MULTI-OBJECTIVE OPTIMISATION OF TRAIN ALLOCATION TO MAINTENANCE IN FLEET ROSTERING

Kayode Owa^{1,2}, Robert John^{1,2}

¹Department of Computer Science, University of Nottingham, United Kingdom ²ASAP Group, University of Nottingham, United Kingdom Corresponding Author: <u>kayode.owa@nottingham.ac.uk</u>

SUMMARY

Complex integrated problems occur in the rail industry that constantly diminish the maintenance efficiency of equipment, assets lifecycle and invariably shorten the life span of train systems. The research presented here is to optimally allocate trains to travel paths, avoids over-maintenance and at the same time minimise customer disruption. It is always difficult, time consuming and costly to coordinate fleet maintenance, timetabling, and crew management. There is another problem called "bunching" that exists where too many maintenance tasks of the same type scheduled relatively close to one another and therefore minimises train set availabilities and hinders the optimisation of maintenance resources; another difficulty is the dynamic and constant changing nature of train schedules.

In order to solve these aforementioned multi-objectives optimisation problems, there are two major two objective functions. The first is that the mileage limit cap cannot be exceeded so that trains are maintained before they reach their target. Minimising the difference between the cap and the actual set mileage will minimise preventive maintenance costs and optimise the use of time. The second is the minimisation of sets swaps that is essential in order to reduce customers' travel disruptions. There are also many other constraints, which make this an extremely difficult problem.

Multi-objective optimisation using artificial intelligence coupled with a simulated annealing optimisation strategy is designed to solve this novel problem, as there is currently not a single solution that exists within the train companies that can automatically solve the problem of optimally allocating trains to diagrams subject to maintenance, depot and train operation constraints. Empirical data from our partner were used to benchmark with historical results to ascertain the improvement of this novel approach. Research results show this approach has drastically reduced the planning allocation time, minimised set swaps and reduced overmaintenance.

1 INTRODUCTION

Train companies and their maintenance partners struggle with the task of allocation of trains to travel paths (or "diagrams") for the specific number of specified days. The number of days usually cover from one period of one maintenance (exam) to the next following exam time. The allocation is usually carried out by following a series of depot rules to consider and constraints to follow. The aim is to assign all the trains to their specific diagrams for the entire set period in order to enable the trains to attend their respective exams.

The allocation of trains to diagrams is a laborious and complex task. It takes approximately three hours for the maintenance fleet planner to allocate successfully a complete set of trains to diagrams. A complete set consists of 56 trains that must always be assigned and allocated to 56 diagrams. Changes to the already planned allocations by the planner usually occur when there are disruptions and other events that are inevitable. This could happen multiple times in a single day and which creates complicated problems for the fleet planner to handle.

2 PROBLEM DESCRIPTION

The allocation of all trains to all diagrams are subject to many conditions and scenarios. These diagrams have different specific mileages, which are made up of different specific individual legs. The trains need to undergo specific constant examinations in form of maintenance at certain fixed set times throughout the year.

There are seven major exam regimes. The frequency of these exams are either based on the

Kayode Owa and Robert John

mileages utilised, number of days worked or the numbers of weeks spent. All the seven exams must be programmed for all the 56 trains and for all the days that span across from one exam to the next. The mileages must not exceed certain limits for each of the seven exam regimes. The diagrams originate from one depot or outstation and terminates at another depot or outstation with different mileages.

Not all the exams can take in all the depots. There are depots available for some specific examinations. Some of the exams can either span for a period of 3 days, 2 days or they could be carried out as an overnight maintenance task. Either trains must arrive at respective depots at some specific times or sequences of trains' arrival before it can be qualified to sit for an exam. Likewise, they must also depart the depots with correct and specific timings.

There are instances where only one depot can service a particular exam for specific number of days: in this case, no other train will be allowed to arrive the depot until the current one finishes.

2.1 Complexity of the Problem.

One of the ways to understand the complexity of the problem is in the number of potential solutions. The total number of potential solutions is massive. This includes both the feasible and the infeasible solutions. This is denoted by the equation below:

$$\beta = \delta!^{(\mu)}$$
 (1)

where β = global search space of solutions. δ = number of trains and ! represents factorial. The number of trains must be equal to the numbers of diagrams in each depot at any time the allocation needs to take place.

 μ = number of allocation days.

Note that:

$$\delta! = \delta * (\delta - 1) * (\delta - 2) \dots * (1)$$
 (2)

For example: The calculation of the total search space for 1-day allocation is calculated as follows:

$$\beta = (7.1 * 10^{(74)})^{(1)}$$
 (3)

The calculation of the total search space for 23 days' allocation is calculated as follows:

$$\beta = (7.1 * 10^{(74)})^{(23)}$$
 (4)

As a result of the enormous potential number of solutions for the optimisation/allocation problem the best approach is to first eliminate as many infeasible (not possible) solutions as possible. It might be difficult to clearly identify the feasible solution space. The first step is to reduce the number of solutions by finding the permutation in each of the locations where trains reside overnight. The number of feasible space is given by the equation below:

$$\beta_r = \sum_{i=1}^d ((T_{d_i}!)!^{\mu_i})$$
 (5)

Where d is the number of depot/outstations T is the number of trains in each depot.

 β_r is the reduced search space which gives the summation of all the solution space in each depot. Further reduction in the solution search space can be made by the incorporation of artificial intelligence that guides the allocation of trains to diagrams.

The more the number of days for allocation, the more the solution search space (equation 1) and the greater the length of time involved in obtaining the optimal solutions. If there is no solution that exists through the allocation process, then the entire solution is nullified.

3 LITERATURE REVIEW

There has been recent research conducted in the operational scheduling of trains movement from origin to their respective destination and minimising delays [2-3]. Huntely et. al also designed an optimised routing and scheduling system [4] which is a computer aided routing and scheduling system (CARS) for transportation. Others have also conducted work in this area [5-8]. However, there is not vet reported work that combined all the above features of allocation and scheduling of trains from origin to destination in a predefined format and coupled it with the overall maintenance strategies to schedule each of the trains to attend a specified cycled maintenance examination in such a way that all trains in the fleet will continuously undergo in the entire maintenance cycle for the number of days required.

In this paper, the complexities of the problem and the multiple billions of solutions make it necessary to employ the use of an artificial intelligence strategy and multiple heuristic search algorithms that focus on simultaneously combining all the trains maintenance overall plans, allocation and scheduling of trains from their origin to their destination for a certain period of time. Part of the aim of this is to be able to forecast and predict in advance the kind of maintenance coming up on a particular trains and making sure that resources are available in a maintenance depot to carry out the specific task in a timely fashion.

Kayode Owa and Robert John

4 OPTIMISATION OF TRAIN ALLOCATION

This multi-objective problem requires several conflicting objectives to be satisfied simultaneously. It is a difficult problem to solve in order to adequately meet all these defined objectives. In addition to the optimisation task, it is expected that the design should be robust enough to respond to changes and disruption on rail tracks. The tool processes the capacity to accept real time data and information and produces alternative optimal schedule within seconds. The end result is a Pareto solution front provided in order for the fleet planner to use his own discretion to determine the best option that will satisfy the current decision at the specific point in time from many solutions.

Minimisation of Train mileages

This involves the minimisation of all the mileages of the specific trains that are due for exams in that particular period. This refers to the mileages that remain on the trains before they finally depart for the specific examination. Throughout the whole period of assigning trains to diagrams, some trains reach their specific mileages limits that must not be exceeded. Each train mileage must not be more than 20,000 miles before it goes in for an exam. The task is to minimise the summation of all these mileages that remain just before their exams. Minimising these remaining mileages is a way of reducing the unwanted over maintenance. Technically, all trains will go in for an exam if the number of days for the allocation spans around 3 weeks. An average total diagram distance is about 1000 miles; this means that a distance of 20,000 miles would be covered for a period of 20+ days.

Minimisation of number of Swaps

A swap is the interchange of travel paths between train sets that had previously been assigned to them in order to channel some train sets to specific depots for maintenance purposes. It is almost impossible to achieve successful allocation and also ensure that trains arrive at its destination for exams since there are various limitations. Often needed and required diagrams are not available at a crucial time. In order to solve this, swaps are often required. Simply put, a swap occurs where two or more diagrams are inter-changed in order to achieve many tasks.

It is required that swaps occurrence should be minimised as part of the multi-objective task as this might cause disruptions for customers using their services. Swaps can only take place within a span of about 1 hour for all the trains involved in the process.

Ensuring priority of diagrams

There are a total of 56 Trains and 56 diagrams. The optimised tool is designed to be able to accept a varied number of trains and diagrams in case there are upgrades in the future. There are two types of diagrams: 11-diagrams and 9-diagrams for 11-car carriages and 9-car carriage trains. There are a total of 35 x 11-car and 21 x 9-car carriages and there are a total of 24 x 9-carriage and 32 x 11-carriage diagrams. So, there is a mismatch in the number of cars/diagrams sizes and this adds a level of complexity in the system. From time to time, it is required that certain legs of a diagram should be served by a train with 11 cars. This makes the diagram a priority diagram and must be obeyed. This ensures that specific diagrams that are marked are always prioritised and must be assigned to big trains (11 cars) rather than smaller ones. Most of the times, it could also be as result of the need to utilise these diagrams for specific reasons such as to satisfy football fans travelling on specific days. There is a constant weekly list of priority diagram legs that should always be considered in this task. Ensuring priority diagrams are covered by bigger trains is also part of the multi-objective task to be satisfied.

Satisfying "Controlled-Emission Toilets"

As part of the multi-objective tasks, it is required that some of the trains always need to be sent to any of the maintenance depot rather than any other outstation locations. The reason for this is for them to be able decant and service the toiletry system known as the "Controlled-Emission Toilets (CETs)". The CETs are usually designed to ensure the safe, hygienic disposal of the contents of the toilet retention tanks on carriages. This also form part of the corrective maintenance works that need to be carried out in any of the trains that are ready to be programmed for the maintenance activity. This information is not readily available in advance but it is given to the optimised tool as an input every single day.

Incorporation of Examination regimes

Out of all the seven examinations, which are (i) B to G; this is a cycle of maintenance that starts from maintenance B and cycles through to G in a predetermined order with cycle distance of 20,000 miles' interval between them. (ii) NDT - this is a Non-Destructive testing method which is used as a preventative measure against track catastrophic failures and possible derailment. (iii) UAT - ultrasonic axle testing is a periodic test of rail way axles to prevent unwanted occurrence and disaster. (iv) Chlorination are the liquid or gaseous elemental chlorine with a very low water content shipped in to rails cars for maintenance purposes; others time

Kayode Owa and Robert John

based exams are PHC, K-Exam and L-Exam. It is to be noted that only the class CL390 B-G 20000 cycle maintenance examination were used in the objective function for the minimisation of mileages to prevent over-maintenance. One of the reasons for this could be that it has the lowest frequency cycle of occurrence. The remaining six maintenance examinations with higher frequency of occurrence will be assigned and allocated alongside with the B-G 20K exam. The details of the output of all exams regimes are further discussed in the output section.

5 INPUTS

There are many inputs in to the optimised tool. They are given below.

Diagram Data

This is the most important input. This contains all the journeys that each of the trains needs to make for all the specified days in the data. The data is divided into diagrams and diagrams are further divided into many legs of various different numbers. The data contains the following: trains origins and destinations, start times and departure times of each journey, head-codes and the names of each diagrams. A typical snapshot sample of diagrams data is shown Table 1 displaying only some vital details.

Date	Diagram	Origin	Start Time	Destination	Finish Time	Distance	Leg Mile
05/04/2017	VW949	Lime St	05/04/2017 17:47	Euston	05/04/2017 20:04	840 mi.	195
05/04/2017	VW949	Euston	05/04/2017 15:07	Lime St	05/04/2017 17:20	840 mi.	190
05/04/2017	VW949	Euston	05/04/2017 20:30	Preston	05/04/2017 22:48	840 mi.	197
05/04/2017	VW949	ManchstrP	05/04/2017 07:55	Euston	05/04/2017 10:16	840 mi.	201
05/04/2017	VW949	WembleyID	05/04/2017 13:46	Euston	05/04/2017 14:05	840 mi.	10
05/04/2017	VW949	Preston	05/04/2017 23:03	LongstCMD	05/04/2017 23:57	840 mi.	28
05/04/2017	VW949	LongstCMD	05/04/2017 07:09	ManchstrP	05/04/2017 07:20	840 mi.	5
05/04/2017	VW949	Euston	05/04/2017 10:49	WembleyID	05/04/2017 11:08	840 mi.	10
05/04/2017	VW950	New St.	05/04/2017 18:50	Euston	05/04/2017 20:15	1135 mi.	209
05/04/2017	VW950	Euston	05/04/2017 20:40	ManchstrP	05/04/2017 22:48	1135 mi.	315
05/04/2017	VW950	New St.	05/04/2017 06:16	Edinburgh	05/04/2017 10:17	1135 mi.	594

Table 1: A sample diagram input data

Arrival Data

The arrival data contains the potential locations (depot or outstations) of each of the trains just before the allocation starts. Any data not captured in this data must be supplied by the fleet planner through the user interface.

Depot Rules

This file contains the comprehensive complex rules that guide the successful daily allocation of trains to diagrams. There exist a long list of depot rules but

Maintenance Location									
Preventative Type Duration Mon Tue Wed Thu Fri Sat Sun									
B Exam	Overnight	2	2	2	2	1	-	1	
C Exam	1	1	1	1	•	-	-		
D Exam	2 Days	1	1	1	1	1	1	1	
E,F,G Exam	3 Days	1	1	1	1	1	1	1	

Table 2 and Table 3 just give a sample snapshot of the complex depot rules for some of the examinations in one maintenance depot. Every other maintenance depot has similar but different rules that govern the arrival and departure of trains each time an examination needs to take place.

Maintenance Location									
Preventative Type Duration Mon Tue Wed Thu Fri Sat Sun									
B Exam	Overnight	2	2	2	2	1	-	1	
C Exam	Overnight	1	1	1	1	•	-	-	
D Exam	2 Days	1	1	1	1	1	1	1	
E,F,G Exam	3 Days	1	1	1	1	1	1	1	

Table 2: Depot rules Part A

In

Maintenance Location									
Preventative Type Duration Mon Tue Wed Thu Fri Sat Sun									
B Exam	Overnight	2	2	2	2	1	-	1	
C Exam	Overnight	1	1	1	1	-	-	-	
D Exam	2 Days	1	1	1	1	1	1	1	
E,F,G Exam	3 Days	1	1	1	1	1	1	1	

Table 2, for example a C Exam is carried overnight and can only take place from Monday to Thursday with a single train each night. The depot cannot accept any trains coming for C exam between Friday and Sunday. Similarly, a B exam can accept a maximum of 2 trains daily from Monday to Thursday.

Kayode Owa and Robert John

Maintenance	Rules	Arrival	Departure
B Exam	2 x B or 1 x C per night	1st B 1st or 2nd arrival, second B up to Midnight.	1st leaves on the first, 2 nd B last 3 departures.
C Exam		1st to 2nd arrival	Last 3 departures
D Exam		No restriction	No restriction
E,F,G Exams		1 st to 3 rd arrival	No restriction
T 1 1 A B			

Table 3: Depot rules Part B

Furthermore, the depot rules for B exam in Table 3 states that the depot in question can only accept a maximum of the trains coming for a B exam or only one train coming for a C exam. This implies that If the depot first receives a train coming for a C exam then there is no chance for any train to arrive the depot for B exam again. Arrival rules imply that the 1st of the 2 trains arriving for a B exam must either be programmed to arrive with either 1st or 2nd train that arrived that depot on that day whilst the 2nd train coming for a B exam could arrive up till 24:00 hour. There is no restriction for the D exam to arrive the depot whereas the E. F and G exams can arrive with either the 1st, 2nd or the 3rd train on that day. The departure rule is also similar to the arrival rules. Here, the 1st trains that just completed the B exam must leave the depot with the fist train whilst the 2nd train that completed the B exam can either depart with any of that last three trains for the day.

All Regimes Data

This file contains all the current mileages of each of the 56 trains for each of the seven exam regimes. It also contains the number of days left for each train to go for the next exam.

Graphical User Interface Inputs

Apart from the many parameter inputs, there are three major inputs to the graphical user interface (GUI) here.

Stable Trains

This contains the list of all the trains going to be stabled in each depot for some specific reasons. Stable trains are usually assigned to stable diagrams. Stable diagrams are the diagrams that have both origins and destinations in the same outstations. It could be that a train needs to undergo emergency repair work, which obviously are not captured in the input data. This is one of the cases whereby an override is required in the optimised tool in order to compulsorily direct a train to the desired depot.

On-going Examination details

This contains the list of trains that are currently undergoing examinations. It will be required to specify the remaining number of days and the depot where the exam is taking place for the completion of their respective examinations.

5.1 Other inputs

The lockdown feature is included in the optimised tool; it is also an input from the GUI. It is sometimes required to force the optimised tool to allocate a particular train to a particular diagram in a specific depot. The tool provides a column which will contain the list of specific trains that need to be locked down to specific diagrams. This decision is usually based on some reasons decided by the fleet planner.

Stations Names

All the station names can either be the maintenance depot names where exams can take place or other outstations where exams cannot take place such as Preston.

Trains and Diagrams Names

This file contains all the train names and diagrams names. This tool is designed in this form in such a way that new names can be added and updated in case of expansion of scope in the future. In addition, a fleet planner can carefully and easily update these files without changing the main codes.

Names of Maintenance Regimes

This file contains the names and the details of all the seven examination regimes.

6 CONSTRAINTS

Many constraints form a major part of the workability of the optimised tool. It is to be noted that these rules vary considerably and are not the same for the different days of the week.

Furthermore, there are many other constraints such as the specific depots required for some type of maintenance, the cycle for each maintenance, arrivals and departures constraints of train sets for the maintenance, number of locations where trains can visit for maintenance and the required type of exam that locations can handle. Moreover, there is a limitation on the number maintenance that could be handled daily and the respective durations of those maintenance tasks - these are sets of complex rules and constraints that must be strictly observed.

For example, and in general, a B examination can be carried out in 3 out of 5 depots while a C examination can only be done in 2 out of 5 depots; both B and C are overnight examinations. The examinations D (2 days' duration) and E, F and G (3 days' duration each), can all be done in a particular depot but at different timings (See

Kayode Owa and Robert John

Ν	Maintenance Location												
Preventative Type Duration Mon Tue Wed Thu Fri Sat Sur													
B Exam	Overnight	2	2	2	2	1	-	1					
C Exam	Overnight	1	1	1	1	-	-	-					
D Exam	2 Days	1	1	1	1	1	1	1					
E,F,G Exam	3 Days	1	1	1	1	1	1	1					

Table 2 and Table 3).

This section describes all the constraints involved.

Depot Arrival

There are two types of depot arrival rules. These rules apply each time any train wants to go for its next examination at the required depot. A train can either arrive any depot based on the specific arrival time or based on the arrival sequences of the trains that arrive that depot on that day. These rules vary and are not the same for the different days of the week (See

Maintenance Location									
Preventative Type Duration Mon Tue Wed Thu Fri Sat Sun									
B Exam	Overnight	2	2	2	2	1	-	1	
C Exam	Overnight	1	1	1	1	•	-	-	
D Exam	2 Days	1	1	1	1	1	1	1	
E,F,G Exam	3 Days	1	1	1	1	1	1	1	

Table 2 and Table 3).

Depot Departure

There are three types of depot departure rules. These rules apply each time any of the trains wants leave the depot after the completion of an examination. A train can either depart any depot based on a specific departure time range or based on the departure sequences of all the trains that are planning to leave the depot on that day. Thirdly, the departure rule could also be based on the series of the last few departures numbers within the depot for any of the day (See

N	Maintenance Location									
Preventative Type Duration Mon Tue Wed Thu Fri Sat Su										
B Exam	Overnight	2	2	2	2	1	-	1		
C Exam	Overnight	1	1	1	1	•	-	-		
D Exam	2 Days	1	1	1	1	1	1	1		
E,F,G Exam	3 Days	1	1	1	1	1	1	1		

Table 2 and Table 3).

Depot Capacity

The depot capacity is a crucial factor and it is one of the major constraints. The depot capacity is closely linked with the number of available stable diagrams in each depot on every single day. The depot capacity gives the maximum number of trains that a depot can accommodate. This is also different for different exams in each of the different exam regimes (See

Maintenance Location									
Preventative Type Duration Mon Tue Wed Thu Fri Sat Sun									
B Exam	Overnight	2	2	2	2	1	-	1	
C Exam	Overnight	1	1	1	1	•	-	-	
D Exam	2 Days	1	1	1	1	1	1	1	
E,F,G Exam	3 Days	1	1	1	1	1	1	1	

Table 2 and Table 3).

Depot Rules

The major details in the depot rules are the preventative maintenance types and the name of the depot where the examination can take place. Another important factor is the duration of each of the exams in the different exam regimes and the specific day of the week that the exam would occur.

Duration of Exams

Different examinations have different durations. The maximum is the E, F and G exams that span a period of three days. Since only one particular depot can handle the E, F and G exams, then no other exam can occur within the 3 days' period. On the other hand, B and C exams can be completed overnight. Other exams have different durations; the details are the in the depot rules.

Week Day Availability

There are variations in the capacities of exams that could happen on each day of the week and those available at weekends. There tends to be a reduction in the number of exams that can take place on weekend when compared with the ones that are available during the working days of the week.

7 METHODOLOGY

This section gives the details of the methodology involved in the design of the Optimised tool. The whole process starts with the generation of a

Kayode Owa and Robert John

problem instance. All the following sub-sections are embedded in the creation of the problem instance.

7.1 Optimisation Methods

The optimisation methods start with the first creation of a problem instance. This global search space is wide and uneven with high probability of being stuck in a local minima solution because of many constraints. The first task in the optimisation is to reduce the search space considerably putting into each depot all the arrival trains and their respective diagrams. The first major reason for this is that there is a hard constraint in making sure that all trains in a particular depot are assigned to diagrams in that same depot. This action has the potential to cut out many infeasible solutions that can slow down the optimisation process. If this approach is not complied with, then there is a greater chance of having trains with lower mileages than the minimum diagram distance and this could result in being stuck at a particular depot. The result of the optimisation problem instance is then passed across to the simulated annealing optimisation algorithm for further iteration in order to obtain better solution.

7.2 Futuristic Look Ahead 2-day Strategy

Embedded in the described optimisation process, the look ahead two-day strategy is employed in order to effectively plan for a two-day period ahead of time. This happens by intelligently determining trains in each depot that has the lowest mileages that can cover the addition of the maximum of all the diagrams in the current depot and the current day and the maximum of the all the diagrams in all the depots combined in the following day. This has many advantages: since it is looking to optimise in advance, there is a better chance of an early picking of the desired diagrams in order to avoid the need to swap diagrams again when occasion arises. It also has the potential for optimising the depot resources and capacities without the need for the optimised tool to run into a No-solution space. The result of this determines if the optimised tool will explore the one-day strategy approach or not.

7.3 Optimised One-day Strategy

The one-day strategy approach always come into play when there is not a single solution in the 2-day approach strategy at that point in time. This involves looking for diagrams that can fulfil all the depot rules and can convey the required trains to the desired depot for exams. Sometimes this may result in overmaintenance result if there is solution. The result of this strategy determines whether swapping will take place or not.

7.4 Diagrams Swapping Mechanisms

There are currently two types of swapping employed in this optimised tool. All the swapping

mechanisms take place at one station. Both approaches have different reasons for the swaps to take place.

The first swap approach is used when a train needs to visit a depot for an exam and there is no available diagram.

The second swap approach is utilised when an 11car train is urgently needed to service the legs of diagrams that are on the priority list.

7.5 Multi-Objective Optimisation

A total of four multi-objective function / fitness is required to be satisfied. These are listed below:

i. Minimising over-maintenance

Each of the trains must not exceed a certain mileage before it goes for an examination. That mileages that remains before it finally enters for an examination is referred to as mileage loss. The task is to reduce/minimise all mileages losses in the entire fleet for any given solution.

ii. Minimising the number of total swaps

A swap is needed each time a train need to proceed for an examination and there is not diagrams available within the depot that can successfully convey it to the required depot; another diagram is then employed. This activity is carried out at specific location within the whole network. Minimisation of swaps is necessary in order to reduce passenger's disruptions at rail stations by eliminating delays to customers and avoiding platform alterations. Swaps There are rules that must be followed before a successful swap can take place. Each of the trains must spend nothing less than 20 minutes from the time of their arrival and the whole process should not exceed 60 minutes afterwards.

iii. Capturing all priority lists with 11-cars

For some particular reasons some legs of certain diagrams are marked as priority-11 legs; this means that they must be served by an 11-car trains. Priority legs can occur at any position within any diagram. Swaps also comes into play if some priority legs need to be captured by an 11-car trains.

iv. Ensuring CET is done on all trains on CET lists.

Similarly, on each day of the allocation/optimisation task, trains that are marked to be sent for CET must be programmed and assigned to any of the maintenance depots and not any of the other outstations. Kayode Owa and Robert John

7.6 Embedded Parallel Search Strategy (PSS)

There are different levels of search involved through the entire allocation process. The optimised tool employs an embedded parallel internal heuristic search algorithm with allocation task. This ensures a faster optimisation and enhances better results in the whole strategy. This involves searching the entire depot and looking for diagrams with the correct depot rules (arrival and departure rules) that can successfully take the trains to the required depot for the next examination. The PSS is applied and used with both 2-day and 1-day strategies.

7.7 Multiple Artificial Intelligence Strategies

In order to reduce the level of stochasticity in the optimised tool, the approach used in this design uses embedded levels of artificial intelligence to make some useful decisions in many scenarios. As a result of the problem complexity, the designed algorithm is able to perform tasks pretty by incorporating vital aspect of human intelligence in the decision making process and thereby elimination billions of infeasible solution space. These are discussed as follows:

i. Mileage Control Strategy

Artificial intelligence strategy is employed in the mileage control strategies. The AI strategy here works by that perceiving the trains within its vicinity and environment and thereby looking for trains with similar mileages within a specific range that could potential cause bunching in the future. The AI quickly takes immediate actions that eliminates that problem. This is an act of taking useful and timely decision to forestall problems that will result into no solution. There are some reasons why this is required. This approach is commonly used for the E, F and G examinations under the B-G 20K exam regimes. There are instances whereby the mileages between two or more trains are very close. This is a big problem because there is only one slot per train in the Longsight depot for the E, F and G exams. In addition to the limitation posed by the depot space, the (E, F and G) exams span for a period of 3 days each in total. This implies that there will not be any solutions at all if any train with E, F and G exams are very close in mileage. For example, there are three trains in the April, 2017 data with mileages in the same range: UK390002; G-Exam; 6783miles, UK390011; E-Exam; 8555miles, and UK390132; F-Exam; 6595miles. The artificial intelligence strategy ensures that these three trains are spaced with a minimum of about around 3,000 miles between amidst them before a solution can ever be obtained.

ii. Swaps Reducing Strategy

Another major reason that contributes to the swaps situation is when there are trains in some undesired

outstations. Artificial intelligence is also put into place to intelligently look for specific locations so that it will exclude certain trains with some specific mileages from arriving there on daily basis. In order words, the AI strategy makes sure that trains with higher mileages are sent to an outstation that is not actual depot maintenance locations.

iii. CET Capture Strategy

A similar approach to the one in Swaps Reducing Strategy section, the AI strategy is designed to ensure that all the trains programmed for CET are only sent to any of the maintenance depot. This is effected irrespective of their mileages.

7.8 Simulated Annealing (SA) Strategy

All the strategies already discussed have helped to reduce the optimisation search space considerably. The SA strategy works to finally find the optimal and improved solution out of the many solutions produced from the specified iterations. SA was introduced by Kirkpatrick et al. in 1982 [7-9] for solving combinatorial optimisation problems. SA derives its utilisation from annealing in metallurgy where there is heating and manipulated cooling of a substances in order to diminish material defects and enhance the size of its crystals. SA is good for avoiding local minima solutions and it is very efficient for problems with a large search solution space. The SA sends series of random stochastics inputs for the allocation of trains to diagram. The SA strategy uses all the four multi-objectives functions to ultimately determine and rank the best Pareto solutions.

8 OUTPUT RESULTS

This section gives details of the different outputs that the optimised tool will generate each time. This consist of the allocation of trains to diagrams and each of their schedule for the respective examinations. The resultant output file is very large; one of the trains is selected at random in order to analysis and explain the result details discussed as follows:

<u>Train Name:</u> UK390118 <u>Next Exam</u>: D <u>Duration of Exam</u>: 2 days and 2 nights <u>Start Mileage</u>: 3172.5 miles <u>Start date</u>: Tuesday, 4th of April 2017 (Day 1). <u>Allocation period</u>: 23 days.

The algorithm must ensure that train "*UK390118*" is assigned to some series of diagrams in such a way that the remaining mileage must not exceed zero or enters a negative zone but must be minimised before it enters for maintenance examination D and then proceeds for the next B examination.

Kayode Owa and Robert John

Table 4 gives the filtered solution out of 173,780 rows for the allocation of train *UK390118* to diagrams for the whole period.

Days Current D Dagraf Diagraf Piagraf Final M Next Eg Origin Start Time Destine Final M Day1 Preston VUI31 120 191246 D3 G639 Wollwhit Vd(V4/20172236 Didey CM Vd(V4/20172236 Didey CM Vd(V4/20172236 Didey CM Vd(V4/20172236 Didey CM Vd(V4/2017237 Didey CM Vd(V4/2017237 Didey CM Vd(V4/2017237 Didey CM Vd(V4/2017231 Didgex CM													
Day 1 Preston VVIII 1200 1912.46 D3 5639 Workhott (V/U/201722:36) Codey CM 4/U/201722:37) Day 2 Oxley CMD VW101 1057 855.46 D3 5H07 Manchstri 65(04/201722:36) CongstCM 05(04/201722:37) Day 4 LongstCMD VW952 0 15.46 D3 SH07 Preston 06(04/201723:31) CongstCM 05(04/20172:37) Day 4 LongstCMD VW952 0 15.46 D3 SH01 LongstCM 07(04/20170:31) LongstCM 07(04/201716:00) Day 5 LongstCMD VW952 0 15.46 D3 SH01 SH07 BunstCM 07(04/2017:23:11) Monepter 07(04/2017:20:11) Day 6 LongstCMD VW952 D1 5A6 D343 B11 SM18 Wembly C1/2017:23:40 Monepter 07(04/2017:23:40) Monepter 07(04/2017:21:40) Monepter 07(04/2017:21:40) Monepter 07(04/2017:21:40) Monepter 17(04/2017:21:40) Monepter 17(04/2017:22:40) Monepter 17(04/2017:22:30) Monepter 17(04/2017:22:30) Monepter 17(04/2017:22:30) Monepter 17(04/2017:22:30) Monepter 17(04/2017:22:30) Monepter 17(04/2017:2	Days	Current De	Diagrar •	Diag 🔹	Miles T 🔹	Final M 🔹	Next E	HeadCo	Origin 🔹	Start Time	• Destina •	Finish Time	¥
Day 2 Oxleg CMD WMDI 1057 855.46 D3 SH07 Manchstrfi 6/(//2012.22:36) LongstCM 0///0172.22:37) Day 3 LongstCMD VW949 840 15.46 D3 SH00 Precton 06/(//2017.23:31) LongstCM 0///2017.23:57) Day 4 LongstCMD VW952 0 15.46 D3 SH101 LongstCMD 07/0//2017.23:10 LongstCM 0///2017.23:10 LongstCM 0///2017.23:	Day 1	Preston	VW131	1260	1912.46		D3	5G39	Wolvrhpt	04/04/2017 22	36 Oxley CM	04/04/2017 2	2:41
Day 3 LongstCM0 W499 400 15.46 D3 5H00 Preston 6/(//4/20172333) CongstCM0 0//2/20172335 Day 4 LongstCM0 VW952 0 15.46 D3 Stbil LongstCM0 0//2/20172335 LongstCM0 0//2/2017233 LongstCM0 D//2/20172033 LongstCM0 D//2/20172033 LongstCM0 D//2/20172033 LongstCM0 D//2/2017201039 LongstCM0 D//2/2017201039 LongstCM0 D//2/2017201039 LongstCM0 L//2/2/201721033 LongstCM0 L//2/2/201721033 LongstCM0 L//2/2/2017233 LongstCM0 L//2/2/2017210039 LongstCM0 L//2/2/2017210039 LongstCM0 L//2/2/2017210019 LongstCM0 LongstCM0	Day 2	Oxley CMD	VW101	1057	855.46		D3	5H07	Manchstri	05/04/2017 22	36 LongstCN	05/04/2017 2	2:47
Day 4 Longst CM0 VMS2 0 15.46 D3 Sthild Longst CM (V//4/2017 26:31 Longst CM (V//2/2017 26:35 Longst CM (V//2/2017 26:35 Longst CM (V//2/2017 26:35 Longst CM (V//2/2017 26:35 Longst CM Longst CM <thlongst cm<="" th=""> Longst CM Longst CM<</thlongst>	Day 3	LongstCMD	VW949	840	15.46		D3	5H00	Preston	06/04/2017 23	03 LongstCN	06/04/20172	3:57
Day 5 Longst CM0 WMS2 0 15.46 15.46 15.46 15.46 15.46 15.46 15.46 15.46 15.46 15.46 15.46 15.46 15.46 15.46 15.46 15.47 Member 10 00/4/2017 21:31 Member 10 00/4/2017 21:33 Day 7 Wembley10 VW125 1207 1202 B11 SM18 WemblyC 12/04/2017 00:08 Wembley 12/04/2017 00:01 Day 8 Wembley10 VW125 1207 17021 B11 SM18 WemblyC 12/04/2017 00:08 Wembley 12/04/2017 00:08 Wembley 12/04/2017 20:38 Wembley 12/04/201	Day 4	LongstCMD	VW952	0	15.46		D3	Stbld	LongstCM	07/04/2017 02	31 LongstCN	07/04/2017 1	6:00
Day 6 Longst CM0 WM24 956 19435 B11 SA79 Euton 09/04/2017 21:34 Membley 01/04/2017 21:35 Day 7 Wembley10 VW126 1207 18228 B11 SM18 Wembley11 1/04/2017 21:34 Wembley11 1/04/2017 21:34 Day 8 Wembley10 VW126 1207 17021 B11 SM18 Wembley12 1/04/2017 21:34 Wembley11 1/04/2017 21:34 Day 9 Wembley10 VW126 1207 17021 B11 SM18 Wembley12 1/04/2017 21:33 Wembley112 1/04/2017 21:34 Wembley112 1/04/2017 21:33 Wembley11	Day 5	LongstCMD	VW952	0	15.46	15.46	D3	Stbld	LongstCM	08/04/2017 02	31 LongstCN	08/04/2017 1	6:00
Day 7 Wembley ID VVL25 120 13228 B11 SMB WemblyC1 L1/Q/20170038 Wembley 12/Q/20170039 Day 8 Wembley 10 VVL26 1207 17021 B11 SMB WemblyC1 L1/Q/20170038 Wembley 12/Q/2017039 Day 8 Wembley 10 VVL26 1207 17021 B11 SM18 WemblyC1 L1/Q/20172333 Wembley 12/Q/20172333 Day 10 Wembley 10 VVL26 1205 13403 B11 SM18 Euston 12/Q/20172333 Wembley 12/Q/20172333 Day 11 Wembley 10 VVL26 1205 13403 B11 SM18 Euston 12/Q/20172333 Wembley 12/Q/2017233 Day 13 Wembley 10 VVL26 820 11521 B11 SF87 Crew 16/Q/20172336 EdgeHIDH 17/Q/201700.20 Day 13 Wembley 10 VVL10 163 10358 B11 SF87 Crew 16/Q/20172336 EdgeHIDH 17/Q/20170.023 Day 16 Colge (MD VVL10 1268 <td< td=""><td>Day 6</td><td>LongstCMD</td><td>VW942</td><td>565</td><td>19435</td><td></td><td>B11</td><td>5A79</td><td>Euston</td><td>09/04/2017 21</td><td>34 Wembley</td><td>09/04/2017 2</td><td>1:53</td></td<>	Day 6	LongstCMD	VW942	565	19435		B11	5A79	Euston	09/04/2017 21	34 Wembley	09/04/2017 2	1:53
Day 8 Wembley ID VVL25 120 17021 B11 SML8 Wembly C12/04/20170.00.89 Wembley 12/04/20170.00.90 Day 9 Wembley ID VVL19 1206 15815 B11 SML8 Featback 12/04/20172.33 Wembley 12/04/20172.55 Day 10 Wembley ID VVL26 1205 13403 B11 SML8 Wembley 12/04/20172.33 Wembley 12/04/20172.55 Day 11 Wembley ID VVL26 1205 13403 B11 SML8 Euston 14/04/20172.33 Wembley 13/04/20172.53 Day 13 Wembley ID VVL18 1000 12403 B11 SML8 Euston 15/04/20172.33.64 EdgeHIDH 17/04/20172.350 Day 13 KedgeHIDH 5 VVL12 1268 B11 SFG Crewe 17/04/20172.306 EdgeHIDH 17/04/20172.305 Day 14 EdgeHIDH5 VVL12 1288 B11 SGG Crewe 17/04/20172.306 EdgeHIDH 17/04/20172.305 Day 15 EdgeHIDH5 VVL12 1288 6551 B11 SH42	Day 7	WembleyID	VW126	1207	18228		B11	5M18	WemblyC	11/04/2017 00	08 Wembley	11/04/2017 0	0:19
Day 9 Wembley 10 VVI19 106 15815 B11 SM17 Euton 12/04/20172233 Wembley 11/04/20172253 Day 10 Wembley 10 VV126 1207 14608 B11 SM18 Wembley 11/04/20172353 VM10/04/20172353 Day 11 Wembley 10 VV126 1207 14608 B11 SM18 Euston 14/04/20172333 VM10/20172253 Day 11 Wembley 10 VV112 820 13403 B11 SM18 Euston 15/04/20172334 EdgeHIDH 17/04/20172334 Day 12 Wembley 10 VV101 820 11521 B11 SF87 Crewe 16/04/20172334 EdgeHIDH 17/04/20172345 Day 14 EdgeHIDHS VV110 1163 10388 B11 SF87 Crewe 16/04/20172345 DdgeHID 17/04/20172345 Day 15 EdgeHIDHS VV110 1163 10388 B11 SF87 Crewe 16/04/20172340 Ddq/20170232 Day 15 EdgeHIDHS VV110 1163 1038 B11	Day 8	WembleyID	VW126	1207	17021		B11	5M18	WemblyC	12/04/2017 00	08 Wembley	12/04/2017 0	0:19
Day 10 Wembley IV VVL25 120 14608 B11 SMB Wembly C14/04/20170.00.89 Wembley 14/04/20170.00.90 Day 11 Wembley IV VVL26 120 14408 B11 SMB Euston 14/04/20172.00.89 Wembley 14/04/20172.35 Day 11 Wembley IV VVL10 1200 14003 B11 SMB Euston 14/04/20172.33 Wembley 15/04/20172.315 Day 13 Wembley ID VVL10 183 B11 SMB Euston 15/04/2017.23.36 EdgeHIDH 17/04/2017.00.20 Day 14 EdgeHIDHS VVL10 163 10588 B11 SF87 Crewe 16/04/2017.23.36 EdgeHIDH 17/04/2017.00.20 Day 16 GegHIDHS VVL10 128 990 B11 SF87 Crewe 17/04/2017.02.31 Ond/2017.00.43 Outy/2017.00.43 Outy/2017.00.43 <td>Day 9</td> <td>WembleyID</td> <td>VW119</td> <td>1206</td> <td>15815</td> <td></td> <td>B11</td> <td>5M17</td> <td>Euston</td> <td>12/04/2017 22</td> <td>33 Wembley</td> <td>12/04/2017 2</td> <td>2:52</td>	Day 9	WembleyID	VW119	1206	15815		B11	5M17	Euston	12/04/2017 22	33 Wembley	12/04/2017 2	2:52
Day 11 WembleyID VVL26 105 13403 B11 SM18 Euston 14/04/20172335 WembleyID VVL10 126 Day 12 WembleyID VVL18 1000 12403 B11 SM18 Euston 15/04/20172335 Seembley 15/04/20172335 Day 13 WembleyID VVL18 1000 12403 B11 SM18 Euston 15/04/20172335 EdgeHIDH 17/04/20172335 Day 14 EdgeHIDHS VVL10 1163 10358 B11 SF07 Crew 17/04/201723305 EdgeHIDH 17/04/20172350 Day 14 EdgeHIDHS VVL12 1288 9909 B11 SF14 Monthyt 19/04/201723305 EdgeHIDH 20/04/201723100 Day 16 Koley CMD VVL12 1288 9909 B11 SF14 Monthyt 19/04/201723305 EdgeHIDH 20/04/2017201003 Day 20/04/201723100032 Day 20/04/201723100032 Day 20/04/2017210032 Day 20/04/2017210023 Day 20/04/201723100032 Day 20/04/201723100032 Day 20/04/201723100032 Day 20/04/201723100032 Day 20/04/201723100032 <td>Day 10</td> <td>WembleyID</td> <td>VW126</td> <td>1207</td> <td>14608</td> <td></td> <td>B11</td> <td>5M18</td> <td>WemblyC</td> <td>14/04/2017 00</td> <td>08 Wembley</td> <td>14/04/2017 0</td> <td>0:19</td>	Day 10	WembleyID	VW126	1207	14608		B11	5M18	WemblyC	14/04/2017 00	08 Wembley	14/04/2017 0	0:19
Day 12 Wermbley/D WH18 1000 12403 B11 5M8 Euston 15/04/2017 23:11 Wermbley/15/04/2017 23:33 Day 13 Wermbley/D WH18 000 12403 B11 5F87 Crewe 16/04/2017 23:11 Wermbley/D1700 202 Day 14 EdgeHIDFS WH11 1168 10358 B11 5F80 Crewe 16/04/2017 23:36 EdgeHIDF1 //04/2017 20:30 Day 14 EdgeHIDFS WH11 1168 10358 B11 5F80 Crewe 17/04/2017 23:05 EdgeHIDF1 //04/2017 20:30 Day 15 EdgeHIDF5 WH12 1268 990 B11 5687 Wolvrhut 19/04/2017 00:30 Ouey CM1 19/04/2017 00:30 Day 15 LongstCMD WH12 1268 5615 B11 5H42 Preston 21/04/2017 23:29 UongstCM2 1/04/2017 00:32 Day 18 LongstCMD WH12 1268 54318 B11 5H42 Preston 21/04/2017 23:49 Wermbley 12/04/2017 02:30 Day 18 LongstCMD WH12	Day 11	WembleyID	VW126	1205	13403		B11	5M18	Euston	14/04/2017 23	33 Wembley	14/04/2017 2	:3:55
Day 13 Wembleylo VMI20 882 11521 B11 SF87 Crewe 15/0/4/2017 23:36 EdgeHID1 17/0/4/2017 20:30 Day 14 EdgeHID4 VW110 1163 1038 B11 SF97 Crewe 15/0/4/2017 23:36 EdgeHID1 17/0/4/2017 23:36 Day 15 EdgeHID4 VW110 1163 1038 B11 SF97 Crewe 17/0/4/2017 23:65 EdgeHID1 17/0/4/2017 23:50 Day 15 Oxley CMD VW103 129 7799 B11 SH14 Manchstri 20/0/2/2017 23:20 DangsCMD V/0/2/2017 23:31 DangsCMD V/0/2/2017 23:31 DangsCMD V/0/2/2017 23:30 DangsCMD V/0/2/2017 23:40 DangsCMD V/0/2/2017 23:40 DangsCMD V/0/2/2017 23:40 DangsCMD V/0/2/2017 23:40	Day 12	WembleyID	VW118	1000	12403		B11	5M18	Euston	15/04/2017 23	11 Wembley	15/04/2017 2	3:34
Day 14 EdgeHIDHS WUI0 1163 10358 B11 SF80 Crew 17//4/201723:56 EdgeHIDH 37/020723:50 Day 15 EdgeHIDH 5 WUI12 1288 9090 B11 SF87 Wolvrhptr 19/04/2017 20:30 Degr 40/02017 20:30 Day 15 Okqey CMD WU13 128 9090 B11 SF87 Wolvrhptr 19/04/2017 20:30 Degr 40/04/2017 20:30 De	Day 13	WembleyID	VW102	882	11521		B11	5F87	Crewe	16/04/2017 23	36 EdgeHIDH	17/04/2017 0	0:20
Day 15 EdgeHIDHS W112 12.88 9090 B11 5637 Wolvrhpt 19/04/2017 00:43 Oxley CMI 19/04/2017 00:43 Day 16 Oxley CMD W1013 121 7799 B11 SH4 Menchstrf 20/04/2017 02:10 Long CMD V/U12 124 6551 B11 SH4 Preston 20/04/2017 23:29 Long CMD V/U12 124 5303 B11 SH42 Preston 21/04/2017 23:29 Long CMD V/U12/017 02:39 Long CMD V/U12/017 02:30 Long CMD Z/U4/2017 02:40 Long CMD Z/U4/2017 02:40 Long CMD Z/U4/2017 02:40 Z/U4/2017 02:40 Long CMD	Day 14	EdgeHIDHS	VW110	1163	10358		B11	5F90	Crewe	17/04/2017 23	05 EdgeHIDH	17/04/2017 2	23:50
Day 16 Oxleg CMD WMI3 1291 7799 B11 SH14 Mendstaft 20(//2017.02:10 LongtCM 20///2017.02:20 LongtCM 21///2017.02:20 LongtCM 21///2017.22:30 LongtCM 21///	Day 15	EdgeHIDHS	VW112	1268	9090		B11	5G87	Wolvrhpt	19/04/2017 00	43 Oxley CM	19/04/2017 0	0:48
Day 17 Longst CM0 VVL25 1248 6551 B11 5H42 Preston 20/04/2017 22:32 longstCM 21/00/2010 00:25 Day 18 Longst CM0 VVL25 1248 5530 B11 5H42 Preston 21/04/2017 22:32 longstCM 21/04/2017 00:23 Day 18 Longst CM0 VVL125 1248 5530 B11 5H42 Preston 21/04/2017 22:39 Vembley 22/04/2017 00:23 Day 19 Wembley10 VVL10 858 4318 B11 5A68 Euston 21/04/2017 23:61 EdgeH1DH 24/04/2017 00:20 Day 20 KegeH1DH5 VVL10 1163 2273 B11 5F40 Crewe 23/04/2017 23:61 EdgeH1DH 24/04/2017 00:20 Day 21 EdgeH1DH5 VVL10 1163 2273 B11 5F40 Crewe 23/04/2017 23:61 EdgeH1DH 24/04/2017 02:34 Day 22 EdgeH1DH5 VVL10 1163 2273 B11 5F40 Crewe 23/04/2017 23:41 Conderthint 25/04/2017 23:42 Day 22 EdgeH1DH5 VVL10	Day 16	Oxley CMD	VW103	1291	7799		B11	5H14	Manchstri	20/04/2017 02	10 LongstCN	20/04/2017 0)2:29
Day 18 LongstCMD W125 1248 5303 B11 5H42 Preston 21/04/201723:29 Wembley 22/04/20170223:39 Day 19 Wembley/lo W111 965 4318 B11 SA68 Euston 22/04/201723:29 Wembley/lo 22/04/201722:31 Wembley/lo 22/04/201722:34 Wembley/lo 22/04/201722:36 EdgeHIDFS V2/04/201720:27:36 EdgeHIDFS V2/04/201720:27:36 EdgeHIDFS V2/04/201723:36 EdgeHIDFS V2/04/201723:46	Day 17	LongstCMD	VW125	1248	6551		B11	5H42	Preston	20/04/2017 23	29 LongstCN	21/04/20170	JO:23
Day 19 Wernbley/D VW111 965 4318 B11 5A68 Euston 22/04/2017 22:31 Wernbley/D 2/U/U/2017 02:20 Day 20 Wernbley/D VVI10 882 3436 B11 5F87 Crew 22/04/2017 23:36 EdgetHDH 2/04/2017 20:20 Day 21 EdgetHDH 5 VVI10 1163 2273 B11 5F90 Crew 22/04/2017 23:06 EdgetHDH 2/04/2017 23:00 Day 21 EdgetHDH5 VVI10 1163 2273 B11 5F90 Crew 22/04/2017 23:05 EdgetHDH 2/04/2017 23:05 Day 22 EdgetHDH5 VVI10 1163 2273 B11 5F90 Crew 24/04/2017 23:05 EdgetHDH 2/04/2017 23:05 Day 22 EdgetHDH5 VVI31 1183 1090 B11 5H10 Manchtart 2/04/2017 21:40 Membley 26/04/2017 22:40 Day 23 LongstCMD VVI348 38 152 152 B14 5A67 Euston 26/04/2017 21:40 Wernbley 26/04/2017 22:40	Day 18	LongstCMD	VW125	1248	5303		B11	5H42	Preston	21/04/2017 23	29 Wembley	22/04/2017 0	JO:23
Day 20 WembleyID VM20 882 3436 B11 5F87 Crewe 24/04/20172336 EdgeHID14 24/0/200720020 Day 21 EdgeHID45 VM10 1163 22273 B11 5F90 Crewe 24/04/201723:05 EdgeHID14 24/04/201723:05 Day 22 EdgeHID45 VM38 1090 B11 SF10 Mandraf 20/04/201723:05 EdgeHID14 24/04/201723:05 Day 22 EdgeHID45 VM38 1090 B11 SF10 Mandraf 20/04/201723:05 EdgeHID14/04/201723:02 Day 23 LongtCMD VM948 938 152 152 B10 Sh47 Euston 26/04/201721:48 Vembley 26/04/201722:07	Day 19	WembleyID	VW111	985	4318		B11	5A68	Euston	22/04/2017 22	31 Wembley	22/04/2017 2	2:49
Day 21 EdgeHIDHS VW110 1163 2273 B11 5F90 Crewe 24/04/201723:05 EdgeHIDH 24/04/201723:05 Day 22 EdgeHIDHS VW935 1183 1090 B11 5H10 Manchstrif 25/04/201723:31 LongstCVI/201723:31 LongstCVI/201723:31 LongstCVI/201723:31 SA67 Euston 26/04/201721:48 Wembley 26/04/201722:07	Day 20	WembleyID	VW102	882	3436		B11	5F87	Crewe	23/04/2017 23	36 EdgeHIDH	24/04/2017 0	0:20
Day 22 EdgeHIDHS VW935 1183 1090 B11 5H10 Manchstrf 25/04/2017 23:31 LongstCM 25/04/2017 23:42 Day 23 LongstCMD VW948 938 152 152 B11 5A67 Euston 26/04/2017 21:48 Wembley 26/04/2017 22:07	Day 21	EdgeHIDHS	VW110	1163	2273		B11	5F90	Crewe	24/04/2017 23	05 EdgeHIDH	24/04/2017 2	3:50
Day 23 LongstCMD VW948 938 152 152 B11 5A67 Euston 26/04/2017 21:48 Wembley 26/04/2017 22:07	Day 22	EdgeHIDHS	VW935	1183	1090		B11	5H10	Manchstri	25/04/2017 23	31 LongstCN	25/04/2017 2	3:42
	Day 23	LongstCMD	VW948	938	152	152	B11	5A67	Euston	26/04/2017 21	48 Wembley	26/04/2017 2	2:07

 Table 4: Filtered solution 1 result for UK390118.

It can be seen from Table 4 that at the end of Day 3, the remaining mileage before the trains departed for examination is: 3172.46 - (1260+1057+840) = 15.46 miles.

Day 1 to day 3 allocation is carried out in such a way that the algorithm starts looking ahead right from day 1 in order to schedule the train to the right location for exam by the third day without the need to implement sets swap.

<u>Day</u>	Diagram	Mileage (miles)
Day 4-Exam Day1 (D)	VW952	0 - Stable Diagram
Day 5-Exam Day2(D)	VW952	0 - Stable Diagram
Day 23-Exam	VW948	
(Overnight B)		

Table 5: An excerpt from Table 4

At the end of day 5, the mileage of the train is reset back to 20,000 miles. The train was assigned to diagram VW942 (with 565 miles) on day 6; this implies that the train will have the mileage of 20,000-565 = 19435 at the end of day 6. The allocation continues in this fashion until it is ready for the next examination in the cycle. From these results, two examinations took place. The 2nd one occurred on the 23rd day. This time around, it is an overnight B examination. The sequence of the examination cycle is given in Table 6.

Repeat B, C, D sequence	Е	
Repeat B, C, D sequence	G	Go to Start
Table 6: Preventive maintenan	ce e	exam

sequence

Allocations

This section gives details of all the train allocation to diagrams for the specified number of days. A sample snapshot of an allocation output file is shown in Table 7. Typically, an allocation for a 23 days period with 20 pareto solutions has a total of 173,780 rows in the in Table 7 results.

Sektine O	See	WHEE	A	Cassoni in Diagonia 4	Tenerstans States 1.20	aites and	tente i i	Hartima	to rituritie.	Trease Trans
Solution 1	Over 1	Teroffe	8404/3007	Lengt/CM v/W952	003903413	2014	Longh OM	04/04/2017 02:01	UngerOV0	84/14/302738:00
Solder1	Owe L .	Techie	8404/30LT	Long/CM1/W985	00308840.00	1994	lang404	04/04/2017/02/02	LongACMD	8404/30(138.60
Tolution 1	(Tap 1	Taspile	\$404/30T	Lengt ON VWS78	INTERING CA	1817	LongitOM	34/04/2017 00.07	Marchitell	84/14/335706-30
Schempl	Der 1	Tuesday.	84/14/2011	Lang/OK/WITS	08390356.04	1817	Manifold	94/04/2017 90:45	Bueton	88/14/201708/94
Solution 1	Dert	Tuestie	64/04/3017	LengtOM VW125	DEPRESS CA	1348	Expton	(4/64/301789.78	Office Com	8414/38713/99
(b)Adam()	Cap 1	Turping	84/04/3101	Longst OAL VIVILIES	DETRUTIE CO	1465	Disi-Care.	14/14/31714-0	Dueton	8454/30071949
Subdar()	The L	Torolika	8494/3111	LangiAGM VW128	DOMESTICS CA	4412	Data	04/04/301719-41	Assore 15.	84/04/3051731-018
tolation (THE L	Tarplas	84/34/3181	Internation violate	UC1981218-128	972	740 m TL	84/84/2017 2118	Printer	84/4/201112191
Industry's 1	Dir I	Toenila	BUDG'STLT	THE WORK WATE	SACING IN 12	19442	Pretton	04/04/3011115-25	Lingstown	15/94/3061106.03
10048-011	Day 5	Tamate	8494/DET	Long/COL VIVUEZ	DEPOSITOR BUT	1821	Lange DV	04/04/0711105-01	Marshdoff	89/94/305106.00
TOL BURY 1	10 ky 3	Tumalle	84/54/3017	LangitiCM VW1000	LACEDIELDS - MP	1823	March diff	94/04/2017 04:27	babah	84/34/305709/31
Solutions II.	diam'r.	Transfer	ambalant r	Louis Print Louis A	Contraction and	1000	to other	adda fatt to and	binne fit	and a first tot the

Table 7: Allocations solution results

8.1 Solution Parameters

This section shows the summary of the parameters used to obtain the solution in the allocation section. A sample snapshot of the solution parameters output file is given in Table 8. The nomenclature is described as follows:

A=Solution ID, B=Final Fitness, C=Total Swaps Made, D=Total Mileage Loss, E=CET Trains Not Covered, F=Total CET Trains, G=% Priority Legs Not Covered, H=Total Priority Legs, I=User Swaps % Input, J=User Mileage % Input, K=Number of Exams, L=Number of Iterations, M=Number of Solutions, N=Number of Days, O=Time (Seconds).

			•	-	-							••		
Α	В	C	D	Ł	ŀ	G	н	1	J	K	L	IVI	N	0
1	1.41	6	24077.92	0	15	0	107	12.37	87.63	55	20	20	23	482.68
2	3.62	10	20658.49	0	15	1.86	107	12.37	87.63	56	20	20	23	288.27
3	5.41	12	27632.47	0	15	2.81	107	12.37	87.63	55	20	20	23	207.04
4	5.92	12	24729.71	0	15	3.73	107	12.37	87.63	54	20	20	23	335.5
5	7.62	18	25618.26	0	15	4.67	107	12.37	87.63	55	20	20	23	120.25
6	8.48	8	26895.03	1	15	0	107	12.37	87.63	56	20	20	23	524.9
7	8.87	10	27817.59	1	15	0	107	12.37	87.63	57	20	20	23	99.94
8	9.22	12	25222.81	1	15	0	107	12.37	87.63	58	20	20	23	342.12
9	9.59	14	24638.36	1	15	0	107	12.37	87.63	58	20	20	23	462.35
10	9.72	12	19610.03	1	15	0.93	107	12.37	87.63	55	20	20	23	105.99
11	10.59	14	28683.93	1	15	0.93	107	12.37	87.63	55	20	20	23	140.91
12	10.71	10	25329.92	1	15	1.86	107	12.37	87.63	57	20	20	23	156.18
13	10.74	10	28121.61	1	15	1.86	107	12.37	87.63	57	20	20	23	392.18
14	10.96	18	28566.03	1	15	0.93	107	12.37	87.63	56	20	20	23	759.77
15	11.87	16	27322.7	1	15	1.86	107	12.37	87.63	58	20	20	23	566.46
16	11.87	16	26228.04	1	15	1.86	107	12.37	87.63	55	20	20	23	53.48
17	13.39	16	30111.7	1	15	3.73	107	12.37	87.63	58	20	20	23	525.58
18	14.66	18	25137.03	1	15	4.67	107	12.37	87.63	56	20	20	23	726.55
19	14.89	14	29764.13	1	15	5.61	107	12.37	87.63	55	20	20	23	341.14
20	15.62	16	26137.04	1	15	5.61	107	12.37	87.63	54	20	20	23	567.4

Table 8: Solutions parameters output file

Kayode Owa and Robert John

Solution 1 out of the 20 solutions in Table 8 is better than the rest with columns E and G showing that all the 15 trains and all the 107 priority legs of diagrams are respected and covered respectively. Three sets swaps were carried out (column C); this occurred on three different occasions and each swap consists of two trains. All the mileage loss for the 55 trains is 24,077.92 miles with an average of 437.7miles per train for the 23-day period.

8.2 All Examination Regimes

This section gives the actual planned details for all the examinations for all the trains from one exam period to the next. It gives the summary of the number of days remaining for each of the train fleet for them to go for each of the examinations. A sample snapshot of the entire exam regimes output file is shown in Table 9.

						3014	107	UAT		Carn	0.0004	0,0	Line
felder 8	Init	Drigt	Disput	Deritat: Sapas	RealCo	levent 0	Rent aug Meet	Ellern usag block	i Rem unig Heat	Elemented I	Restant 15	Rest chiest	Ben ung
Subunon (0.0013	NUMB	W96	LongitChrysola	341	73	49.00	907124	(MIRTAR)	1.04	712	-141	34
Sidiution 1.	00200040	Doing Do	NWEE.	vention/vice	584	15	56 H D	10767610	818447.J.FI	22.046	74	411	1
Selution 1	001000	iorp10V	WHEE.	Langet Ministeries	904	102	105-691	相關行位	10081.071	30.04	1912	1210	- 68
Selution1	143834	Wintley	RIW	Vention/VCB	300	0	134.003	1006332	189872 FL	18 041	811	18/0	n
Solution1	W38117	LOID401	10000	Venille; VVCD	94	88	1676.2018	134813.732	300788971	2.04	812	17.12	4
1ronue:	1838334	unptil	WW992-	Langet Discharget	IDM.	4	186.2133	1994901102	3499071	7.04	即は	107.01	385
fieluiton1	WHILE	Proto:	WITH	ONLY ONLY ONLY	5001	100	002468	10013310	19864371	22.049	1111	11241	177
1 norty tech	0034031	Weith	VW10	Wendley Witzle	9/8	86	3675413	101118-1-02	1007691	1.04	512	羽虹	-11
Selution 1	10.345214	tale Di	NW112	Date Moved	554	81	361,2512	27.61.09112	81113.791	14.048	1411	- 511	.ji
bilybin1	10(190)41	Ling 104	WWW.	Wantship (1934)	5474	0	343.8(12	1111111111	11206-01/21	72 OH	412	115 81.	11
1non1	101210000	Long 201	NWII!	Longitter wold.	907	a	101.4111	nnniu.	5446.1171	104	пп	10.02	117
1 restuble2	103034	Doing The	NVT11	Ventiley WS3	5M11	0	4041703	20120110	120000 75	8.06	411	40.00	-6
1 million	00004	Antin	VW100	PHENOMINAL	528	85	406,210	190464-17	1000171	18 04	111	1011	111

Table 9: Entire exam regimes output file

10 CONCLUSION

The task of allocating trains to diagrams is a very complex and a hard problem to solve; the global solution space is enormous. One of the reasons is because of the many constraints that contradict potential solutions. In addition, there are four objectives to simultaneously satisfy: (i) minimise over-maintenance (ii) minimise the number of swaps (iii) capture all priority legs of diagrams with 11-cars and (iv) ensures that all CETs are done. Sometimes, obtaining the required solution may result in a trade-off issue of deciding the optimal solution from the Pareto front. The optimisation design ensures availability, reliability and high utilisation percentage.

The complexities of this task could make it difficult to quickly find optimal solutions. This gives rise to employ an artificial intelligence approach in order to pave way for faster optimisation and reduce search solution space. The heuristics search technique also work in parallel at different levels to provide faster solutions. Using only a single approach will make it difficult to find solution in a reasonable amount of time. This algorithm produces optimal solutions within seconds. The comparison with the real data proved to be far better solution and approach.

11 REFERENCES

- 1. Judea Pearl, 1984. Heuristics: Intelligent Search strategies for computer problems solving. Addison-Wesley Publishing Company.
- 2. Rahul Barman et. Al 2015. Automated Train Scheduling System using Genetic algorithm. International Symposium on Advanced Computing and Communication (ISACC).
- Takagi R et al. 2008 "Optimisation of train rescheduling using a genetic algorithm applied to the mimic panel state model of the overall rail network". Railway Engineering - Challenges for Railway Transportation in Information Age, 2008. ICRE 2008. International Conference on Print ISSN: 0537-9989.
- 4. Huntley, Christopher L., et al. "Freight routing and scheduling at CSX transportation." interfaces 25.3 (1995): 58-71.
- Fei Yan; Rob M. P. Goverde, 2017. Railway timetable optimization considering robustness and overtakings. 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp: 291 - 296 IEEE Conference Publications.
- Sarngadi Palgunadi; Dian Supraba; Bambang Harjito, 2016. Job-Shop Scheduling model for optimization of the double track railway scheduling: (Case study: Solo-Yogyakarta railway network) by International Conference on Information and Communication Technology and Systems (ICTS), pp: 90 - 95, IEEE Conference Publications.
- Mokhtar Bozorg; Rachid Cherkaoui, 2015. Energy and reserve scheduling for Electric Railway power system using stochastic optimization. IEEE Eindhoven PowerTech, pp: 1 - 7, IEEE Conference Publications.
- Poulami Dalapati; Arambam James Singh; Animesh Dutta; Swapan Bhattacharya, 2014. Multi agent based railway scheduling and optimization. TENCON IEEE Region 10 Conference. pp: 1 - 6, IEEE Conference Publications.
- Owa Kayode, Lisa Jackson and Tom Jackson, 2017. An intelligent novel tripartite - (PSO-GA-SA) optimisation strategy by. International Journal of Metaheuristics, Vol. 6, No. 3, Pp 210-233.
- Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983). Optimization by simulated annealing, Journal of Science, Vol. 220, No. 4598, pp.671– 680.

Kayode Owa and Robert John

11. Rutenbar, R.A. (1989) Simulated annealing algorithms: an overview. IEEE Circuits and Devices Magazine, Vol. 5, No. 1, pp.19–26.

12 GLOSSARY

Exam: This is the periodically maintenance that trains undergo. There are many of them. Exams have different durations; there are specific depot that can handle some specific maintenance tasks.

Sets Swap: The interchange of travel paths between train sets that had previously been assigned to them in order to channel some train sets to specific depots for maintenance purposes.

Depot: This is a location where trains can visit for exams and can also stay overnight.

Diagrams: This consists of many legs and the number of legs could vary; this makes them to have different mileages.

Diagram Legs: The rail journey from one Depot/Outstation to another Depot/Outstation.

Stable Diagram: This is a diagram with just one leg. This leg originates from one depot and terminates at the same depot. It has zero mileage.

Outstation: This is a location where trains can stay overnight but cannot handle any exams.