss

have similar impact on DTI indices and can therefore

not be differentiated using this technique (Wheeler-

Kingshott and Cercignani, 2011). In addition, it was

recently shown that DTI accuracy is strongly affected by
ons.org/licenses/by-nc-nd/4.0/).
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the experimental parameters chosen, making it difficult to

interpret and merge data coming from different centers

(Barrio-Arranz et al., 2015).

In the last few years, several advanced diffusion-

weighted imaging methods have been introduced to

overcome these limitations. Diffusional Kurtosis Imaging

(DKI) quantifies the deviation of the MRI signal decay

from the DTI exponential model using a dimensionless

metric called the excess kurtosis (Jensen et al., 2005).

Recent evidence suggests that DKI indices like the mean

kurtosis are affected in MS compared to controls

(Guglielmetti et al., 2016). Moreover, significant correla-

tions between DKI parameters and the Expanded Disabil-

ity Status Scale were also reported (de Kouchkovsky

et al., 2016). The Composite Hindered and Restricted

Model of Diffusion (CHARMED) (Assaf et al., 2004) sepa-

rates the contributions of different intra- and extracellular

water compartments to the signal decay measured in

diffusion-weighted imaging, and can therefore be used

to extract new biomarkers of tissue microstructure which

are able to disentangle the effects of axonal loss from

those due to demyelination (Assaf et al., 2004).

CHARMED generates maps of the restricted water frac-

tion (FR), a proxy for the axonal density, which was

recently shown to provide increased specificity and sensi-

tivity to microstructural changes happening in early MS,

both in lesions and in NAWM (De Santis et al., 2017).

Along the same lines, Neurite Orientation Dispersion

and Density Imaging (NODDI; Zhang et al., 2012) pro-

vides, in addition to the restricted water fraction, an index

quantifying the fiber dispersion. A few recent studies used

the NODDI model to investigate GM (Granberg et al.,

2017), spinal cord (By et al., 2017) and WM (Granberg

et al., 2017; Schneider et al., 2017), reporting an increase

in both sensitivity and specificity in differentiating patients

from controls.

The acquisition time for these advanced diffusion-

weighted imaging methods is typically longer than for

DTI, as they require the diffusion images to be acquired

along many different gradient orientations and for at

least two different b-values (Chuhutin et al., 2017;

Zhang et al., 2012; De Santis et al., 2014), i.e., they need

a multi-shell diffusion MRI acquisition. The majority of the

mentioned studies were performed using advanced gradi-

ent equipment (i.e., maximum gradient intensity of 300

mT/m, De Santis et al., 2017); the same protocols imple-

mented on scanners mounting conventional gradient

equipment (40–80 mT/m) would result in acquisition times

too long for the clinical setting to be feasible, and a drop in

the signal-to-noise ratio. The remaining challenge for

translation to clinics at 3 T, and for inclusion into

advanced pipelines at 7 T, is to be able to measure these

microstructural changes under more conventional gradi-

ent settings.
Table 1. Participants’ demographic and clinical characteristics: mean numb

Abbreviations: MS = Multiple sclerosis; SD = Standard deviation; EDSS = E

Mean age (SD) Mean n of lesions

Healthy 42 (15) y –

MS 42 (15) y 8.3 ± 6.5
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Employing an efficient pipeline is extremely important

because it dramatically affects the accuracy and precision

of the measured biomarkers. In the context of MS,

improved accuracy and precision can potentially

uncover early tissue changes invisible to conventional

approaches. In addition, an optimal scheme can reduce

the acquisition time, which is critical for ensuring

feasibility of advanced diffusion MRI methods in clinical

studies, possibly also in a multi-center design and,

ultimately, to pave the way for their inclusion into clinical

routine. However, this theme is often disregarded due to

the high complexity of the model parameters

optimization; a few studies have proposed optimal

experimental designs for multi-shell techniques

(Alexander et al., 2010; Prčkovska et al., 2012; Zhang

et al., 2012; De Santis et al., 2014; Chuhutin et al.,

2017), but these were not yet applied to MS patient stud-

ies. In addition, the differential ability of various diffusion-

based imaging biomarkers to highlight microstructural

abnormalities present in MS tissue compared to healthy

controls has not yet been investigated.

Here, we employed two optimized multi-shell diffusion

protocols at two different fields (7 T vs. 3 T) to measure

several MRI biomarkers in a cohort of MS patients and

a matched cohort of healthy controls, with the aim of

identifying the protocol that best distinguishes tissue

differences in lesions, NAWM and normal appearing

gray matter (NAGM) compared to healthy controls. For

the CHARMED model, the only tested model for which

very high (>3000 s/mm2) b-values can be beneficial,

two different acquisition protocols proposed in recent

literature, at low (Zhang et al., 2012) and very high b-
value (De Santis et al., 2014), were also tested.

This work is expected to impact future choices for

investigating MS WM microstructure in larger cohorts,

follow-ups or focusing on specific stages of the disease,

and for selecting the appropriate experimental

framework to obtain optimal data quality for the

allocated time.
EXPERIMENTAL PROCEDURES

Data acquisition

Seven MS patients and six age-matched healthy controls

underwent a comprehensive MRI protocol in two different

sessions, scheduled no more than 48 h apart. All MS

patients were in the early phase of the disease (duration

�3 years) and had been diagnosed with relapsing-

remitting MS. At the time of scanning, three were

receiving medical treatment with interferon beta-1a, two

with natalizumab, one with mitoxantrone and one with

glatiramer acetate. Participants’ demographic and

clinical characteristics are reported in Table 1.
er of lesions, mean disease duration in years and median EDSS.

xpanded Disability Status Scale

Mean disease duration (months) Median EDSS

– –

21 ± 11 1 (range 0–3)
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Fig. 1. Boxplot of SNR of the b0 image (unweighted scan) for the

three different tested protocols, separated for the healthy control

group and the MS patients. The bottom and top of the box are first

and third quartiles, and the thick band inside the box is the median.

Whiskers represent maximum and minimum of all data. Asterisks

represent significant difference in the t-test statistic (** = P < 0.01).

Abbreviations: HC = Healthy controls, MS = Multiple sclerosis;

SNR = Signal-to-noise ratio.
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The first scan session was acquired on a 3 T Siemens

PrismaFIT scanner and comprised: an anatomical

magnetization-prepared rapid gradient-echo (MPRAGE)

scan, resolution 1 mm isotropic, TE/TR 2/2250 ms; a

multi-shell diffusion protocol with b= 700/2000 s/mm2

and 27/45 gradient orientations according to Zhang

et al. (2012), plus two unweighted scans with forward

phase encoding and six unweighted scans with reversed

phase encoding, at 1.5-mm isotropic resolution, TE/TR

68/4873 ms, scan duration 8 min; and another multi-

shell diffusion protocol with maximum b = 6000 s/mm2,

106 unique gradient orientations distributed in eight shells

of b-value between 750 and 6000 s/mm2 according to De

Santis et al. (2014), plus six unweighted scans with for-

ward phase encoding and six unweighted scans with

reversed phase encoding, at 1.5-mm isotropic resolution,

TE/TR 94/6000 ms, scan duration 12 min. The Simultane-

ous multislice or Multiband (MB) acceleration technique

(Setsompop et al., 2012), implemented in the Center for

Magnetic Resonance Research (CMRR) (https://www.

cmrr.umn.edu/multiband/), was used for all diffusion pro-

tocols with multiband factor 2 and generalized autocali-

brating partial parallel acquisition (GRAPPA) factor 2

(Moeller et al., 2010; Xu et al., 2013). Throughout this

work, the first multi-shell protocol will be addressed as

‘‘low-b protocol” while the second multi-shell protocol will

be addressed as ‘‘high-b protocol”. Total acquisition time

was around 30 min.

The second session was acquired on a 7 T Magnetom

Siemens scanner. To minimize the effects of B1

inhomogeneity, dielectric pads (Teeuwisse et al., 2012)

were placed between the subject’s head and the coil,

positioned in correspondence with temporal and occipital

lobes, i.e., the brain areas most affected by such inhomo-

geneity in a volume transmit coil. The session comprised:

an anatomical MP2RAGE scan, resolution 0.7 mm isotro-

pic, TE/TR 2.47/5000 ms, scan duration 10 min; a multi-

shell diffusion with b= 700/2000 s/mm2 and 27/45 gradi-

ent orientations, plus two unweighted scans with forward

phase encoding and six unweighted scans with reversed

phase orientation, at 1.5-mm isotropic resolution, TE/TR

60/7500 ms, scan duration 10 min; a WM Double

Inversion Recovery (DIR; Pracht et al., 2017) scan with

resolution 1 mm isotropic, TE/TR 163/3000, scan duration

8 min; a GM DIR scan with resolution 1 mm isotropic, TE/

TR 163/3000, scan duration 8 min. GRAPPA was used

with factor 2. Total acquisition time, comprising also

adjustment time, was around one hour. Due to the need

to keep the examination time within one hour, and

because of the higher penalty of long-TE high b-value
diffusion scan (the relaxation time T2 is shorter at higher

fields) it was not possible to acquire a high-b diffusion

protocol at 7 T.

Data processing and normalization

Diffusion data were pre-processed using FSL TOPUP and

EDDY (Andersson et al., 2003; Andersson and

Sotiropoulos, 2016) to correct for susceptibility-induced

distortions, eddy currents and subject motion. Signal-to-

Noise Ratio (SNR) values in the b0 images were calcu-

lated for each diffusion protocol in the whole brain using
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the difference method (Murphy et al., 1993), returning:

SNR = 20.6 ± 2.2 for 3 T/low-b protocol, SNR = 15.1

± 2.3 for 7 T/low-b protocol and SNR = 16.9 ± 1.7 for

3 T/high-b protocol. Boxplots of SNRs for the different

protocols are shown in Fig. 1.

Conventional DTI data analysis was performed with

the ExploreDTI software (Leemans et al., 2009) using

only the b= 700 s/mm2 shell; from the tensor, maps of

FA were obtained. Only low-b protocols were used to

estimate FA, since the DTI model is not appropriate for

b-values >1500 s/mm2 (Jones et al., 1999).

Subsequently, all diffusion data at both fields was

employed for multi-shell diffusion analysis. The kurtosis

model was fitted using FSL’s FDT (Jenkinson et al.,

2012) to obtain the mean kurtosis (MK), while NODDI

maps of restricted volume fraction (FRNODDI) and

orientation dispersion (ODI) were fitted using the

software MDT (https://github.com/cbclab/MDT, version

0.10.6) using the Cascade Initialized optimization

strategy (Harms et al., 2017). The CHARMED model

was fitted using in-house software written in Matlab

R2015b (The Mathworks). The CHARMED fitting proce-

dure was based on nonlinear least square estimation

using a Levenberg-Marquardt optimization. After fitting

the CHARMED model, maps of the restricted volume

fraction (FRCHARMED) were computed for each subject

under all the tested conditions: 3 T/low-b, 3 T/high-b and

7 T/low-b.

In the MS group, lesions were segmented manually

and carefully checked by a trained radiologist using the

two DIR images at 7 T, where the lesions are hyper-

intense in the GM-DIR and hypo-intense in the

WM-DIR, as shown in Fig. 2. Lesions were only scored

above 3 voxels in size based on at least 1 mm2
lerosis with Diffusion MRI at 7 T and 3 T: The Impact of the Experimental Design. Neuroscience (2018),
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Fig. 2. Lesion mask on WM DIR (a) and GM DIR (b) maps. The lesion (circled in red) appears as a region of hypo-intensity in the WM DIR and

hyper-intensity in the GM DIR. In panels (c) and (d), the lesion mask is shown. (e) Schematic of the registration procedure which brings lesion mask

in diffusion space. (f) Example of microstructural maps employed in this study. Abbreviations: WM= White matter, DIR = Double Inversion

Recovery; GM = Gray matter; FA = Fractional anisotropy; MK = Mean Kurtosis; FR = Restricted fraction; NODDI = Neurite orientation

dispersion and density imaging; ODI = Orientation Dispersion Index; CHARMED = Composite hindered and restricted model of diffusion.
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in-plane resolution, according to recent consensus

recommendations (Geurts et al., 2011), but lesions smal-

ler than 12 voxels in volume were not taken into account

in the statistics, in order to forego possible co-registration

inaccuracies. The lesion masks were then transferred into

the diffusion space according to the following procedure:

the WM DIR maps were registered to the MPRAGE maps

(for 3 T) or to the MP2RAGE maps (for 7 T); then, the dif-

fusion unweighted scans (i.e., b0s) were registered to the

MPRAGE and MP2RAGE anatomical scans, and the

inverse transformation was calculated. All the transforma-

tions employed at this stage were rigid body (6 degrees of

freedom); the cost function chosen was the Correlation

Ratio and all the brains were extracted using FSL BET

software (Jenkinson and Smith, 2001) prior to registra-

tion. The two transformations were combined and applied

to the lesion masks. All the aforementioned registration

steps were performed using FSL FLIRT software

(Jenkinson and Smith, 2001); the registration pipeline is

illustrated in Fig. 2e.

All FA maps were then nonlinearly warped to the

FMRIB58 FA template using ANTs (Klein et al., 2009).

Importantly, the co-registration procedure excludes lesion

masks from the computation of the figure of merit

employed in the optimization procedure that calculates

warp fields, so that the normalization is accurate also

for MS subjects. The same transformation was applied

to all the other biomarkers (MK, FRNODDI, ODI,

FRCHARMED) and to the lesion masks.
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To compare NAWM in MS patients and controls, the

WM skeleton was calculated using parts of the TBSS

pipeline (Smith et al., 2006) combined with an automatic

ROI (region of interest) selection using WM labeling in

standard space (JHU ICBM DTI 81 Atlas, also available

in FSL), a procedure described previously (De Santis

et al., 2012). To compare NAGM between MS patients

and controls, a similar approach was employed using

the GM parcellation in Brodmann areas available in

ExploreDTI (Leemans et al., 2009).

Mean values and standard deviations were calculated

for each parameter (MK, FRNODDI, ODI, FRCHARMED) and

each protocol (3 T/low-b, 3 T/high-b and 7 T/low-b) in the

following regions: (1) in each ROI belonging to the WM

skeleton for controls and MS (in MS, lesions were

excluded); (2) in each ROI belonging to the GM

parcellation for controls and MS (in MS, lesions were

excluded); and 3) in each lesion from the masks for MS

patients and in the corresponding registered ROI from

healthy controls.
Statistical analysis

Analysis of variance (ANOVA) was used to assess

whether the applied protocol had a significant effect on

the measured parameters. Within-subject effect was the

protocol (3 T and 7 T for FA, MK, FRNODDI, ODI and 3 T/

low-b, 3 T/high-b and 7 T/low-b for FRCHARMED) and

between-subject effect was the tissue kind (healthy,
lerosis with Diffusion MRI at 7 T and 3 T: The Impact of the Experimental Design. Neuroscience (2018),
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NAWM, NAGM, lesion). SNR was included as covariate

of no interest in the analysis.

Given that different anatomical locations present

different baseline values for each parameter, in order to

render differences between MS lesions and

corresponding ROIs in healthy controls comparable, we

calculated the difference between the two values and

divided it by the reference value in healthy controls,

according to the following formula:
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where P is the parameter (FA, MK, FRNODDI, ODI,

FRCHARMED in this study). The null hypothesis of no

difference between lesions and healthy tissue was

then tested across patients through a nonparametric

signed-rank test. Likewise, the group effect was tested

in 50 ROIs from the JHU ICBM DTI 81 atlas (Mori

et al., 2008), projected onto the WM skeleton, using a

nonparametric signed-rank test, and on 41 Brodmann

areas in GM. The effect size was calculated as the dif-

ference between the biomarker values in the MS group

and in the healthy control group, divided by the pooled

standard deviation (Cohen’s d). Post-hoc comparisons

between groups were performed using the Mann–

Whitney test, under the assumption that the presence

of the disease causes a decrease in the measured

imaging parameters (left tail only). Multiple comparisons

were corrected for the false discovery rate (Benjamini

and Yekutieli, 2005). All statistical analysis was per-

formed with SPSS software (IBM SPSS Statistics for

Mac, Version 23.0) and Matlab. P-values below 0.05

were considered significant.
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RESULTS

Mean biomarker values and ANOVA

Mean values and standard deviations for the investigated

biomarkers, in the whole WM skeleton, in the GM areas

and in the lesion masks, are reported in Table 2.

In Table 3, the results of the ANOVA show that there

is a significant effect of the type of tissue (lesion in MS,

NAWM and WM in healthy controls) for all parameters,

while the protocol has a significant effect for FA,

FRNODDI and FRCHARMED. The interaction between the

two factors is significant for FA and FRCHARMED.
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Differences between MS lesions and healthy control
tissue

Fig. 3 shows the values of FA, MK, FRNODDI, ODI and

FRCHARMED in lesions and in the corresponding healthy

tissue in the control cohort across the different tested

protocols; in the boxplot, the reported statistic indicates

significant differences between the two cohorts in the

nonparametric signed-rank test. All indices show

significant differences for both tested protocols. Lesions,

as expected, are characterized by higher standard

deviation compared to control values.
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Fig. 3. In the top row, microstructural parameter values for healthy controls vs lesions measured at 3 T: FA (a), MK (b), FR from NODDI (c), ODI (d),

FR from CHARMED (e) and FR from CHARMED measured with the high-b protocol (f). In the bottom row, microstructural parameter values for

healthy controls vs lesions measured at 7 T: FA (g), MK (h), FR from NODDI (i), ODI (j), FR from CHARMED (k). Asterisks represent significant

difference in the nonparametric signed-rank test statistic (** = P < 0.01). In (l), an example of lesion mask. Abbreviations: FA = Fractional

anisotropy; MK = Mean Kurtosis; FR = Restricted fraction; NODDI = Neurite orientation dispersion and density imaging; ODI = Orientation

Dispersion Index; CHARMED = Composite hindered and restricted model of diffusion; HC = Healthy controls.

Table 3. ANOVA results (F statistics and corresponding P-values) showing the effects of the protocol, of the tissue type, and of their interaction, on the

measured biomarkers. Abbreviations: ANOVA = Analysis of variance, FA = Fractional anisotropy; MK = Mean Kurtosis; FR = Restricted fraction;

NODDI = Neurite orientation dispersion and density imaging; ODI = Orientation Dispersion Index; CHARMED = Composite hindered and restricted

model of diffusion

FA MK FRNODDI ODI FRCHARMED

F p-value F p-value F p-value F p-value F p-value

Protocol 11.6 <0.01** 0.057 n.s. 5.1 <0.05* 0.1 n.s. 5.3 <0.05*

Tissue 125.8 <0.01** 46.3 <0.01** 16.3 <0.01** 83.8 <0.01** 9.4 <0.01**

Interaction 4.5 <0.01** 1.8 n.s. 0.2 n.s. 1.4 n.s. 24.1 <0.01**
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Differences between NAWM and healthy control
tissue

All indices show significant differences between NAWM

and the corresponding healthy tissue in the control
Fig. 4. In the top row, microstructural parameter values for healthy controls v

ODI (d), FR from CHARMED (e) and FR from CHARMED measured with the h

for healthy controls vs MS in NAWM measured at 7 T: FA (g), MK (h), FR f

significant difference in the nonparametric signed-rank test statistic (* = P <

a different color. Abbreviations: FA = Fractional anisotropy; MK = Mean

dispersion and density imaging; ODI = Orientation Dispersion Index; CH

HC= Healthy controls; NAWM = Normal appearing white matter.

Please cite this article in press as: De Santis S et al. Characterizing Microstructural Tissue Properties in Multiple Sc
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cohort at 3 T except ODI, while FA, ODI and FR from

CHARMED and FR from NODDI show significant

differences at 7 T. The boxplots and the corresponding

nonparametric signed-rank test statistics are reported in

Fig. 4.
s MS in NAWM measured at 3 T: FA (a), MK (b), FR from NODDI (c),

igh-b protocol (f). In the bottom row, microstructural parameter values

rom NODDI (i), ODI (j), FR from CHARMED (k). Asterisks represent

0.05, ** = P < 0.01). In (l), WM skeleton mask in which each ROI has

Kurtosis; FR = Restricted fraction; NODDI = Neurite orientation

ARMED = Composite hindered and restricted model of diffusion;

lerosis with Diffusion MRI at 7 T and 3 T: The Impact of the Experimental Design. Neuroscience (2018),
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Differences between NAGM and healthy control
tissue

In NAGM, MK, ODI, FR from NODDI and FR from

CHARMED at high-b show significant differences

between healthy controls and MS at 3 T, while at 7 T

only FA, FR from NODDI and ODI show significant

differences between the two cohorts. The boxplots and

the corresponding nonparametric signed-rank test

statistics are reported in Fig. 5.
Effect size

The effect size, for all microstructural parameters and

across the tested protocols, for the combinations with

statistically significant decrease according to the post

hoc test, is reported in Table 4. Notably, none of the

differences found in the ANOVA for FA survive the post

hoc t-test, while several microstructural indices show

significant differences between healthy and MS cohort,

with effect size up to 1.25. FR from CHARMED shows a

clear pattern of reduction in MS compared to controls,
Fig. 5. In the top row, microstructural parameter values for healthy controls v

ODI (d), FR from CHARMED (e) and FR from CHARMED measured with the h

for healthy controls vs MS in NAGM measured at 7 T: FA (g), MK (h), FR f

significant difference in the nonparametric signed-rank test statistic (** = P
different color. Abbreviations: FA = Fractional anisotropy; MK= Mean Kurto

and density imaging; ODI = Orientation Dispersion Index; CHARMED = C

controls; NAGM = Normal appearing gray matter.

Table 4. Effect size (Cohen’s d) of the difference between healthy control and M

all the microstructural parameters: FA, MK, FR from NODDI, ODI, FR from CH

Asterisks represent significant difference in the Mann–Whitney test statistic (* =

MK = Mean Kurtosis; FR = Restricted fraction; NODDI = Neurite Orientation

CHARMED = Composite Hindered and Restricted Model of Diffusion; NAWM

matter

3 T

Lesions NAWM N

FA n.s. n.s. n.

MK �0.78 �0.90 �
FRNODDI �0.80 �0.95 n.

ODI n.s. n.s. n.

FRCHARMED �0.74 �0.95 n.

FRCHARMED HIGHB �0.60 n.s. �
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both in lesions and NAWM, while no significant

differences are found in NAGM. FR from NODDI shows

a similar pattern, except the difference in NAWM at 7 T

is not significant. Also MK shows reduction in MS

compared to controls, in lesions, NAWM and NAGM at

3 T and only in lesions at 7 T. Notwithstanding the

decreasing trend observed in the boxplot for MS versus

controls, none of the significant difference in ODI

survives post hoc t-test.
DISCUSSION

In this work, we employed three different multi-shell

diffusion MRI protocols at two field strengths to measure

five microstructural MRI parameters from a range of

models (FA, MK, FRNODDI, ODI and FRCHARMED) in a

cohort of MS patients and a matched cohort of healthy

controls, with the aim of identifying the protocol and the

biomarker that best mirrors tissue differences in the

inflammatory lesions, in NAWM and NAGM compared to

healthy controls.
s MS in NAGM measured at 3 T: FA (a), MK (b), FR from NODDI (c),

igh-b protocol (f). In the bottom row, microstructural parameter values

rom NODDI (i), ODI (j), FR from CHARMED (k). Asterisks represent

< 0.01). In (l), GM areas skeleton mask in which each ROI has a

sis; FR = Restricted fraction; NODDI = Neurite orientation dispersion

omposite hindered and restricted model of diffusion; HC = Healthy

S in lesions, NAWM and NAGM at both field strengths (3 T and 7 T) for

ARMED and FR from CHARMED measured with the high-b protocol.

P < 0.05, ** = P < 0.01). Abbreviations: FA = Fractional anisotropy;

Dispersion and Density Imaging; ODI = Orientation Dispersion Index;

= Normal-appearing white matter; NAGM= Normal-appearing gray

7 T

AGM Lesions NAWM NAGM

s. n.s. n.s. n.s.

0.93 �1.00 n.s. n.s.

s. �1.25 n.s. n.s.

s. n.s. n.s. n.s.

s. �0.64 �0.67 n.s.

0.99 – – –

lerosis with Diffusion MRI at 7 T and 3 T: The Impact of the Experimental Design. Neuroscience (2018),
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The first result, replicating recent findings obtained in

a high-end set-up (De Santis et al., 2017), is that under

clinical settings more sophisticated microstructural mea-

sures (FRCHARMED, FRNODDI, and MK) are a better

descriptor than FA for the underlying tissue alterations

in both lesions and NAWM. The fact that FRCHARMED,

FRNODDI, and MK differences are significant also in the rel-

atively small cohort analyzed in this study adds to the

translational potential of these multi-shell methods for

the clinical routine. Interestingly, while there are no major

differences between the performances of the low b-value

protocols across fields, our results suggest that the

short-time high b-value protocol is not optimal for

microstructural analysis in MS. Furthermore, we show

that a 10-min multi-shell diffusion protocol at 7 T has sim-

ilar performance in MS when compared to its counterpart

at 3 T, which is commonly considered the best option.

There are no differences in FRCHARMED between NAGM

and corresponding GM areas; this is expected as the

model is specifically formulated to account for the geom-

etry of WM.

FRNODDI gives similar results as FRCHARMED, although

the differences for FRNODDI in NAWM are not significant at

7 T. ODI gives complementary information about the

neurite dispersion in both GM and WM and it has been

proposed as a novel tool to capture microstructural

changes in both NAWM and lesions in MS (Schneider

et al., 2017). Increased ODI in NAWM and decreased

ODI in lesions were reported in a small cohort

(Schneider et al., 2017), but another larger study found

no differences in normal-appearing tissue and an increase

in lesions (Granberg et al., 2017). Here, we found a trend

of reduced ODI in both MSWM and GM compared to con-

trols, which however is not statistically significant. Taken

together, these results suggest that more studies with

larger cohorts are needed to characterize the ODI as a

putative marker for MS.

MK is reduced in MS compared to controls in lesions,

NAWM and NAGM at 3 T, and only in lesions at 7 T. The

reduction of MK in MS tissue compared to controls is in

agreement with recent work (Guglielmetti et al., 2016;

Qian et al., 2016). Recent findings (Chuhutin et al.,

2017) highlighted that precision and accuracy on MK

are highly dependent on the proper choice of b-values;

the ones employed in this study are optimal for WM, but

suboptimal for GM. Repeating the experiment using a

protocol with lower b-value might provide further insights

into the differences in kurtosis in NAGM compared to

controls.

The effect size in lesions, as expected, is always

larger compared to NAWM and NAGM. Nonetheless,

most of the multi-shell microstructural parameters show

differences in NAWM, and some also in NAGM, while

FA does not capture significant differences. While the

lack of results using conventional DTI might be certainly

due to the relatively small cohort employed in this study,

or to the choice of b-value, it is important to note that

multi-shell diffusion imaging has enough sensitivity to

highlight differences between healthy and lesioned

tissue also with low sample sizes, with huge potential

for the clinical routine.
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The main differences between the different tested

protocols are: (1) the SNR of the images, affected by

both the field magnitude and the echo time; (2) the

diffusion contrast, which depends on the applied b-
value; and (3) the echo time, which can change the

proportion between tissue compartments with different

T2 relaxation times (De Santis et al., 2016).

There are differences between the SNRs across

protocols, but these do not fully explain the results

obtained: for example, the 3 T/high-b protocol does not

have the lowest SNR, but showed the worst

performance in detecting lesions and NAWM changes

compared to the other protocols for FRCHARMED.

Moreover, when SNR is used as covariate in the

ANOVA, the effect of the protocol is still significant for

both FA, FRNODDI and FRCHARMED. Atrophy,

demyelination and brain lesions can have an impact on

the SNR, because they lead to changes in intensities

and contrast, but the SNR was not different between the

MS and control groups in any of the investigated

protocols. The 3 T/low-b and 7 T/low-b protocols

implemented in this study have the same b-value and

similar timing in the diffusion sequence, implying similar

diffusion and T2 weighting; on the other hand, the 3 T/

high-b sequence, having a larger maximum b-value and

larger TE, also corresponds to different diffusion and T2

weighting. The characteristics of the applied gradients

influence the sensitivity of the sequence to different

compartments; while normally high b-values are

considered beneficial, for example, to increase the

power to resolve fiber crossing (Cohen-Adad et al.,

2011; De Santis et al., 2014), the results obtained here

suggest that in the context of early-stage MS they may

not be the best choice. We speculate that this might

depend on inflammation-related differences in the T2

relaxation time between normal and damaged tissue

(van Waesberghe et al., 1999), given that a long echo

time (required for high b-values on clinical gradients)

changes the proportion between tissue compartments

with different T2 relaxation times (De Santis et al.,

2016). The situation can be different for more advanced

configurations, like gradients with intensity even higher

than 70–80 mT/m, which achieve a TE reduction for high

b-values, for long-time protocols, or for further advances

which significantly increase the speed of imaging. Our

results also suggest that the high b-value protocol can

be useful when looking at GM.

Importantly, our findings support the feasibility of

CHARMED, NODDI and DKI at 7 T. With the numerous

further advantages in other (e.g., functional) MRI

imaging contrasts, ultra-high field is rapidly emerging as

the high-end instrument for neuroimaging. 7 T is

sometimes considered to be of limited benefit for

diffusion, but recent studies demonstrated that SNR

differences across similar diffusion protocols at 3 T and

7 T are minimal (Wen et al., 2015), and that 7 T can even

be advantageous when high gradient intensity (i.e., >70

mT/m) is available (Uğurbil et al., 2013). The results

presented here might also contribute to explaining the

discrepancy in the findings of different diffusion MRI

studies in MS, which can be at least partially attributed
lerosis with Diffusion MRI at 7 T and 3 T: The Impact of the Experimental Design. Neuroscience (2018),
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to differences in the protocols used, and lay the ground for

the standardization of diffusion protocols in MS.
CONCLUSIONS

Multi-shell diffusion acquisitions increased the ability to

detect axonal pathology occurring in MS brain tissue

compared to conventional DTI in a small pilot study,

also under clinical settings. In addition, our findings

suggest that multi-shell diffusion MRI at both high (3 T)

and ultra-high fields (7 T) are viable options for imaging

tissue change in MS lesions and normal appearing WM,

while higher b-values are not beneficial for MS under

the tested short-time (10 min acquisition) conditions.
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