| 1 | Title: Genetic Polymorphisms of the Endoca | nnabinoid System in Obesity and Diabetes |
|---|--------------------------------------------|------------------------------------------|
|---|--------------------------------------------|------------------------------------------|

## 2 Short title: Endocannabinoid polymorphisms in obesity and diabetes

- 3 Joseph M. Doris<sup>1,2</sup>, Sophie A. Millar<sup>1</sup>, Iskandar Idris<sup>1</sup> and Saoirse E. O'Sullivan<sup>1</sup>
- 4 <sup>1</sup>Division of Graduate Entry Medicine and Medical Sciences, School of Medicine, University of
- 5 Nottingham, Royal Derby Hospital, DE22 3DT, United Kingdom
- 6 <sup>2</sup>Current address: St George's Hospital Medical School, St George's, University of London
- 7 Corresponding author: Joseph M. Doris, m1400346@sgul.ac.uk, St George's Hospital Medical
- 8 School, St George's, University of London
- 9

## 10 Key words: Polymorphisms, endocannabinoid, diabetes, obesity, cannabinoid

- 11
- 12 Word count: 1,788
- 13

### 14 Abbreviations 15 2-AG: 2-arachidonoyl glycerol 16 **BMI:** Body mass index 17 CB1: Cannabinoid receptor 1 18 CB2: Cannabinoid receptor 2 19 **CRP:** C-reactive protein 20 **DAGL:** Diacylglycerol lipase 21 ECS: Endocannabinoid system 22 FAAH: Fatty acid amide hydrolase 23 HDL-C: High density lipoprotein cholesterol 24 HOMA<sub>IR</sub>: Homeostatic Model Assessment for Insulin Resistance 25 IL-6: Interleukin-6 26 LDL-C: Low density lipoprotein cholesterol

- 27 NAPE-PLD: N-acyl phosphatidylethanolamine phospholipase D
- 28 MAGL: Monoacylglycerol lipase
- 29 MetS: Metabolic syndrome
- 30 SNP: Single nucleotide polymorphism
- 31 **TGs:** Triglycerides
- 32 **TNFα:** Tumour necrosis factor alpha
- 33 **T2DM:** Type 2 Diabetes Mellitus
- 34 WC: Waist circumference
- 35 WHR: Waist-to-hip ratio

## 36 Abstract

| 37 | The endocannabinoid system (ECS) is involved in many physiological processes including fertility,      |
|----|--------------------------------------------------------------------------------------------------------|
| 38 | pain and energy regulation. The aim of this systematic review was to examine the contribution of       |
| 39 | single nucleotide polymorphisms (SNPs) of the ECS to adiposity and glucose metabolism.                 |
| 40 | Database searches returned 734 articles, of which 65 were included covering 70 SNPs in genes           |
| 41 | coding for cannabinoid receptors 1 and 2 ( $CB_1$ , $CB_2$ ), fatty acid amide hydrolase (FAAH) and N- |
| 42 | acyl phosphatidylethanolamine phospholipase D (NAPE-PLD). No studies included SNPs relating            |
| 43 | to monoacylglycerol lipase or diacylglycerol lipase. The $CB_1$ receptor SNP rs1049353 showed 17       |
| 44 | associations with lower body mass index (BMI) and fat mass (5 studies). It also showed 3               |
| 45 | associations with lower insulin levels (1 study). Conversely, the $CB_1$ receptor SNP rs806368 was     |
| 46 | associated with increased BMI and waist circumference (2 studies). The FAAH SNP rs324420 as            |
| 47 | associated with increased obesity (3 studies). A haplotype of NAPE-PLD was associated with             |
| 48 | decreased BMI (1 study). 60 SNPs showed no association with any measured outcome. This                 |
| 49 | review suggests a complex but important role of ECS SNPs in energy and glucose metabolism.             |
| 50 |                                                                                                        |

- - -

# 51 Introduction

| 52 | The endocannabinoid system (ECS) consists of two G-protein coupled receptors (CB $_1$ and CB $_2$ )        |
|----|------------------------------------------------------------------------------------------------------------|
| 53 | and endogenously produced ligands (or endocannabinoids, such as anandamide and 2-                          |
| 54 | arachidonoyl glycerol) and the enzymes involved in their synthesis or degradation; fatty acid              |
| 55 | amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), diacylglycerol lipase (DAGL) and N-acyl            |
| 56 | phosphatidylethanolamine phospholipase D (NAPE-PLD). It is well established that $CB_1$ activation         |
| 57 | leads to increases in energy storage <sup>1</sup> which occurs via increased motivation to consume food    |
| 58 | and decreased satiety.                                                                                     |
| 59 |                                                                                                            |
| 60 | Single nucleotide polymorphisms (SNPs) are naturally occurring variations of a genetic sequence,           |
| 61 | which often affect protein structure. To date, studies on the effects of endocannabinoid SNPs              |
| 62 | have focused on central disorders such as Parkinson's disease and Alzheimer's disease <sup>2</sup> .       |
| 63 | However, there is accumulating evidence for the role of endocannabinoid SNPs in adiposity <sup>3</sup> and |
| 64 | glucose metabolism $^4$ . Therefore, the aim of this systematic review was to systematically collate       |
| 65 | the evidence relating to SNPs of the ECS in obese or diabetic phenotypes. By studying amino acid           |
| 66 | sequence alterations and any resultant residue changes, we hoped to identify important genetic             |
| 67 | changes which alter the normal physiology of adiposity and glucose metabolism.                             |
| 68 |                                                                                                            |

## 70 Materials and Methods

| 71 | Searches were performed using PubMed, EMBASE and Web of Science_by two independent                       |
|----|----------------------------------------------------------------------------------------------------------|
| 72 | researchers and concluded on 26/1/2018. Additional studies were identified from bibliographies.          |
| 73 | The search terms used were: Cannabinoid OR endocannabinoid receptor OR $CB_1$ OR $CB_2$ OR FAAH          |
| 74 | OR fatty acid amide hydrolase AND polymorphism AND obesity OR diabetes OR BMI OR                         |
| 75 | monoacylglycerol lipase OR MAGL OR diacylglycerol lipase OR DAGL OR N-acyl                               |
| 76 | phosphatidylethanolamine-specific phospholipase D OR NAPE PLD. A summary of search results               |
| 77 | and exclusions is given in supplemental Figure S1, and a full reference list is available in the         |
| 78 | supplementary appendix. The SNP database dbSNP was used to gather information regarding                  |
| 79 | nucleotide and amino acid changes $^{5}$ .                                                               |
| 80 |                                                                                                          |
| 81 | Articles included were original studies relating to polymorphisms of the ECS affecting energy            |
| 82 | regulation, glucose homeostasis and adiposity. Demographic and clinical parameters included              |
| 83 | were: body mass index (BMI); waist circumference (WC); waist-to-hip ratio (WHR); body weight;            |
| 84 | adiposity; Type II Diabetes Mellitus (T2DM); insulin and glucose levels; Homeostatic Model               |
| 85 | Assessment for Insulin Resistance (HOMA $_{IR}$ ); adipokine levels (adiponectin, leptin, and resistin); |
| 86 | cardiovascular parameters (blood pressure, heart rate); inflammation (levels of interleukin 6 (IL-       |
| 87 | 6), tumour necrosis factor alpha (TNF $\alpha$ ) and C-reactive protein (CRP)); and lipid levels         |
| 88 | (triglycerides, HDL-C and LDL-C). Records excluded were review articles, articles on the ECS not         |
| 89 | relating to polymorphisms, studies regarding central disorders, non-human studies and studies in         |
| 90 | a language other than English.                                                                           |
| 91 |                                                                                                          |
| 92 | Included articles were analysed for significant (p<0.05) positive or negative associations between       |
| 93 | SNPs and relevant parameters. A 'positive' association refers to there being a higher value of the       |

94 measured outcome in the presence of the polymorphism, whereas 'negative' refers to there

95 being a lower value in the presence of the polymorphism. A lack of significant association

- 96 between the measured outcome and the polymorphism is described as a 'neutral' association.
- 97 Risk of bias was assessed using the Cochrane Collaboration's tool for assessing risk of bias <sup>6</sup>.

98

| 100 Results |
|-------------|
|-------------|

| 101 | 65 studies were identified from 733 full-text articles. Risk of bias of these studies was overall low                    |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 102 | and is summarised in supplemental Figure S2. In total, 38 $CB_1$ , 18 $CB_2$ , 13 FAAH and 1 NAPE-PLD                    |
| 103 | SNPs were studied. No studies relating to MAGL or DAGL SNPs were found. The most commonly                                |
| 104 | studied SNPs and those which showed the most significant associations were $CB_1$ SNPs                                   |
| 105 | rs1049353 and rs806368, and FAAH SNP rs324420. Their associations with body weight and                                   |
| 106 | glucose metabolism parameters are presented in Table 1. All SNPs and their associations with                             |
| 107 | measured outcomes are documented in supplementary Table S1. A summary of all included                                    |
| 108 | studies and their relevant findings is shown in supplementary Table S2.                                                  |
| 109 |                                                                                                                          |
| 110 | BMI and body weight                                                                                                      |
| 111 | CB1                                                                                                                      |
| 112 | The rs1049353 mutant allele was associated with lower BMI in six European populations                                    |
| 113 | <sup>7,8,9,10,11,12</sup> and decreased fat mass in a Danish population (n=783) <sup>13</sup> . Conversely, homozygosity |
| 114 | for the rs1049353 mutant allele was associated with higher WHR and WC in obese men (p<0.01,                              |
| 115 | n=1,064) $^{14}$ , and increased childhood obesity in a European population (p=0.01, n=200) $^{15}$ . The                |
| 116 | majority of associations with rs1049353 were neutral (90%) (Table 1). However, negative                                  |
| 117 | associations were more common than positive (Figure 1), suggesting this SNP plays a part in a                            |
| 118 | more complex genetic susceptibility to increase adiposity. Male carriers of the rs806368 mutant                          |
| 119 | allele showed greater BMI values in a Japanese cohort (p=0.001), and were more likely to be                              |
| 120 | obese (p=0.01, n=1,452) <sup>16</sup> (Table S1).                                                                        |
| 121 |                                                                                                                          |
| 122 | FAAH                                                                                                                     |
| 123 | FAAH polymorphism rs324420 was positively associated with obesity in four cohorts (n=18,987)                             |
| 124 | 17,18,19,20                                                                                                              |
| 105 |                                                                                                                          |

| 126 | CB2                                                                                                                        |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 127 | The mutant allele of $CB_2$ SNP rs3123554 was associated with lower total body fat in females but                          |
| 128 | not males in a European cohort (p=0.001), with lower BMI in subjects at risk of T2DM (p<0.01)                              |
| 129 | and reduced weight loss (p<0.01, n=2,006) $^{21}$ .                                                                        |
| 130 |                                                                                                                            |
| 131 | NAPE-PLD                                                                                                                   |
| 132 | In a Norwegian cohort, a haplotype of NAPE-PLD showed an association with increased BMI                                    |
| 133 | (p<0.05, n=5,011) <sup>22</sup> .                                                                                          |
| 134 |                                                                                                                            |
| 135 | Type II Diabetes                                                                                                           |
| 136 | CB <sub>1</sub>                                                                                                            |
| 137 | The mutant allele of $CB_1$ polymorphism rs1049353 was associated with lower insulin, glucose and                          |
| 138 | $HOMA_{IR}$ levels in Spanish obese women <sup>29</sup> and lower insulin in two other European cohorts                    |
| 139 | (n=983) $^{23,24}$ . CB <sub>1</sub> SNP rs806365 was associated with decreased HOMA <sub>IR</sub> values and incidence of |
| 140 | T2DM in a North American cohort (p=<0.05, n=2,411) <sup>25</sup> .                                                         |
| 141 |                                                                                                                            |
| 142 | CB <sub>2</sub>                                                                                                            |
| 143 | The mutant allele of $CB_2$ polymorphism rs3123554 was associated with raised insulin levels and                           |
| 144 | $HOMA_{IR}$ values in an obese population (n=1,027) <sup>26</sup> (Figure 1).                                              |
| 145 |                                                                                                                            |
| 146 | FAAH                                                                                                                       |
| 147 | The mutant allele of FAAH polymorphism rs324420 was associated with lower insulin levels in                                |
| 148 | two obese populations (p<0.05, n=165) $^{27, 28}$ . rs324420 was also associated with lower HOMA <sub>IR</sub>             |
| 149 | levels in obese Spanish females (p<0.05, n=143) <sup>28</sup> .                                                            |
| 150 |                                                                                                                            |
| 151 | Lipids                                                                                                                     |

- 152 Overall, 22 positive associations with lipid levels were seen. The mutant allele of CB<sub>1</sub> SNP
- 153 rs1049353 was associated with higher HDL and lower TGs in three cohorts <sup>29,30,31</sup>, as well as lower
- 154 TGs in two populations (n=808) <sup>9, 29</sup> (Table 1).
- 155
- 156 FAAH SNPs rs324420 and rs3123554 were associated with higher TG levels in European cohorts
- 157 (p<0.05, n=1,644)<sup>26, 30</sup> (Table 1). FAAH SNP rs324420 was also associated with raised anandamide
- 158 levels in a Brazilian population (p<0.05, n=200).<sup>42</sup>
- 159
- 160

#### 161 **Discussion**

162 The aim of this study was to collate evidence relating to SNPs of the ECS and obese or diabetic 163 phenotypes to identify important genetic changes which alter metabolism. From the 65 included 164 articles, 70 polymorphisms were studied. CB<sub>1</sub> SNP rs1049353 showed 17 associations with lower 165 BMI and fat mass. It also showed associations with reduced glucose, insulin and HOMA<sub>IR</sub> values. 166 CB<sub>1</sub> polymorphism rs806368 showed 5 associations with increases in BMI, WC and WHR. The 167 FAAH SNP rs324420 showed 7 associations with increased incidence of obesity. 60 SNPs showed 168 no association with any measured outcome. These findings suggest an important role of selected 169 SNPs of the ECS in adiposity, although the number of studies showing no associations means that 170 their contribution is likely part of complex interactions.

171

172 The SNP rs1049353 occurs at nucleotide position 1359, a region of the CB<sub>1</sub> (CNR1) gene coding

173 for the receptor's intracellular domain or C-terminal. One study showed that replacement of the

174 C-terminal resulted in decreased affinity of the CB<sub>1</sub> agonist CP55940 and increased affinity of the

175 CB<sub>1</sub> antagonist SR141716A <sup>33</sup>. This suggests that the C-terminal is important in receptor

176 signalling. Although rs1049353 is a synonymous SNP and does not result in an amino acid residue

177 change (Thr>Thr), altered substrate interaction deriving from synonymous SNPs has been

178 observed elsewhere  $^{34}$  suggesting this is a legitimate theory.

179

The literature showed 13 associations between rs1049353 and reductions in parameters of glucose metabolism <sup>9,10,12,14,22,23,24,29,30,39,45,46,48</sup> (Figure 1). This suggests that that this SNP is important in diabetic phenotypes, likely caused by upregulation of gluconeogenic transcription factors due to increased CB<sub>1</sub> receptor activity. It is unclear why many studies (n=14) showed no association with parameters of glucose metabolism.

The rs324420 SNP reduces FAAH activity and increases likelihood for the enzyme itself to be degraded <sup>41</sup>, leading to cannabinoid overactivity. Subsequent CB<sub>1</sub> activation leads to adipogenesis and reduced expenditure, all of which contribute to obesity-related phenotypes. Our analysis showed that rs324420 was associated with higher anandamide levels <sup>42</sup>, increased BMI and obesity <sup>17,18,32</sup>, which suggests cannabinoid over-activation and subsequent adiposity and that this SNP therefore reduces FAAH activity (Table 1).

192

The potential contribution of CNR2 polymorphisms to human metabolism is less clear. Fewer studies investigated these SNPs, and the two polymorphisms studied (rs3123554 and rs35761398) showed conflicting associations with body weight parameters and glucose metabolism. As CB<sub>2</sub> receptors are found primarily in the central nervous system and on immune cells, it is likely that they are less involved in the regulation of body fat and therefore any alterations in their genetic structure are less relevant here. As no studies were found relating to SNPs of DAGL or MAGL, their contribution to obesity and glucose metabolism remains unclear.

200

201 Increasing age may determine the impact of the polymorphism. For instance, associations 202 between SNPs rs2023239 and rs806381 and increased anthropometric measurements were found only in adult subjects <sup>35,36</sup>. Ageing leads to reductions in ligand binding <sup>37</sup> and coupling 203 between the CB<sub>1</sub> receptor and its G-protein <sup>38</sup>, which may account for the delayed onset of 204 205 increases in body weight parameters in some populations. There may also be an impact of gender in these data. Male carriers of the mutant alleles of CNR1 polymorphisms rs1049353 and 206 rs806368 have an increased likelihood of obesity <sup>14,16</sup>. Similarly, the associations between the 207 208 CNR2 polymorphism rs3123554 and lower BMI, weight and body fat percentage were reported in 209 female subjects <sup>21</sup>. Gender differences in feeding behaviour have been previously observed in animal models <sup>39</sup>. This may be explained by the action of oestrogen, which uncouples CB 210 211 receptors from their effector systems in synaptic terminals, reducing the effect of cannabinoids

Higher oestrogen levels in non-pregnant females may therefore contribute to these gender specific findings.

214

215 In conclusion, associations between the mutant allele of the CB<sub>1</sub> SNP rs1049353 and decreased 216 fat mass, weight and BMI indicate that this SNP is an important contributor to alterations in 217 metabolism. Evidence points to decreased receptor functionality affecting normal pathways of 218 adipogenesis and energy regulation. Its effects also extend to improvements in lipid levels and 219 parameters of glucose metabolism. The mutant allele of FAAH polymorphism rs324420 was 220 associated with increased BMI and triglyceride levels, possibly caused by decreased enzyme 221 activity and overactivation of the ECS. Other SNPs had varying associations but often presented 222 conflicting results. These findings represent therapeutic targets for the management of obesity 223 and hyperlipidaemia, and assessment of patients for these genetic changes would provide an 224 opportunity to give personalised treatment for a proportion of patients. Further studies in 225 populations of varying demographics are needed to investigate the role that other SNPs play in 226 adiposity and glucose metabolism, as well as genetic studies to determine the molecular changes 227 of SNPs responsible for alterations in function. 228 229 **Declaration of interest** 

230 There is no conflict of interest that could be perceived as prejudicing the impartiality of the

- research reported.
- 232
- 233 Funding

This work was partly supported by the Biotechnology and Biological Sciences Research Council

235 (Grant number BB/I024291/1).

| 237<br>238 | References:                                                                                              |                                  |
|------------|----------------------------------------------------------------------------------------------------------|----------------------------------|
| 238        | 1. O'Keefe L., Simcocks AC., Hryciw DH, Mathai ML, Mo                                                    | Ainch AL The cannabinoid         |
| 240        | receptor 1 and its role in influencing peripheral met                                                    |                                  |
| 241        | and Metabolism. 2014;16:294-304.                                                                         |                                  |
| 242        | 2. Greenbaum L, Tegeder, I., Barhum, Y., Melamed, E.,                                                    | Roditi, Y. and Djaldetti, R      |
| 243        | Contribution of genetic variants to pain susceptibilit                                                   | • •                              |
| 244        | European Journal of Pain. 2012;16(9):1243-1250.                                                          |                                  |
| 245        | 3. Russo P, Strazzullo, P., Cappuccio, F. P., Tregouet, D.                                               | . A., Lauria, F., Loguercio, M., |
| 246        | Barba, G., Versiero, M. and Siani, A. Genetic variatio                                                   | ons at the endocannabinoid       |
| 247        | type 1 receptor gene (CNR1) are associated with ob                                                       | esity phenotypes in men.         |
| 248        | Journal of Clinical Endocrinology & Metabolism. 200                                                      | 7;92(6):2382-2386.               |
| 249        | 4. Miguel-Yanes J, Manning, A., Shrader, P., McAteer, J                                                  | I., Goel, A., Hamsten, A., Fox,  |
| 250        | C., Florez, J., Dupuis, J. and Meigs, J Variants at the                                                  | e Endocannabinoid receptor       |
| 251        | CB1 Gene (CNR1) and insulin sensitivity, type 2 diab                                                     | etes, and coronary heart         |
| 252        | disease. <i>Obesity</i> . 2011;19(10):2031-2037.                                                         |                                  |
| 253        | 5. NCBI. dbSNP. 2018; https://www.ncbi.nlm.nih.                                                          | gov/projects/SNP/. Accessed      |
| 254        | 7/2/2018, 2018.                                                                                          |                                  |
| 255        | 6. Higgins JP AD, Gotzsche PC, Juni P, Moher D, Oxmar                                                    |                                  |
| 256        | collaboration's tool for assessing risk of bias in rand                                                  |                                  |
| 257        | 7. Gazzerro P, Caruso, M., Notarnicola, M., Misciagna,                                                   |                                  |
| 258        | Bifulco, M. Association between cannabinoid type-1                                                       |                                  |
| 259        | body mass index in a southern Italian population I                                                       | nternational journal of          |
| 260<br>261 | obesity. 2007;31(6):908-912.                                                                             | to Dond Domoro C. Dolo of        |
| 261        | 8. de Luis D, Ovalle, H., Soto, G., Izaola, O., de la Fuen<br>Genetic Variation in the Cannabinoid Recep |                                  |
| 262        | Polymorphism) on Weight Loss and Cardiovascular                                                          |                                  |
| 263        | Treatment in Obese Patients With Diabetes                                                                | _                                |
| 265        | Investigative Medicine. 2014;62(2):324-327.                                                              | vienitus Type 2. Journal oj      |
| 266        | 9. Hu WC, Feng P., G1359A polymorphism in the ca                                                         | nnahinoid recentor-1 gene is     |
| 267        | associated with metabolic syndrome in the Chines                                                         |                                  |
| 268        | medical research. 2010;41(5):378-382.                                                                    |                                  |
| 269        | 10. Liu R, Zhang Y. G1359A polymorphism in the cannab                                                    | pinoid receptor-1 gene is        |
| 270        | associated with coronary artery disease in the Chine                                                     |                                  |
| 271        | 2011;57(9-10):689-693.                                                                                   |                                  |
| 272        | 11. Gazzerro P, Caruso, M., Notarnicola, M., Misciagna,                                                  | , G., Guerra, V., Laezza, C. and |
| 273        | Bifulco, M. Association between cannabinoid type-                                                        | 1 receptor polymorphism and      |
| 274        | body mass index in a southern Italian population. In                                                     | nternational journal of obesity. |
| 275        | 2007;31(6):908-912.                                                                                      |                                  |
| 276        | 12. Wang R., Hu W., Qiang L. G1359A polymorphism i                                                       | in the cannabinoid receptor-1    |
| 277        | gene is associated with the presence of coronary a                                                       |                                  |
| 278        | type 2 diabetes. Journal of Investigative Medicine. 2                                                    |                                  |
| 279        | 13. Frost M, Nielsen, T., Wraae, K., Hagen, C., Piters, E.,                                              |                                  |
| 280        | Brixen, K., Van Hul, W. and Andersen, M Polymorp                                                         |                                  |
| 281        | endocannabinoid receptor 1 in relation to fat mass                                                       | distribution European            |
| 282        | Journal of Endocrinology. 2010;163(3):407-412.                                                           |                                  |

283 14. Peeters A, Beckers, S., Mertens, I., Van Hul, W. and Van Gaal, L. The G1422A variant 284 of the cannabinoid receptor gene (CNR1) is associated with abdominal adiposity in 285 obese men. Endocrine. 2007;31(2):138-141. 286 15. Col Araz N, Nacak, M., Oguzkan Balci, S., Benlier, N., Araz, M., Pehlivan, S., Balat, A. 287 and Aynacioglu, A. Childhood Obesity and the Role of Dopamine D2 Receptor and 288 Cannabinoid Receptor-1 Gene Polymorphisms. Genetic Testing and Molecular 289 Biomarkers. 2012;16(12):1408-1412. 290 291 292 For full list of references, please refer to the Appendix section online.

| Table 1. Associations found between s | single nucleotide polymorphisms and | d metabolic and anthropometric parameters. |
|---------------------------------------|-------------------------------------|--------------------------------------------|
|                                       |                                     |                                            |

| Polymorphism | Gene | Nucleotide<br>change | Nucleotide<br>position | Region of gene | Amino acid<br>change | Amino acid<br>position | Associations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------|------|----------------------|------------------------|----------------|----------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rs1049353    | CNR1 | G>A                  | 1359                   | Exon           | Thr>Thr              | 453                    | <ul> <li>Positive:</li> <li>Homozygosity for mutant allele associated with increased WHR and WC in obese men only.<sup>14</sup></li> <li>Mutant allele associated with higher fat in post-menopausal women.<sup>43</sup></li> <li>Mutant allele associated with increased BMI in T2DM subjects.<sup>44</sup></li> <li>Wild-type allele associated with higher HOMA<sub>IR</sub>.<sup>45</sup></li> <li>Mutant allele group associated with greater weight loss and decrease in BMI.<sup>46</sup></li> <li>Mutant allele associated with childhood obesity.<sup>47</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |      |                      |                        |                |                      |                        | <ul> <li>Negative:</li> <li>Mutant allele associated with lower glucose.<sup>46</sup></li> <li>Mutant allele associated with lower insulin.<sup>22,39,48</sup></li> <li>Mutant allele with lower BMI.<sup>10,11,12,14,31</sup></li> <li>Mutant allele with lower HOMA<sub>IR</sub>, TGs.<sup>9,10,12,14,23,24,29,30</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| s806368      | CNR1 | T>C                  | 4895                   | Intron         | -                    | -                      | <ul> <li>Positive:</li> <li>Mutant allele associated with increased WHR.<sup>47</sup></li> <li>Mutant allele associated with increased TGs.<sup>49</sup></li> <li>Mutant allele associated with increased BMI, WC and obesity.<sup>16</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rs324420     | FAAH | C>A                  | 385                    | Exon           | Pro>Thr              |                        | <ul> <li>Positive:</li> <li>Mutant allele associated with higher insulin and HOMA<sub>IR</sub> in patients without MetS.<sup>50</sup></li> <li>Homozygosity for mutant allele associated with increased BMI.<sup>17</sup></li> <li>Mutant allele associated with obesity.<sup>19,20</sup></li> <li>Wild-type allele associated with childhood obesity.<sup>51</sup></li> <li>Mutant allele associated with increased TGs.<sup>32</sup></li> <li>Negative:</li> <li>Mutant allele associated with lower TGs, glucose and HOMA<sub>IR</sub> levels.<sup>28,44</sup></li> <li>Mutant allele associated with better percentage weight loss 9 months and 1 year after bariatri surgery, but not after 3 months.<sup>52</sup></li> <li>Lower insulin and HOMA<sub>IR</sub> in mutant-type group. Mutant allele associated with greater decrease in weight and WC than wild-type following hypocaloric diet. Mutant allele also associated with lower WC, BMI, HOMA<sub>IR</sub> and TGs in subjects with MetS.<sup>53</sup></li> <li>Mutant allele associated with lower insulin, glucose and HOMA<sub>IR</sub> values.<sup>54</sup></li> </ul> |

Abbreviations: CNR1, cannabinoid receptor gene 1; FAAH, fatty acid amide hydrolase; WC, waist circumference; WHR, waist-to-hip ratio; BMI, body mass index; TGs, triglycerides; HOMA<sub>IR</sub>, homeostatic model assessment of insulin resistance; TNF- $\alpha$ , tumour necrosis factor  $\alpha$ ; MetS, metabolic syndrome; T2DM, Type 2 Diabetes Mellitus.

Anthropometrics and blood pressure

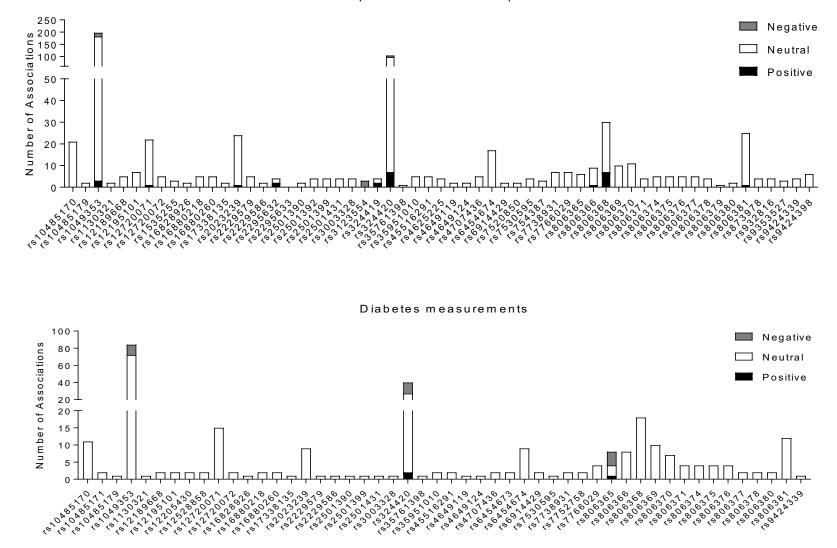
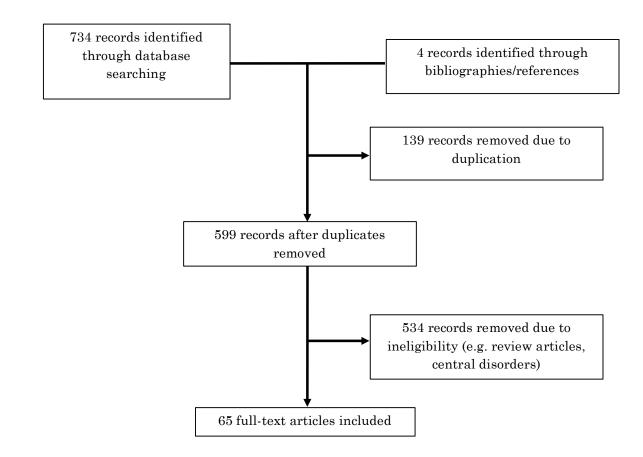




Figure 1. Number of associations found between ECS polymorphisms and anthropometric and diabetic parameters.



# Figure S1: Summary of search results and exclusions

|                                                      | 0                             | ent                    | nts                                       | a                                 | e                          | 00                  |            |
|------------------------------------------------------|-------------------------------|------------------------|-------------------------------------------|-----------------------------------|----------------------------|---------------------|------------|
|                                                      | Random sequence<br>generation | Allocation concealment | Blinding of participants<br>and personnel | Blinding of outcome<br>assessment | Incomplete outcome<br>data | Selective reporting | se         |
|                                                      | dom seque<br>generation       | conc                   | ding of particip<br>and personnel         | ding of outco<br>assessment       | ete ou<br>data             | e rep               | Other bias |
|                                                      | ndon<br>gene                  | ation                  | oguingo                                   | ding<br>asse                      | aldm<br>o                  | ectiv               | Oth        |
|                                                      | Raı                           | Nloca                  | alindi                                    | Blin                              | lnco                       | Sel                 |            |
| Aberle J., et al 2008                                | 0                             | •                      |                                           | -}-                               | ÷                          | +                   | 0          |
| Aberle J., et al 2007                                | 0                             | 0                      | -<br>+                                    | +                                 | 0                          | +                   | 0          |
| Aller et al. 2012<br>Baye T., et al 2008             | •                             | 0                      | +                                         | ++                                | 0                          | ++                  | 0          |
| Bellini G., et al 2015                               | +                             | 0                      | +                                         | +                                 | 0                          | +                   | 0          |
| Benzinou M., et al 2008                              | +                             | 0                      | +                                         | +                                 | +                          | 0                   | +          |
| Bordicchia M., et al 2010                            | 0                             | 0                      | ++                                        | •                                 | +<br>•                     | +                   | ++         |
| Buraczynska M., et al 2014<br>Caruso M., et al 2012  | +                             | 0                      | +                                         | +                                 | 0                          | 0                   | •<br>•     |
| Chmelikova M., et al 2014                            | +                             | 0                      | +                                         | +                                 | +                          | +                   | +          |
| Col Araz N., et al 2012                              | +                             | 0                      | +                                         | 0                                 | +                          | 0                   | 0          |
| de Luis D., et al 2009                               | 0                             | •                      | +                                         | 0                                 | +                          | +                   | +          |
| de Luis D., et al 2010a<br>de Luis D., et al 2010b   | •                             | 0                      | ++                                        | ++                                | ++                         | ++                  | •          |
| de Luis D., et al 2010c                              | · · ·                         | 0                      | +                                         | +                                 | +                          | +                   | +          |
| de Luis D., et al 2010d                              | +                             | 0                      | +                                         | +                                 | +                          | +                   | •          |
| de Luis D., et al 2011a                              | +                             | 0                      | _                                         | _                                 | +                          | +                   | +          |
| de Luis D., et al 2011b                              | •                             | 0                      | ++                                        | ++                                | +++                        | ++                  | 0          |
| de Luis D., et al 2011c<br>de Luis D., et al 2011d   | •                             | 0                      | +                                         | +                                 | + +                        | *<br>•              | 0          |
| de Luis D., et al 2011e                              | 0                             | 0                      | -                                         |                                   | ·<br>+                     | •                   | 0          |
| de Luis D., et al 2012                               | +                             | 0                      | +                                         | +                                 | +                          | ٥                   | 0          |
| de Luis D., et al 2013                               | +                             | 0                      | —                                         | _                                 | +                          | 0                   | 0          |
| de Luis D., et al 2014                               | +                             | 0                      | +                                         | 0                                 | +                          | •                   | 0          |
| de Luis D., et al 2015a<br>de Luis D., et al 2015b   | + +                           | 0                      | -+                                        | +                                 | ++                         | +<br>。              | 0          |
| de Luis D., et al 2015c                              | ·<br>+                        | 0                      | +                                         | - <del> -</del>                   | ·<br>+                     | 0                   | 0          |
| de Luis D., et al 2017                               | +                             | 0                      | +                                         | +                                 | +                          | 0                   | +          |
| de Miguel-Yanes J., et al 2011                       | 0                             | 0                      | +                                         | 0                                 | +                          | +                   | 0          |
| Dinu I., et al 2009                                  | 0                             | 0                      | +                                         | +                                 | +                          | +                   | 0          |
| Durand E., et al 2008<br>Feng Q., et al 2010         | 0                             | 0                      | ++                                        | 0                                 | ++                         | ++                  | 0          |
| Feng Q., et al 2013                                  | 0                             | 0                      | +                                         | +                                 | +                          | +                   | 0          |
| Frost M., et al 2010                                 | +                             | 0                      | +                                         | +                                 | +                          | +                   | 0          |
| Gazzerro P., et al 2007                              | o                             | 0                      | +                                         | 0                                 | +                          | +                   | 0          |
| Grolmusz VK., et al 2013                             | +                             | 0                      | +                                         | •                                 | +                          | +                   | +          |
| Hu W., et al 2010<br>Jaeger JP., et al 2008          | ++                            | 0                      | +                                         | +<br>•                            | ++                         | ++                  | 0          |
| Jensen DP., et al 2007                               | +                             | 0                      | +                                         | +                                 | +                          | +                   | +          |
| Ketterer C., et al 2014                              | 0                             | 0                      | +                                         | +                                 | +                          | +                   | +          |
| Knoll N., et al 2012                                 | +                             | 0                      | +                                         | +                                 | +                          | 0                   | 0          |
| Laczmanski L., et al 2011                            | 0                             | 0                      | +                                         | 0                                 | +                          | +                   | +          |
| Lenarcik-Kabza A., et al 2014<br>Lieb W., et al 2009 | •                             | 0                      | ++                                        | •                                 | ++                         | ++                  | ++         |
| Liu R., et al 2011                                   | 0                             | 0                      | +                                         |                                   | •                          | •                   | ·<br>+     |
| Martins C., et al 2015                               | o                             | 0                      | 0                                         | 0                                 | +                          | +                   | 0          |
| Milewicz A., et al 2010                              | 0                             | 0                      | +                                         | +                                 | +                          | +                   | +          |
| Monteleone P., et al 2008                            | •                             | 0                      | +                                         | •                                 | +                          | +                   | +          |
| Muller TD., et al 2007<br>Muller TD., et al 2010     | ++++                          | 0                      | +<br>•                                    | ++                                | ++                         | ++                  | +<br>•     |
| Mutombo PB., et al 2011                              | 0                             | 0                      | +                                         | +                                 | +                          | +                   | +          |
| Papazoglou D., et al 2008                            | ٥                             | 0                      | -                                         | +                                 | +                          | +                   | +          |
| Peeters A., et al 2007                               | o                             | 0                      | +                                         | +                                 | +                          | 0                   | 0          |
| Reinhard W., et al 1998                              | +                             | 0                      | +                                         | +                                 | +                          | +                   | +          |
| Russo P., et al 2007<br>Schleinitz D., et al 2010    | 0                             | 0                      | •                                         | •                                 | ++                         | ++                  | •          |
| Sipe JC., et al 2005                                 | +                             | 0                      | +                                         | +                                 | +                          | +                   | +          |
| Suarez-Pinilla P., et al 2015                        | •                             | 0                      | -                                         | +                                 | •                          | •                   | +          |
| Tiwari et al., 2010                                  | ٥                             | 0                      | +                                         | +                                 | ٥                          | 0                   | +          |
| Vazquez-Roque M., et al 2011                         | +                             | •                      | +                                         | +                                 | +                          | •                   | +          |
| Wang L., et al 2003                                  | +                             | 0                      | +                                         | +                                 | +                          | +                   | +          |
| Wang R., et al 2012<br>Wangensteen T., et al 2010    | •                             | 0                      | +<br>•                                    | ++                                | ++                         | 0                   | •          |
| Zhang Y., et al 2009                                 | +                             | 0                      | _                                         | +                                 | +                          | +                   | 0          |
| Zhuang M., et al 2012                                | 0                             | 0                      | o                                         | +                                 | +                          | +                   | 0          |

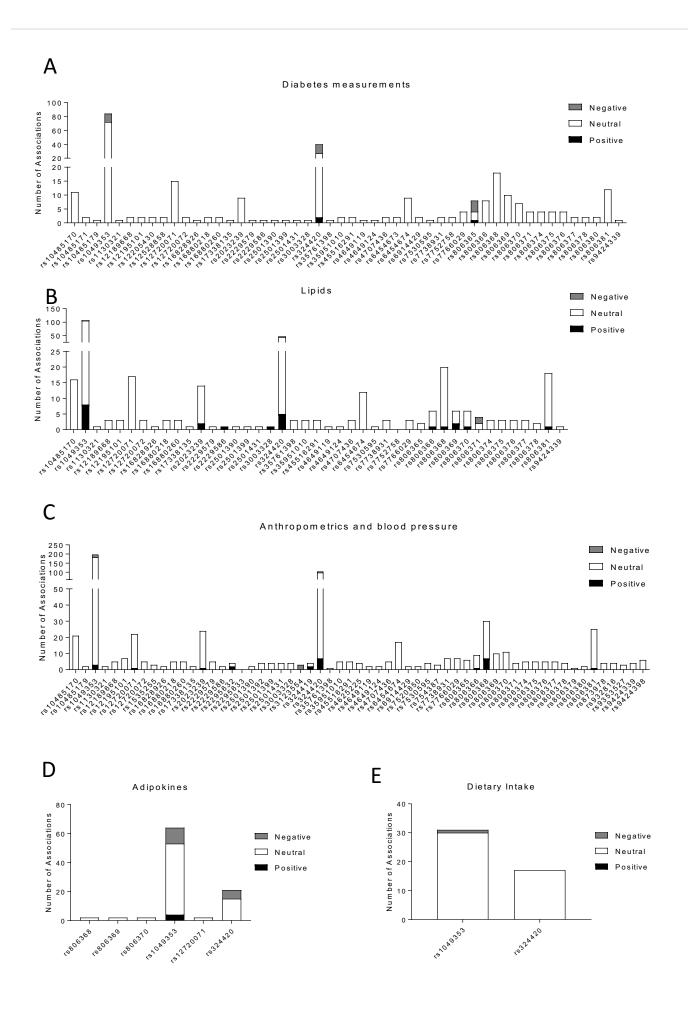



 Table S1. Associations found between single nucleotide polymorphisms and metabolic and anthropometric parameters.

| Polymorphism | Gene | Nucleotide<br>change | Nucleotide<br>position | Region of gene | Amino acid<br>change | Amino acid<br>position | Associations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|------|----------------------|------------------------|----------------|----------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |      | 0                    | •                      | 0              | 0                    |                        | leutral:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rs10485170   | CNR1 | A>G                  | -                      | -              | -                    | -                      | <ul> <li>No association with anthropometric measurements (weight, BMI, WC, WHR), biochemical measurements (glucose, TC, HDL-C, LDL-C, TGs, insulin, HOMAir).<sup>82</sup></li> <li>No association with anthropometric measurements (weight, BMI, WC, total fat (g), fat (%), android fat deposit, biochemical measurements (glucose, TC, HDL-C, LDL-C, TGs, insulin, fasting insulin resistance index) in postmenopausal women.<sup>43,91</sup></li> <li>No association with antipsychotic-induced weight gain.<sup>92</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |      |                      |                        |                |                      |                        | ositive:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |      |                      |                        |                |                      |                        | <ul> <li>Homozygosity for mutant allele associated with increased WHR and WC in obese men only.<sup>14</sup></li> <li>Mutant allele associated with higher android fat deposit and percentage of android fat in postmenopausal women.<sup>43</sup></li> <li>Mutant allele associated with increased BMI in T2DM subjects.<sup>74</sup></li> <li>Mutant allele associated with higher adiponectin and visfatin levels. Wild-type group had higher HOMAir, TNFa and resistin.<sup>66</sup></li> <li>Mutant allele associated with higher adiponectin levels.<sup>75</sup></li> <li>After 3 months' diet, mutant allele group associated with greater weight loss, decrease in BMI, and decrease in LDL.<sup>81</sup></li> <li>Homozygosity for mutant allele associated with increased cholesterol levels.<sup>80</sup></li> <li>Mutant allele associated with childhood obesity.<sup>15</sup></li> <li>Mutant allele associated with higher HDL-C.<sup>29,10</sup></li> <li>Mutant allele associated with lack of decrease in leptin following hypocaloric diet.<sup>76</sup></li> </ul> |
|              |      |                      |                        |                |                      |                        | leutral:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |      |                      |                        |                |                      |                        | No association with BMI. <sup>16,35,64,69</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rs1049353    | CNR1 | G>A                  | 1359                   | Exon           | Thr>Thr              | 453                    | <ul> <li>No association with BMI, weight, WC, WHR, glucose, total cholesterol, LDL, HDL, TG, IL-6, or<br/>leptin.<sup>66,81</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |      |                      |                        |                |                      |                        | <ul> <li>No association with BMI, cholesterol, LDL-C, HDL-C.<sup>85</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |      |                      |                        |                |                      |                        | • No association with TC, HLD-C, LDL-C. <sup>24</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |      |                      |                        |                |                      |                        | <ul> <li>No association with anthropometric parameters (BMI, weight, fat free mass (kg), fat mass (kg),<br/>WC, WHR, SBP, DBP, RMR).<sup>23,30,47,49</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |      |                      |                        |                |                      |                        | • No association with anthropometric parameters (BMI, weight, fat free mass (kg), fat mass (kg),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |      |                      |                        |                |                      |                        | WC, WHR, SBP, DBP, RMR), dietary intake (energy (kcal/day), carbohydrates (g/day), fat (g/day), protein (g/day)) and exercise (hrs/week) or adipocytokines ((IL-6), TNF-a, adiponectin, resistin, leptin). <sup>29,46,68,71,84</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |      |                      |                        |                |                      |                        | WC, WHR, SBP, DBP, RMR), dietary intake (energy (kcal/day), carbohydrates (g/day), fat (g/day), protein (g/day)) and exercise (hrs/week) or adinocytokines ((II-6), TNE-a, adinopectin, resistin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |      |                      |                        |                |                      |                        | <ul> <li>WC, WHR, SBP, DBP, RMR), dietary intake (energy (kcal/day), carbohydrates (g/day), fat (g/day), protein (g/day)) and exercise (hrs/week) or adipocytokines ((IL-6), TNF-a, adiponectin, resistin, leptin).<sup>29,46,68,71,84</sup></li> <li>No associations with total body fat mass, BMI, WHR, abdominal and femoral subcutaneous fat mass or any biochemical markers (n=7).<sup>13</sup></li> <li>No association with glucose, total cholesterol, LDL-C, HDL-C, TGs, lipoprotein (a), insulin, HOMAi</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |      |                      |                        |                |                      |                        | <ul> <li>WC, WHR, SBP, DBP, RMR), dietary intake (energy (kcal/day), carbohydrates (g/day), fat (g/day), protein (g/day)) and exercise (hrs/week) or adipocytokines ((IL-6), TNF-a, adiponectin, resistin, leptin).<sup>29,46,68,71,84</sup></li> <li>No associations with total body fat mass, BMI, WHR, abdominal and femoral subcutaneous fat</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|            |       |     |      |              |   | •<br>•<br>•<br>• | No association with glucose, TC, LDL-C, HDL-C, TGs, lipoprotein (a), insulin, HOMAir, CRP. <sup>46,68</sup><br>No association with glucose, TC, LDL-C, CRP, lipoprotein (a). <sup>29</sup><br>No association with glucose, TC, LDL-C, insulin, HOMAir, CRP, dietary intake. <sup>30</sup><br>No association with SBP, DBP, TC, HDL-C or LDL-C. <sup>9</sup><br>No difference between basal and post-diet anthropometric measurements or cardiovascular ris<br>factors. <sup>76</sup><br>No difference in decrease in BMI, weight, fat mass, fat free mass, WC, WHR, SBP, DBP, glucose,<br>HDL-C, TGs or insulin between wild- or mutant-type group following treatment with liraglutide. <sup>8</sup> |
|------------|-------|-----|------|--------------|---|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |       |     |      |              |   | •                | No association with carbohydrate, fat, m-fat, p-fat, protein or fibre intake. $^{ m 31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |       |     |      |              |   | Negative         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |       |     |      |              |   | •                | Mutant allele associated with lower glucose. <sup>81</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |       |     |      |              |   | •                | Mutant allele with lower BMI. <sup>10,11</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |       |     |      |              |   | •                | Mutant allele with lower HOMAir, TGs. <sup>10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |       |     |      |              |   | •                | Mutant allele associated with lower weight, BMI, fat mass <sup>8</sup> , WC, insulin, HOMAir and CRP. <sup>24</sup><br>Mutant allele associated with lower BMI, SBP, HOMAir and CRP and higher HDL-C. <sup>12</sup> Lack of<br>improvement in cholesterol, glucose, insulin, TGs, HOMAir and leptin compared with wild-type                                                                                                                                                                                                                                                                                                                                                                           |
|            |       |     |      |              |   |                  | group following hypocaloric diet. <sup>84</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |       |     |      |              |   | •                | Mutant allele with lower TGs, insulin and HOMAir values. <sup>29</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |     |      |              |   | •                | Mutant allele with decreased resistin, leptin and IL-6 following weight loss. <sup>46</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |       |     |      |              |   | •                | Mutant allele with decreased glucose, insulin, HOMAir and incidence of MetS. <sup>23</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |       |     |      |              |   | •                | Mutant allele with better improvements in HOMAir following treatment with liraglutide. <sup>8</sup><br>Mutant allele with lower TGs and higher HDL-C. <sup>30</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |       |     |      |              |   | •                | Mutant-type group associated with lower TGs and higher HDL-C, and lower cholesterol and saturated fat intake. <sup>31</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |       |     |      |              |   | •                | Mutant allele with decreased dietary cholesterol and saturated fats. <sup>93</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|            |       |     |      |              |   | •                | Mutant allele associated with lower BMI, WC, HOMAir, TG levels and prevalence of MetS. <sup>9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |       |     |      |              |   | Positive:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |       |     |      |              |   | •                | Mutant allele associated with increased WC and subscapular skinfold thickness. $^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |       |     |      |              |   | Neutral:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |       |     |      | 3 Prime      |   | •                | No association with anthropometric (weight, height, BMI, WHR, WC) or biochemical (HDL-C, LD C, TGs, glucose) measurements. <sup>47,49</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| rs12720071 | CNR1  | A>G | 3813 | Untranslated | - | - •              | No association with Anthropometric measurements (weight, BMI, WC, total fat (g), fat (%),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |       |     |      | Region (3'   |   |                  | android fat deposit, biochemical measurements (glucose, TC, HDL-C, LDL-C, TGs, insulin, FIRI) <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |       |     |      | UTR)"        |   | •                | No association with BMI, WC, TC, HDL-C, LDL-C, TGs, glucose, SBP, DBP, MBP. <sup>88</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |       |     |      |              |   | •                | No association with impaired glucose metabolism. <sup>73</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |       |     |      |              |   | •                | No association with HOMAir, insulin, glucose. <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |       |     |      |              |   | •                | No associations with BMI, WC or visceral adipose tissue. <sup>64</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |     |      |              |   | Positive         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| rs2023239  | CNR1  | C>T | 5489 | Intron       | _ | •                | Mutant allele associated with higher BMI. <sup>36</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 32023233   | CINKT | U/1 | 5403 | maon         | - | - Neutral        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |       |     |      |              |   | •                | No association with obesity. <sup>35,69</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|           |       |     |      |        |   | •         | No association with anthropometric measurements (weight, BMI, WC, total fat (g), fat (%), android fat deposit, biochemical measurements (glucose, TC, HDL-C, LDL-C, TGs, insulin, fasting insulin resistance index). <sup>87,91</sup> |
|-----------|-------|-----|------|--------|---|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |       |     |      |        |   | •         | No association with anthropometric measurements (BMI, WC, WHR, SBP, DBP) and biochemical (TC, TGs). $^{\rm 94}$                                                                                                                       |
|           |       |     |      |        |   | Neutral   |                                                                                                                                                                                                                                       |
| rs6454674 | CNR1  | G>T | -    | -      | - | - •       | No association with anthropometric measurements (weight, BMI, WC, WHR), biochemical measurements (glucose, TC, HDL-C, LDL-C, TGs, insulin, HOMAir). <sup>43,82,91</sup>                                                               |
|           |       |     |      |        |   | Positive: |                                                                                                                                                                                                                                       |
|           |       |     |      |        |   | •         | Mutant allele with increased BMI and TGs. <sup>49</sup>                                                                                                                                                                               |
|           |       |     |      |        |   | Neutral   |                                                                                                                                                                                                                                       |
|           |       |     |      |        |   | •         | No association with glucose. <sup>4</sup>                                                                                                                                                                                             |
| rs806365  | CNR1  | C>T | -    | -      | - | •         | No association with anthropometric measurements (BMI, obesity, WC, central obesity, SBP, DBF hypertension) and metabolic variables (HDL-C, LDL-C, TGs, HbA1c, T2DM). <sup>16</sup>                                                    |
|           |       |     |      |        |   | •         | No associations with BMI, waist circumference or visceral adipose tissue. <sup>64</sup>                                                                                                                                               |
|           |       |     |      |        |   | •         | No association with WC, hip circumference, WHR), insulin responsiveness (insulin, glucose, insulin:glucose, HOMAir), lipids (TC, LDL-C, HDL-C). <sup>49</sup>                                                                         |
|           |       |     |      |        |   | Negative  |                                                                                                                                                                                                                                       |
|           |       |     |      |        |   | •         | Mutant allele with lower HOMAir and insulin levels. <sup>4</sup>                                                                                                                                                                      |
|           |       |     |      |        |   | Positive: |                                                                                                                                                                                                                                       |
|           |       |     |      |        |   | •         | Associated with increased BMI and TGs. <sup>49</sup>                                                                                                                                                                                  |
|           |       |     |      |        |   | Neutral:  |                                                                                                                                                                                                                                       |
| rs806366  | CNR1  | T>C | -    | -      | - | - •       | No association with HOMAir, glucose or insulin levels. <sup>4</sup>                                                                                                                                                                   |
|           |       |     |      |        |   | •         | No association with anthropometric measurements (BMI, obesity, WC, central obesity, SBP, DBI hypertension) and metabolic variables (HDL-C, LDL-C, TGs, HbA1c, T2DM). <sup>16</sup>                                                    |
|           |       |     |      |        |   | •         | No associations with BMI, waist circumference or visceral adipose tissue. <sup>64</sup>                                                                                                                                               |
|           |       |     |      |        |   | Positive: |                                                                                                                                                                                                                                       |
|           |       |     |      |        |   | •         | Mutant allele associated with increased WHR. <sup>47</sup>                                                                                                                                                                            |
|           |       |     |      |        |   | •         | Mutant allele associated with increased TGs. <sup>49</sup>                                                                                                                                                                            |
|           |       |     |      |        |   | •         | Mutant allele associated with increased BMI, WC, SBP and obesity. <sup>16</sup>                                                                                                                                                       |
|           |       |     |      |        |   | Neutral:  |                                                                                                                                                                                                                                       |
| rs806368  | CNR1  | T>C | 4895 | Intron | - | -         | No association with weight, height, BMI, WC, HDL-C, LDL-C, TGs, glucose and lifestyle factors $(n=3)$ . <sup>47</sup>                                                                                                                 |
|           |       |     |      |        |   | •         | No association with BMI <sup>83</sup> , WC, subscapular skinfold thickness. <sup>3</sup>                                                                                                                                              |
|           |       |     |      |        |   | •         | No association with anthropometric measurements (weight, BMI, WC, WHR), biochemical                                                                                                                                                   |
|           |       |     |      |        |   |           | measurements (glucose, TC, HDL-C, LDL-C, TGs, insulin, HOMAir). <sup>43,82</sup>                                                                                                                                                      |
|           |       |     |      |        |   | •         | No association with HOMAir, glucose, insulin levels. <sup>4</sup>                                                                                                                                                                     |
|           |       |     |      |        |   | •         | No associations with BMI, waist circumference or visceral adipose tissue. <sup>64</sup>                                                                                                                                               |
|           |       |     |      |        |   | Positive: |                                                                                                                                                                                                                                       |
| s806369   | CNR1  | C>T |      | Intron |   | •         | Mutant allele with increased TGs, TC. <sup>49</sup>                                                                                                                                                                                   |
| 2002223   | CINKI | (2) | -    | intron | - | - Neutral |                                                                                                                                                                                                                                       |
|           |       |     |      |        |   | •         | No association with BMI. <sup>83</sup>                                                                                                                                                                                                |

|            |      |     |       |        |         |     | <ul> <li>No association with BMI, WC, hip circumference, WHR, insulin, glucose, insulin:glucose, HOMAir, LDL-C, HDL-C.<sup>16,49</sup></li> <li>No association with association with HOMAir, glucose and insulin levels.<sup>4</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                   |
|------------|------|-----|-------|--------|---------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rs806370   | CNR1 | C>T | _     | Intron | _       | -   | Positive:<br>• Mutant allele with raised HDL-C. <sup>49</sup><br>Neutral:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | 02   |     |       |        |         |     | <ul> <li>No association with BMI.<sup>35,83</sup></li> <li>No association with BMI, WC, hip circumference, WHR, insulin, glucose, insulin:glucose, HOMAir, TC, LDL-C, TGs.<sup>16,49</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                             |
| rs806371   | CNR1 | G>T | -     | Intron | -       | -   | <ul> <li>Neutral:</li> <li>No association with HOMAir, glucose, insulin levels.<sup>4</sup></li> <li>No association with anthropometric measurements (BMI, obesity, WC, central obesity, SBP, DBP hypertension) and metabolic variables (HDL-C, LDL-C, TGs, HbA1c, T2DM)<sup>16</sup></li> <li>No associations with BMI, waist circumference or visceral adipose tissue.<sup>64</sup></li> </ul>                                                                                                                                                                                                  |
|            |      |     |       |        |         |     | <ul> <li>Negative:</li> <li>Mutant allele with lower HDL-C levels.<sup>79</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| rs806381   | CNR1 | A>G | 10908 | Intron | -       | -   | <ul> <li>Positive:</li> <li>Mutant allele with higher BMI.<sup>36</sup></li> <li>Neutral:</li> <li>No association with anthropometric measurements (weight, BMI, WC, WHR), biochemical measurements (glucose, TC, HDL-C, LDL-C, TGs, insulin, HOMAir).<sup>13,43,82</sup></li> <li>No association with BMI, WC, WHR, SBP, DBP, TC, TGs.<sup>94</sup></li> <li>No association with anthropometric measurements (Weight, BMI, WC, fat (%), android fat deposit, gynoid fat deposit, SBP, DBP) and biochemical measurements (TC, HDL-C, LDL-C, TGs, glucose, insulin, FIRI).<sup>91</sup></li> </ul> |
| rs10485179 | CNR1 |     | -     | Intron | -       | -   | <ul> <li>No association with obesity-related or glucose metabolism parameters.<sup>13</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| rs35761398 | CNR2 | A>G | 188   | Exon   | Gln>Arg | 63  | <ul> <li>No association with BMI, HOMAir, TC, HDL-C or TG levels.<sup>95</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rs3123554  | CNR2 | G>A | -     | -      | -       | -   | <ul> <li>Positive:         <ul> <li>Mutant-type group had higher BMI, weight, fat mass, WC TGs, insulin and HOMAir than wild-type group.<sup>26</sup></li> <li>Neutral:             <ul></ul></li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                 |
| rs324419   | FAAH | A>G | 895   | Exon   | Ala>Ala | 275 | <ul> <li>Neutral:</li> <li>No association with obesity.<sup>51</sup></li> <li>No association with BMI, waist circumference or visceral adipose tissue.<sup>64</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                    |
| rs324420   | FAAH | C>A | 385   | Exon   | Pro>Thr | 129 | <ul> <li>Positive:</li> <li>Mutant allele associated with higher insulin and HOMAir in patients without MetS.<sup>50</sup></li> <li>Homozygosity for mutant allele associated with increased BMI.<sup>17</sup></li> <li>Mutant allele associated with obesity.<sup>19</sup></li> </ul>                                                                                                                                                                                                                                                                                                            |

- Wild-type allele associated with childhood obesity.<sup>51</sup>
- Wild-type genotype associated with class III adult obesity.<sup>20</sup>
- Mutant allele associated with increased HDL-C.<sup>20</sup>
- Wild-type allele associated with higher HDL-C levels in subjects with MetS.<sup>53</sup>
- Mutant allele associated with increased TGs.<sup>32</sup>

Neutral:

- No association with BMI.<sup>96</sup>
- No differences in cholesterol levels between genotypes.<sup>80</sup>
- No association with anthropometric measurements <sup>18,28</sup> or dietary intake.<sup>28,44</sup>
- No differences in anthropometric, metabolic parameters or adipocytokines between genotypes ir MetS or non-MetS subjects.<sup>50</sup>
- No association with BMI, WC, WHR, glucose, insulin, C-peptide, HOMAir, TGs, TC.<sup>72</sup>
- No association with binge-eating disorder.<sup>19</sup>
- No association with child obesity or T2DM.<sup>20</sup>
- No association with BMI, waist circumference or visceral adipose tissue.<sup>64</sup>
- No association with SBP, DBP, TC or LDL-C levels.<sup>53</sup>
- No association with BMI, weight, TC, LDL-C, HDL-C, TGs, glucose, insulin, HOMAir, SBP, DBP.<sup>48</sup>

#### Negative:

- Mutant allele associated with greater decrease in TGs and total cholesterol following low fat diet.<sup>85</sup>
- Mutant allele associated with lower TGs, glucose, HOMAir and IL-6 levels.<sup>44</sup>
- Mutant allele associated with lower glucose, insulin, HOMAir and visfatin levels.<sup>28</sup>
- Mutant allele associated with better percentage weight loss 9 months and 1 year after bariatric surgery, but not after 3 months.<sup>52</sup>
- Lower insulin, HOMAir and CRP in mutant-type group. Mutant allele associated with greater decreases in weight and WC than wild-type following hypocaloric diet. Mutant allele also associated with greater decreases in glucose, TC, LDL-C, HOMAir, CRP and TGs.<sup>27</sup>
- Mutant allele associated with lower adiponectin levels and higher AEA levels.<sup>42</sup>
- Wild-type allele associated with lower WC, BMI, HOMAir and TGs in subjects with MetS.<sup>53</sup>
- Mutant allele associated with lower insulin, glucose and HOMAir values.<sup>54</sup>
- Mutant allele associated with reduced levels of HDL-C.<sup>32</sup>

Abbreviations: CNR1, cannabinoid receptor gene 1; CNR2, cannabinoid receptor gene 2; FAAH, fatty acid amide hydrolase; WC, waist circumference; WHR, waist-to-hip ratio; SBP, systolic blood pressure; DBP, diastolic blood pressure; RMR, resting metabolic rate; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TGs, triglycerides; HOMA<sub>IR</sub>, homeostatic mode assessment of insulin resistance; FIRI, fasting insulin resistance index; IL-6, interleukin-6; CRP, C-reactive protein; m-fat, monounsaturated fat; p-fat, polyunsaturated fat; MetS, metabolic syndrome; T2DM, Type 2 Diabetes Mellitus.

Supplemental Table S2. All included studies and associations with anthropometric and/or blood measurements of adiposity and glucose metabolism

| Study                              | N         | M/F                 | Population                   | Endpoint                                                                                                                      | Polymorphism          | Main findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Association<br>summary                       |
|------------------------------------|-----------|---------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Aller et al. 2012 66               | 71        | 47/23               | NAFLD                        | Body weight, Insulin<br>resistance, adipokines                                                                                | rs1049353             | No differences for: BMI, weight, WC, WHR, glucose, total<br>cholesterol, LDL, HDL, TG, IL-6, or leptin.<br>Mutant-type group had higher adiponectin and visfatin<br>levels. Wild-type group had higher HOMAir, TNFa and<br>resistin.                                                                                                                                                                                                                                                                                 | Neutral = 11<br>Positive = 2<br>Negative = 3 |
| Aberle et al. 2008 <sup>81</sup>   | 1,72<br>1 | 688/10<br>33        | BMI<br>>25 kg/m <sup>2</sup> | Body weight parameters,<br>cholesterol, insulin and<br>glucose                                                                | rs1049353             | At baseline no differences in weight, BMI, TG, total<br>cholesterol, HDL, LDL. Glucose was higher in wild-type.<br>After 3 months' diet, mutant allele group associated with<br>greater weight loss, decrease in BMI, and decrease in LDL.<br>No differences between groups in change in glucose, TGs,<br>cholesterol or HDL.                                                                                                                                                                                        | Neutral = 10<br>Negative = 4                 |
| Chmelikova et al. 2014<br>80       | 155       | Not<br>reporte<br>d | Chronic<br>heart failure     | Cholesterol                                                                                                                   | rs1049353<br>rs324420 | Homozygosity for mutant allele was associated with<br>increased cholesterol levels<br>No differences in cholesterol levels between groups                                                                                                                                                                                                                                                                                                                                                                            | Positive = 1<br>Neutral = 1                  |
| Col Araz et al. 2012 15            | 200       | u                   | Obese<br>children            | BMI                                                                                                                           | rs1049353             | Mutant allele associated with childhood obesity                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Positive = 1                                 |
| de Luis et al. 2009 <sup>24</sup>  | 66        | 17/49               | Morbidly<br>obese            | Anthropometric parameters<br>(n=9), cardiovascular risk<br>factors (n=8) and<br>adipocytokines (n=5).                         | rs1049353             | Mutant allele associated with lower weight, BMI, fat mass,<br>WC, insulin, HOMAir and CRP.<br>No differences detected between groups for other<br>parameters (n=10).                                                                                                                                                                                                                                                                                                                                                 | Negative = 7<br>Neutral = 10                 |
| de Luis et al. 2010a <sup>68</sup> | 60        | 14/46               | Diabetic                     | Anthropometric parameters<br>(n=9), cardiovascular risk<br>factors (n=9) dietary intake<br>(n=9) and adipocytokines<br>(n=5). | rs1049353             | No association with anthropometric parameters (n=9),<br>cardiovascular risk factors (n=9) dietary intake (n=9) or<br>adipocytokines (n=5).                                                                                                                                                                                                                                                                                                                                                                           | Neutral = 32                                 |
| de Luis et al. 2011a <sup>84</sup> | 249       | 56/193              | BMI>30 kg/<br>m <sup>2</sup> | Anthropometric parameters<br>(n=10), cardiovascular risk<br>factors (n=8) and<br>adipocytokines (n=5).                        | rs1049353             | No association with basal or post-treatment<br>anthropometric or biochemical variables in either wild- or<br>mutant-type group (n=46)<br>No difference in effect of either diet on anthropometric<br>variables (n=20)<br>No difference in effect of either diet on glucose, TC,<br>insulin and HOMAir values between mutant- or wild-type<br>group.<br>No improvement of mutant-type group in cholesterol,<br>glucose, insulin, TG, HOMAir and leptin values compared<br>with wild-type group following either diet. | Neutral = 74<br>Negative = 12                |
| de Luis et al. 2011b <sup>29</sup> | 290       | 0/290               | BMI>30 kg/<br>m <sup>2</sup> | Anthropometric variables<br>(n=9), cardiovascular risk<br>factors (n=9), dietary intake                                       | rs1049353             | No association with anthropometric variables (n=9),<br>dietary intake (n=9) or adipocytokines (n=5)<br>Mutant allele associated with better cardiovascular profile<br>(lower TGs, insulin and HOMAir, higher HDL)                                                                                                                                                                                                                                                                                                    | Neutral = 28<br>Positive = 1<br>Negative = 3 |

|                                    |     |                     |                                                                                  | (n=9) and adipocytokines<br>(n=5)                                                                                                                                                                              |           | No association with glucose, TC, LDL-C, CRP, lipoprotein (a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|------------------------------------|-----|---------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| de Luis et al. 2011c <sup>46</sup> | 94  | 24/70               | BMI>30 kg/<br>m <sup>2</sup>                                                     | Anthropometric variables<br>(n=9), cardiovascular risk<br>factors (n=9), dietary intake<br>(n=5) and adipocytokines<br>(n=5)                                                                                   | rs1049353 | No difference in basal and post-treatment anthropometric<br>measurements (n=18), cardiovascular risk factors (n=18),<br>dietary intake (n=5) or cytokines (n=5) between the two<br>genotypes<br>Mutant allele associated with decreased resistin, leptin<br>and IL-6 following weight loss                                                                                                                                                                                                                                                   | Neutral = 46<br>Negative = 3                 |
| de Luis et al. 2011d <sup>23</sup> | 917 | Not<br>reporte<br>d | BMI>30 kg/<br>m <sup>2</sup>                                                     | Anthropometric variables<br>(n=7), biochemical variables<br>(n=7) and adipocytokines<br>(n=3)                                                                                                                  | rs1049353 | Mutant allele associated with lower glucose, insulin and HOMAir values and decreased prevalence of metabolic syndrome                                                                                                                                                                                                                                                                                                                                                                                                                        | Negative = 4<br>Neutral = 28                 |
| de Luis et al. 2013 <sup>76</sup>  | 258 | 64/194              | BMI>30 kg/<br>m <sup>2</sup> subject<br>to one of<br>two<br>hypocaloric<br>diets | Anthropometric variables<br>(n=7), cardiovascular risk<br>factors (n=8) and<br>adipocytokines (n=5)                                                                                                            | rs1049353 | No difference between basal and post-treatment<br>anthropometric measurements (n=14), cardiovascular risk<br>factors (n=16) or adipocytokines (n=8)<br>Mutant allele associated with lack of decrease in leptin<br>following both diets.                                                                                                                                                                                                                                                                                                     | Neutral = 38<br>Positive = 2                 |
| de Luis et al. 2014 <sup>8</sup>   | 86  | 44/42               | BMI>30 kg/<br>m <sup>2</sup> with<br>T2DM, given<br>liraglutide                  | Anthropometric variables<br>(n=8), cardiovascular risk<br>factors (n=8)                                                                                                                                        | rs1049353 | <ul> <li>BMI, weight, fat mass and WC higher in wild-type group pre- and post-treatment.</li> <li>No difference in biochemical parameters (n=8) pre-treatment</li> <li>No difference in decrease in BMI, weight, fat mass, fat free mass, WC, WHR, SBP, DBP, glucose, HDL-C, TGs or insulin between wild- or mutant-type group following treatment</li> <li>Wild-type allele associated with better improvements in LDL-C and TC</li> <li>Mutant allele associated with better improvements in HOMAir levels following treatment.</li> </ul> | Neutral = 17<br>Positive = 2<br>Negative = 5 |
| de Luis et al. 2015a <sup>71</sup> | 190 | 57/133              | European                                                                         | BMI, weight, fat mass, WC,<br>WHR, SBP, DBP<br>Glucose. TC. LDL-C, HDL-C,<br>TGs, insulin, HOMAir, CRP.<br>Adiponectin, resistin, leptin.<br>Measured at baseline, 3<br>months and 9 months<br>following diet. | rs1049353 | No association with any measured parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Neutral = 54                                 |
| de Luis et al. 2015b <sup>30</sup> | 341 | 120/22<br>1         | BMI>30 kg/<br>m <sup>2</sup>                                                     | Anthropometric variables<br>(n=8), cardiovascular risk<br>factors (n=8) and dietary<br>intake (n=9)                                                                                                            | rs1049353 | No associations with anthropometric variables (n=8)<br>Mutant-type group associated with lower TGs and higher<br>HDL-C<br>No associations with glucose, TC, LDL-C, insulin, HOMAir,<br>CRP or dietary intake measurements (n=9)                                                                                                                                                                                                                                                                                                              | Neutral = 24<br>Positive = 1<br>Negative = 1 |

| de Luis et al. 2015c <sup>31</sup> | 896       | 0/896         | Female,<br>BMI>30 kg/            | Anthropometric variables<br>(n=7), cardiovascular risk                                                                          | rs1049353                                                                                         | No association with BMI, weight, fat mass, WC, WHR, SBP, DBP, glucose, LDL-C, TC, insulin or HOMAir.                                                                                                                                                                                                 | Neutral = 19<br>Positive = 1                |
|------------------------------------|-----------|---------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                    |           |               | m <sup>2</sup>                   | factors (n=7)                                                                                                                   |                                                                                                   | No association with energy, carbohydrate, fat,<br>monounsaturated fat, polyunsaturated fat, protein or<br>fibre intake.<br>Mutant-type group associated with lower TGs and higher                                                                                                                    | Negative = 3                                |
|                                    |           |               |                                  |                                                                                                                                 |                                                                                                   | HDL-C, and lower cholesterol and saturated fat intake.                                                                                                                                                                                                                                               |                                             |
| Dinu et al. 2011 <sup>75</sup>     | 305       | -             | Romanian,<br>35-75 years         | Adiponectin                                                                                                                     | rs1049353                                                                                         | Mutant allele associated with higher adiponectin levels                                                                                                                                                                                                                                              | Positive = 1                                |
| Gazzerro et al. 2007 <sup>11</sup> | 419       | 237/18<br>2   | Italian, >65<br>years            | BMI                                                                                                                             | rs1049353                                                                                         | Mutant allele associated with lower BMI                                                                                                                                                                                                                                                              | Negative = 1                                |
| Hu et al. 2010 <sup>9</sup>        | 518       | 209/17<br>3   | Chinese Han                      | BMI, WC, SBP, DBP, HOMAir,<br>TGs, TC, HDL-C, LDL-C                                                                             | rs1049353                                                                                         | Mutant allele associated with lower BMI, WC, HOMAir, TG<br>levels and prevalence of MetS.<br>No association with SBP, DBP, TC, HDL-C or LDL-C                                                                                                                                                        | Neutral = 5<br>Positive = 1<br>Negative = 4 |
| Muller et al. 2007 <sup>35</sup>   | 2,59<br>5 | 768/18<br>27  | BMI>30 kg/<br>m <sup>2</sup>     | BMI                                                                                                                             | rs1049353<br>rs1535255<br>rs2023239<br>rs6454676<br>rs754387<br>rs806370<br>rs806379<br>rs9353527 | No association with obesity for any polymorphism studied                                                                                                                                                                                                                                             | Neutral = 8                                 |
| Peeters et al. 2007 <sup>14</sup>  | 1,06<br>4 | 455/56<br>8   | BMI>30 kg/<br>m <sup>2</sup>     | WC, WHR, fat mass (kg), fat<br>mass (%)                                                                                         | rs1049353                                                                                         | Homozygosity for mutant allele associated with increased WHR and WC in obese men only.                                                                                                                                                                                                               | Neutral = 6<br>Positive = 2                 |
| ØE.                                |           |               |                                  |                                                                                                                                 |                                                                                                   | No other associations                                                                                                                                                                                                                                                                                |                                             |
| Aberle et al. 2007 <sup>85</sup>   | 451       | 264/18<br>7   | BMI>30 kg/<br>m <sup>2</sup>     | BMI, TGs, cholesterol, LDL-C,<br>HDL-C, VLDL-C, lipoprotein<br>(a), glucose                                                     | rs1049353<br>rs324420                                                                             | No associations with rs1049353<br>Mutant allele associated with greater decrease in TGs and<br>total cholesterol following low fat diet                                                                                                                                                              | Neutral = 14<br>Negative = 2                |
| Frost et al. 2010 <sup>13</sup>    | 783       | 783/0         | Danish, 20-<br>29 years,<br>male | Body weight parameters<br>(n=3)<br>MRI measurements (n=4),<br>biochemical markers (n=7)                                         | rs1049353<br>rs10485179<br>rs806381                                                               | Wild-type allele associated with visceral and<br>intermuscular fat mass, higher TGs. No associations with<br>total body fat mass, BMI, WHR, abdominal and femoral<br>subcutaneous fat mass or any biochemical markers (n=7)<br>No association with rs10485179 or rs806381 for any<br>endpoint (n=28) | Neutral = 41<br>Positive = 3                |
| Jaeger et al. 2008 <sup>47</sup>   | 756       | 309/44<br>7   | Caucasian                        | Anthropometric (weight,<br>height, BMI, WHR, WC),<br>biochemical (HDL-C, LDL-C,<br>TGs, glucose) and lifestyle<br>factors (n=3) | rs1049353<br>rs12720071<br>rs806368                                                               | No associations<br>No associations<br>rs806368 associated with increased WHR. No other<br>associations.                                                                                                                                                                                              | Neutral = 35<br>Positive = 1                |
| Reinhard et al. 2008 <sup>97</sup> | 1,96<br>8 | 1,072/8<br>96 | MI patients                      | Obesity, arterial<br>hypertension,<br>hypercholesterolaemia,<br>T2DM.                                                           | rs4649119<br>rs3003328<br>rs1130321<br>rs2229586<br>rs2229579                                     | rs3003328 and rs2229586 associated with<br>hypercholesterolaemia. No other associations with any<br>SNP and endpoint.                                                                                                                                                                                | Neutral = 50<br>Positive = 2                |

|                                             |           |                     |                                    |                                                                                           | rs4649124                            |                                                                                                                                            |                              |
|---------------------------------------------|-----------|---------------------|------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                             |           |                     |                                    |                                                                                           | rs2501431                            |                                                                                                                                            |                              |
|                                             |           |                     |                                    |                                                                                           | rs16828926                           |                                                                                                                                            |                              |
|                                             |           |                     |                                    |                                                                                           | rs2501390                            |                                                                                                                                            |                              |
|                                             |           |                     |                                    |                                                                                           | rs2501399                            |                                                                                                                                            |                              |
|                                             |           |                     |                                    |                                                                                           | rs9424339                            |                                                                                                                                            |                              |
|                                             |           |                     |                                    |                                                                                           | rs7530595                            |                                                                                                                                            |                              |
|                                             |           |                     |                                    |                                                                                           | rs17338135                           |                                                                                                                                            |                              |
| Baye et al. 2008 <sup>49</sup>              | 1,56<br>0 | Not<br>reporte<br>d | Obese and<br>non-obese<br>subjects | Anthropometric parameters<br>(BMI, WC, hip circumference,<br>WHR), insulin responsiveness | rs1049353<br>rs12730071<br>rs806366  | rs806366 associated with BMI and TGs<br>rs806370 associated with HDL-C<br>rs806369 associated with TGs, TC                                 | Neutral = 50<br>Positive = 9 |
|                                             |           | u                   | Subjects                           | (insulin, glucose,                                                                        | rs806368                             | rs806368 associated with TGs                                                                                                               |                              |
|                                             |           |                     |                                    | insulin:glucose, HOMAir),                                                                 | rs806369                             | No associations with obesity parameters, insulin                                                                                           |                              |
|                                             |           |                     |                                    | lipids (TC, LDL-C, HDL-C, TGs)                                                            | rs806370                             | responsiveness or lipid levels for rs1049353 or<br>rs12720071                                                                              |                              |
|                                             |           |                     |                                    |                                                                                           |                                      | Haplotype H4 associated with higher BMI, insulin and lipids.                                                                               |                              |
| Lenarcik-Kabza et al.<br>2014 <sup>82</sup> | 130       | 0/130               | Subjects<br>with PCOS              | Anthropometric<br>measurements (weight, BMI,<br>WC, WHR), biochemical                     | rs1049353<br>rs10485170<br>rs2023239 | Homozygosity for rs2023239 wild-type allele associated<br>with higher TC and LDL-cholesterol in women with PCOS.<br>No other associations. | Neutral = 64<br>Positive = 2 |
|                                             |           |                     |                                    | measurements (glucose, TC,<br>HDL-C, LDL-C, TGs, insulin,<br>HOMAir)                      | rs6454674<br>rs806381<br>rs806368    | No association with anthropometric or biochemical measurements for any other polymorphism in study.                                        |                              |
| Milewicz et al. 2010 43                     | 348       | 0/348               | Postmenopa                         | Anthropometric                                                                            | rs1049353                            | rs1049353 associated with higher android fat deposit and                                                                                   | Neutral = 89                 |
|                                             |           |                     | usal women                         | measurements (weight, BMI,<br>WC, total fat (g), fat (%),                                 | rs10485170<br>rs12720071             | percentage of android fat. No other associations.<br>No associations for any other polymorphism.                                           | Positive = 2                 |
|                                             |           |                     |                                    | android fat deposit,                                                                      | rs2023239                            |                                                                                                                                            |                              |
|                                             |           |                     |                                    | biochemical measurements                                                                  | rs6454674                            |                                                                                                                                            |                              |
|                                             |           |                     |                                    | (glucose, TC, HDL-C, LDL-C,                                                               | rs806368                             |                                                                                                                                            |                              |
|                                             |           |                     |                                    | TGs, insulin, fasting insulin resistance index)                                           | rs806381                             |                                                                                                                                            |                              |
| Bordicchia et al. 2010                      | 280       | Not                 | Obese                              | BMI, WC, TC, HDL-C, LDL-C,                                                                | rs12720071                           | Mutant allele associated with lower prevalence of                                                                                          | Neutral = 10                 |
| 00                                          |           | reporte             | hypertensive                       | TGs, glucose, SBP, DBP, MBP,                                                              |                                      | metabolic syndrome.                                                                                                                        | Negative = 1                 |
| 70                                          |           | d                   |                                    | MetS                                                                                      |                                      | No other associations observed.                                                                                                            |                              |
| Dinu et al. 2010 <sup>73</sup>              | 191       | Not<br>reporte<br>d | Romanian,<br>35-75 years           | Glucose                                                                                   | rs12720071                           | No association with impaired glucose metabolism                                                                                            | Neutral = 1                  |
| Russo et al. 2007 <sup>3</sup>              | 1,21      | 1,213/0             | White adult                        | BMI, WC, subscapular                                                                      | rs12720071                           | Mutant allele associated with increased WC and                                                                                             | Neutral = 4                  |
|                                             | 3         |                     | male                               | skinfold thickness                                                                        |                                      | subscapular skinfold thickness.                                                                                                            | Positive = 2                 |
|                                             |           |                     |                                    |                                                                                           | rs806368                             | No association.                                                                                                                            |                              |
|                                             |           |                     |                                    |                                                                                           |                                      |                                                                                                                                            |                              |

| Schleinitz et al. 2010 <sup>83</sup>     | 2,77<br>4 | Not<br>reporte<br>d | Two German<br>cohorts                                              | BMI, WHR, fat, glucose,<br>insulin, leptin, adiponectin                                                                                                                                                      | rs1049353<br>rs12720071<br>rs806368<br>rs806369                                                                                           | No associations observed.                                                                                                                                                                                                  | Neutral = 35                  |
|------------------------------------------|-----------|---------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Wangensteen et al.<br>2010 <sup>22</sup> | 5,01<br>1 | 1,235/3<br>,776     | Norwegian<br>Caucasian                                             | BMI                                                                                                                                                                                                          | rs806370<br>CB1:<br>rs1049353<br>rs12720071<br>rs806368<br>NAPE-PLD:<br>rs13232194<br>rs17605251<br>rs11487077<br>rs12540583<br>rs6465903 | Haplotype I (combination of alleles of rs13232194,<br>rs17605251, rs11487077, rs12540583 and 6465903)<br>protective against severe obesity                                                                                 | -                             |
| Benzinou et al. 2008 <sup>36</sup>       | 1,93<br>2 | Not<br>reporte<br>d | Caucasian                                                          |                                                                                                                                                                                                              | rs2023239<br>rs806381                                                                                                                     | Mutant alleles of both polymorphisms associated with higher BMI                                                                                                                                                            | Positive = 2                  |
| Zhuang et al. 2012 94                    | 2,81<br>2 | 0/2,812             | Chinese<br>female, 50-<br>64 years                                 | Anthropometric<br>measurements (BMI, WC,<br>WHR, SBP, DBP) and<br>biochemical (TC, TGs)                                                                                                                      | rs2023239<br>rs806381                                                                                                                     | No association between rs2023239 and any<br>anthropometric or biochemical measurements<br>rs806381 mutant allele associated with increased TGs. No<br>association with this allele and any anthropometric<br>measurements. | Neutral = 13<br>Positive = 1  |
| Laczmanski et al. 2011<br>91             | 348       | 0/348               | Polish post-<br>menopausal<br>women                                | Anthropometric<br>measurements (Weight, BMI,<br>WC, fat (%), android fat<br>deposit, gynoid fat deposit,<br>SBP, DBP) and biochemical<br>measurements (TC, HDL-C,<br>LDL-C, TGs, glucose, insulin,<br>FIRI). | rs10485170<br>rs2023239<br>rs6454674<br>rs806381                                                                                          | No associations with any polymorphism.                                                                                                                                                                                     | Neutral = 60                  |
| de Luis et al. 2010b <sup>44</sup>       | 279       | 0/279               | Obese<br>female                                                    | Anthropometric variables<br>(n=9), cardiovascular (n=9)<br>and dietary intake (n=9)                                                                                                                          | rs324420                                                                                                                                  | No association with anthropometric measurements or<br>dietary intake.<br>Mutant allele associated with lower TGs, glucose, HOMAir<br>and IL-6 levels                                                                       | Neutral = 23<br>Negative = 4  |
| de Luis et al. 2010c <sup>28</sup>       | 143       | 0/143               | Obese<br>female                                                    | Anthropometric variables<br>(n=9), metabolic variables<br>(n=9), dietary intake (n=9)                                                                                                                        | rs324420                                                                                                                                  | No association with anthropometric measurements.<br>Mutant allele associated with lower glucose, insulin,<br>HOMAir and visfatin levels.<br>No association with dietary intake.                                            | Neutral = 23<br>Negative = 4  |
| de Luis et al. 2010d <sup>52</sup>       | 67        | 16/51               | BMI >40<br>kg/m <sup>2</sup> ,<br>bariatric<br>surgery<br>patients | Anthropometric variables<br>(n=6), metabolic variables<br>(n=5)                                                                                                                                              | rs324420                                                                                                                                  | No differences between genotypes in baseline<br>anthropometric measurements.<br>Mutant allele associated with better percentage weight<br>loss 9 months and 1 year after bariatric surgery, but not<br>after 3 months.     | Neutral = 32<br>Negative = 12 |

|                                         |            |                 |                                                                   |                                                                                                                  |                                                               | No association with metabolic variables at baseline, 3 months, 9 months or 12 months.                                                                                                                                                                                                                                                                                      |                               |
|-----------------------------------------|------------|-----------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| de Luis et al. 2011e <sup>27</sup>      | 122        | 33/89           | BMI >30<br>kg/m <sup>2</sup>                                      | Anthropometric variables<br>(n=9), cardiovascular (n=9)<br>and dietary intake (n=5)                              | rs324420                                                      | Lower insulin, HOMAir and CRP in mutant-type group at<br>baseline.<br>Mutant allele associated with greater decreases in weight<br>and WC than wild-type following hypocaloric diet.<br>Mutant allele also associated with greater decreases in<br>glucose, TC, LDL-C, HOMAir, CRP and TGs.<br>No association with dietary intake measurements at<br>baseline or 3 months. | Neutral = 35<br>Negative = 11 |
| de Luis et al. 2012 <sup>50</sup>       | 799        | 248/55<br>1     | BMI >30<br>kg/m <sup>2</sup>                                      | Anthropometric variables<br>(n=7), metabolic variables<br>(n=7) and adipocytokines<br>(n=5)                      | rs324420                                                      | Mutant allele associated with higher insulin and HOMAir<br>in patients without MetS. No differences in<br>anthropometric, metabolic parameters or adipocytokines<br>between genotypes in MetS or non-MetS subjects.                                                                                                                                                        | Neutral = 36<br>Positive = 2  |
| de Luis D et al. 2017 <sup>26</sup>     | 1,02<br>7  | 280/74<br>7     | BMI >30<br>kg/m <sup>2</sup>                                      | Anthropometric variables<br>(n=5), cardiovascular (n=10)<br>and dietary intake (n=9)                             | rs3123554                                                     | Mutant-type group had higher BMI, weight, fat mass, WC<br>TGs, insulin and HOMAir than wild-type group.<br>No difference in dietary intake between genotypes.                                                                                                                                                                                                              | Neutral = 17<br>Positive = 7  |
| Ketterer et al. 2014 <sup>21</sup>      | 2,00<br>6  |                 | Subjects at<br>risk of T2DM                                       | BMI, weight, WHR, total body<br>fat (%)                                                                          | rs3123554<br>rs2229579<br>rs2501392<br>rs9424398<br>rs4625225 | rs3123554 mutant allele associated with lower BMI,<br>weight and body fat in women. Carriers also lost less<br>weight following lifestyle interventions<br>No associations found with any other polymorphism.                                                                                                                                                              | Neutral = 17<br>Negative = 3  |
| Jensen et al. 2007 <sup>72</sup>        | 5,73<br>8  | 2,887/2<br>,851 | Obesity                                                           | BMI, WC, WHR<br>Glucose, insulin, C-peptide,<br>HOMAir, TGs, TC                                                  | rs324420                                                      | No association with any measured parameters.                                                                                                                                                                                                                                                                                                                               | Neutral = 9                   |
| Martins et al. 2015 <sup>42</sup>       | 200        | 100/10<br>0     | Normal/obe<br>se                                                  | Anthropometric<br>measurements (n=6),<br>metabolic variables (n=7),<br>adipocytokines/endocannabi<br>noids (n=7) | rs324420                                                      | Mutant allele associated with lower adiponectin levels<br>and higher AEA levels. No other associations observed.                                                                                                                                                                                                                                                           | Neutral = 18<br>Negative = 2  |
| Monteleone et al.<br>2008 <sup>19</sup> | 189        | 0/189           | Subjects<br>with binge-<br>eating<br>disorder                     | Obesity, binge-eating<br>disorder                                                                                | rs324420                                                      | Mutant-allele associated with overweight and obesity, but not binge-eating disorder                                                                                                                                                                                                                                                                                        | Neutral = 1<br>Positive = 2   |
| Muller et al. 2010 <sup>51</sup>        | 10,4<br>98 | 5,072/5<br>,426 | Obese<br>children and<br>adolescents,<br>siblings and<br>parents. | Obesity (childhood, adult)                                                                                       | rs324419<br>rs324420<br>rs2295632<br>rs873978                 | rs324420 wild-type allele associated with childhood obesity but not adult obesity.                                                                                                                                                                                                                                                                                         | Neutral = 7<br>Positive = 1   |

| Sipe et al. 2005 <sup>17</sup>               | 2,66<br>7 | Not<br>reporte<br>d | Caucasian,<br>black and<br>Asian<br>subjects | BMI                                                                                                                                                             | rs324420                                                                                                                                                                                                                                                                               | Homozygosity for mutant allele associated with increased BMI.                                                                                                                                                                                                          | Positive = 1                  |
|----------------------------------------------|-----------|---------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| de Miguel-Yanes et al.<br>2011 <sup>25</sup> | 2,41<br>1 | 1,157/1<br>,254     | Caucasian                                    | HOMAir, insulin, glucose.                                                                                                                                       | rs10485171<br>rs806365<br>rs7766029<br>rs806366<br>rs806368<br>rs12720071<br>rs1049353<br>rs806369<br>rs806371<br>rs806374<br>rs806375<br>rs806376<br>rs806380<br>rs7752758<br>rs12528858<br>rs12205430<br>rs6454673<br>rs6914429                                                      | rs806365 wild-type allele associated with higher HOMAir,<br>but not glucose in initial testing.<br>Those in bold underwent meta-analysis for association<br>with HOMAir, glucose and insulin levels, with rs806365<br>being associated with HOMAir and insulin levels. | Neutral = 42<br>Negative = 4  |
| Mutombo et al. 2011<br><sup>16</sup>         | 1,45<br>2 | 678/77<br>4         | Japanese,<br>25-74 years                     | Anthropometric<br>measurements (BMI, obesity,<br>WC, central obesity, SBP,<br>DBP, hypertension) and<br>metabolic variables (HDL-C,<br>LDL-C, TGs, HbA1c, T2DM) | rs806368<br>rs806378<br>rs806377<br>rs806376<br>rs806375<br>rs12720072<br>rs12195101<br>rs806374<br>rs806371<br>rs806370<br>rs806369<br>rs1049353<br>rs16880260<br>rs4707436<br>rs12720071<br>rs45516291<br>rs7738931<br>rs12189668<br>rs806366<br>rs7766029<br>rs16880218<br>rs806365 | rs806368 mutant allele associated with increased BMI,<br>WC, SBP and obesity. No other associations.                                                                                                                                                                   | Neutral = 272<br>Positive = 4 |

|                                  |           |                 |              |                                     | rs35951010             |                                                                                                |              |
|----------------------------------|-----------|-----------------|--------------|-------------------------------------|------------------------|------------------------------------------------------------------------------------------------|--------------|
| Lieb et al. 2009 <sup>64</sup>   | 2,41<br>5 | 1,143/1<br>,275 | Caucasian    | BMI, WC, visceral adipose<br>tissue | rs10485171<br>rs806365 | No associations with BMI, waist circumference or visceral adipose tissue for any polymorphism. | Neutral = 81 |
|                                  | 5         | ,275            |              | lissue                              | rs7766029              | adipose cissue for any polymorphism.                                                           |              |
|                                  |           |                 |              |                                     | rs806366               |                                                                                                |              |
|                                  |           |                 |              |                                     | rs806368               |                                                                                                |              |
|                                  |           |                 |              |                                     | rs12720071             |                                                                                                |              |
|                                  |           |                 |              |                                     | rs1049353              |                                                                                                |              |
|                                  |           |                 |              |                                     | rs806369               |                                                                                                |              |
|                                  |           |                 |              |                                     | rs806371               |                                                                                                |              |
|                                  |           |                 |              |                                     | rs806374               |                                                                                                |              |
|                                  |           |                 |              |                                     | rs806375               |                                                                                                |              |
|                                  |           |                 |              |                                     | rs806376               |                                                                                                |              |
|                                  |           |                 |              |                                     | rs806380               |                                                                                                |              |
|                                  |           |                 |              |                                     | rs7752758              |                                                                                                |              |
|                                  |           |                 |              |                                     | rs12528858             |                                                                                                |              |
|                                  |           |                 |              |                                     | rs12205430             |                                                                                                |              |
|                                  |           |                 |              |                                     | rs6454673              |                                                                                                |              |
|                                  |           |                 |              |                                     | rs6914429              |                                                                                                |              |
|                                  |           |                 |              |                                     | rs12073998             |                                                                                                |              |
|                                  |           |                 |              |                                     | rs6703669              |                                                                                                |              |
|                                  |           |                 |              |                                     | rs3766246              |                                                                                                |              |
|                                  |           |                 |              |                                     | rs324420               |                                                                                                |              |
|                                  |           |                 |              |                                     | rs324419               |                                                                                                |              |
|                                  |           |                 |              |                                     | rs2295633              |                                                                                                |              |
|                                  |           |                 |              |                                     | rs12029329             |                                                                                                |              |
|                                  |           |                 |              |                                     | rs324425               |                                                                                                |              |
|                                  |           |                 |              |                                     | rs7520850              |                                                                                                |              |
| Caruso et al. 2012 93            | 118       | 60/58           | Elderly (65- | BMI, TC, HDL-C, TGs, glucose        | rs1049354              | Mutant allele associated with decreased dietary                                                | Neutral = 17 |
|                                  |           |                 | 75 years)    | and dietary variable (n=14)         |                        | cholesterol and saturated fats.                                                                | Negative = 2 |
| Buraczynska et al.               | 667       | 330/33          | Polish,      | T2DM, HbA1c, BMI.                   | rs1049354              | No association with T2DM.                                                                      | Neutral = 1  |
| 2014 <sup>74</sup>               |           | 7               | T2DM         |                                     |                        | Mutant allele associated with increased BMI in T2DM                                            | Positive = 2 |
|                                  |           |                 | subjects     |                                     |                        | subjects                                                                                       |              |
| Durand et al. 2008 <sup>20</sup> | 5,10      | 2,274/2         | French       | Child obesity, adult obesity,       | rs324420               | Wild-type genotype associated with class III adult obesity,                                    | Neutral = 8  |
|                                  | 9         | ,835            | Caucasian    | T2DM, BMI, glucose, insulin,        |                        | but not child obesity or T2DM.                                                                 | Positive = 1 |
|                                  |           |                 |              | WC, HDL-C, TC, TGs.                 |                        | Mutant allele associated with increased HDL-C                                                  | Negative = 1 |
| iu et al. 2011 <sup>10</sup>     | 242       | -               |              |                                     | rs1049353              | In patients with coronary artery disease, the mutant allele                                    |              |
|                                  |           |                 |              |                                     |                        | was associated with lower BMI, HOMAir and TGs, and                                             |              |
|                                  |           |                 |              |                                     |                        | higher HDL-C                                                                                   |              |
| Zeng et al. 2011 53              | 191       | 109/82          | MetS         | BMI, WC, SBP, DBP, HOMAir,          | rs324420               | Wild-type allele associated with lower WC, BMI, HOMAir                                         | Neutral = 4  |
| 5                                |           | ,               | subjects,    | TGs, TC, HDL-C, LDL-C               |                        | and TGs, and higher HDL-C levels in subjects with MetS.                                        | Positive = 4 |
|                                  |           |                 | healthy      | -, -,                               |                        | No association with SBP, DBP, TC or LDL-C levels.                                              | Negative = 1 |
|                                  |           |                 |              |                                     |                        |                                                                                                |              |

| Feng et al. 2013 <sup>79</sup>              | 1,00<br>6 | 497/50<br>9         | European                                          | HDL-C                                                                          | rs806371                                                                                                         | Mutant allele associated with lower HDL-C levels                                                                                                                                                                                                     | Negative = 1                                |
|---------------------------------------------|-----------|---------------------|---------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Tiwari et al. 2010 <sup>92</sup>            | 183       | <br>124/59          | Schizophreni<br>a/schizoaffe<br>ctive<br>disorder | Antipsychotic-induced weight gain                                              | rs806378<br>rs806380<br>rs2180619<br>rs9450902<br>rs10485170                                                     | rs806378 mutant allele associated with antipsychotic-<br>induced weight gain                                                                                                                                                                         | Neutral = 4<br>Positive = 1                 |
| Vazquez-Roque et al.<br>2011 <sup>98</sup>  | 62        | 19/43               | Overweight/<br>obese                              | Gastric motor function<br>variables (n=6)                                      | rs324420<br>rs806378                                                                                             | rs806378 mutant allele associated with increased gastric<br>volume.<br>No associations between rs324420 and gastric motor<br>function.                                                                                                               | Neutral = 11<br>Positive = 1                |
| Wang et al. 2012 <sup>12</sup>              | 544       | 263/28<br>1         | T2DM<br>subjects                                  | BMI, SBP, DBP, glucose,<br>HOMAir, TGs, TC, HDL-C, LDL-<br>C, HbA1c, CRP       | rs1049354                                                                                                        | Mutant allele associated with lower BMI, SBP, HOMAir and CRP and higher HDL-C. No other associations seen.                                                                                                                                           | Neutral = 6<br>Negative = 4<br>Positive = 1 |
| Grolmusz et al. 2013 <sup>54</sup>          | 130       | 0/130               | Women with<br>PCOS,<br>healthy<br>controls        | BMI, WC, glucose, insulin,<br>HOMAir                                           | rs324420                                                                                                         | Mutant allele associated with lower insulin, glucose and HOMAir values in healthy controls, but not PCOS subjects.                                                                                                                                   | Neutral = 7<br>Negative = 3                 |
| Zhang et al. 2009 <sup>32</sup>             | 1,64<br>4 | Not<br>reporte<br>d | Subjects of<br>Northern<br>European<br>ancestry   | BMI, HDL-C, TGs, insulin<br>sensitivity                                        | rs324420                                                                                                         | Mutant allele associated with increased TGs and reduced levels of HDL-C                                                                                                                                                                              | Neutral = 2<br>Positive = 1<br>Negative = 1 |
| Suárez-Pinilla et al.<br>2015 <sup>69</sup> | 65        | 44/21               | Subjects<br>with first<br>episode<br>psychosis    | BMI at baseline and 3 years follow-up                                          | rs1049353<br>rs2023239<br>rs1535255                                                                              | No association between any polymorphism and BMI.                                                                                                                                                                                                     | Neutral = 6                                 |
| Bellini et al. 2015 <sup>95</sup>           | 240       | 0/240               | Female, BMI<br>>30 kg/m <sup>2</sup>              | BMI, HOMAir, TC, TGs, HDL-C                                                    | rs35761398                                                                                                       | No association with BMI, HOMAir, TC, HDL-C or triglyceride levels                                                                                                                                                                                    | Neutral = 5                                 |
| Knoll et al. 2012 <sup>48</sup>             | 453       | Not<br>reporte<br>d | Overweight/<br>obese<br>children and<br>adults    | BMI, weight, TC, LDL-C, HDL-<br>C, TGs, glucose, insulin,<br>HOMAir, SBP, DBP. | rs324420                                                                                                         | No association with any measured outcome                                                                                                                                                                                                             | Neutral = 11                                |
| Papazoglou et al. 2008<br>%                 | 303       | 153/15<br>0         | Obesity,<br>obesity and<br>MetS                   | BMI                                                                            | rs324420                                                                                                         | No association with BMI                                                                                                                                                                                                                              |                                             |
| Harismendy et al.<br>2010 <sup>99</sup>     | 289       | -                   | BMI >40<br>kg/m <sup>2</sup>                      | BMI                                                                            | rs16830415<br>rs9832418<br>rs547801<br>rs520154<br>rs60963555<br>rs684358<br>rs9852837<br>rs9829319<br>rs9829320 | No association with BMI<br>No association with BMI<br>No association with BMI<br>Associated with high BMI<br>No association with BMI | Neutral = 7<br>Positive = 8                 |

| rs9829321  | No association with BMI                           |
|------------|---------------------------------------------------|
| rs9877819  | No association with BMI                           |
| rs28753886 | No association with BMI                           |
| rs35948688 | Associated with high BMI                          |
| rs874546   | Associated with high BMI                          |
| rs2011138  | Associated with high BMI                          |
|            | rs9877819<br>rs28753886<br>rs35948688<br>rs874546 |

Supplemental references:

- 1. O'Keefe L., Simcocks AC., Hryciw DH, Mathai ML, McAinch AJ. The cannabinoid receptor 1 and its role in influencing peripheral metabolism. *Diabetes, Obesity and Metabolism.* 2014;16:294-304.
- 2. Greenbaum L., Tegeder, I., Barhum, Y., Melamed, E., Roditi, Y. and Djaldetti, R. Contribution of genetic variants to pain susceptibility in Parkinson disease. *European Journal of Pain.* 2012;16(9):1243-1250.
- Russo P, Strazzullo, P., Cappuccio, F. P., Tregouet, D. A., Lauria, F., Loguercio, M., Barba, G., Versiero, M. and Siani, A. Genetic variations at the endocannabinoid type 1 receptor gene (CNR1) are associated with obesity phenotypes in men. *Journal of Clinical Endocrinology & Metabolism.* 2007;92(6):2382-2386.
- Miguel-Yanes J, Manning, A., Shrader, P., McAteer, J., Goel, A., Hamsten, A., Fox, C., Florez, J., Dupuis, J. and Meigs, J. . Variants at the Endocannabinoid receptor CB1 Gene (CNR1) and insulin sensitivity, type 2 diabetes, and coronary heart disease. *Obesity*. 2011;19(10):2031-2037.
- 5. NCBI. dbSNP. 2018; https://www.ncbi.nlm.nih.gov/projects/SNP/. Accessed 7/2/2018, 2018.
- 6. Higgins JP, Gotzsche PC, Juni P, Moher D, Oxman AD,. The Cochrane collaboration's tool for assessing risk of bias in randomised trials. *BMJ* 2011.
- Gazzerro P., Caruso, M., Notarnicola, M., Misciagna, G., Guerra, V., Laezza, C. and Bifulco, M. Association between cannabinoid type-1 receptor polymorphism and body mass index in a southern Italian population. *International journal of obesity*. 2007;31(6):908-912.
- de Luis D., Ovalle, H., Soto, G., Izaola, O., de la Fuente, B. and Romero, E. Role of Genetic Variation in the Cannabinoid Receptor Gene (CNR1) (G1359A Polymorphism) on Weight Loss and Cardiovascular Risk Factors After Liraglutide Treatment in Obese Patients With Diabetes Mellitus Type 2. *Journal of Investigative Medicine*. 2014;62(2):324-327.
- 9. Hu WC, Feng P., G1359A polymorphism in the cannabinoid receptor-1 gene is associated with metabolic syndrome in the Chinese Han population. *Archives of medical research.* 2010;41(5):378-382.
- 10. Liu R., Zhang Y. G1359A polymorphism in the cannabinoid receptor-1 gene is associated with coronary artery disease in the Chinese Han population. *Clinical Laboratory*. 2011;57(9-10):689-693.
- Gazzerro P., Caruso M., Notarnicola M., Misciagna G., Guerra V., Laezza C. and Bifulco M. Association between cannabinoid type-1 receptor polymorphism and body mass index in a southern Italian population. *International journal of obesity*. 2007;31(6):908-912.
- 12. Wang R., Hu W., Qiang L. G1359A polymorphism in the cannabinoid receptor-1 gene is associated with the presence of coronary artery disease in patients with type 2 diabetes. *Journal of Investigative Medicine*. 2012;60(1):44-48.
- Frost M., Nielsen, T., Wraae, K., Hagen, C., Piters, E., Beckers, S., De Freitas, F., Brixen, K., Van Hul, W. and Andersen, M. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution. *European Journal of Endocrinology*. 2010;163(3):407-412.

- 14. Peeters A., Beckers, S., Mertens, I., Van Hul, W. and Van Gaal, L. The G1422A variant of the cannabinoid receptor gene (CNR1) is associated with abdominal adiposity in obese men. *Endocrine*. 2007;31(2):138-141.
- 15. Col Araz N., Nacak, M., Oguzkan Balci, S., Benlier, N., Araz, M., Pehlivan, S., Balat, A. and Aynacioglu, A. Childhood Obesity and the Role of Dopamine D2 Receptor and Cannabinoid Receptor-1 Gene Polymorphisms. *Genetic Testing and Molecular Biomarkers*. 2012;16(12):1408-1412.
- Mutombo P., Yamasaki, M., Nabika, T. and Shiwaku, K. Cannabinoid Receptor 1 (CNR1) 4895 C/T Genetic Polymorphism was Associated with Obesity in Japanese Men. *Journal of atherosclerosis and thrombosis.* 2011;19(8):779-785.
- 17. Sipe J., Waalen, J., Gerber, A. and Beutler, E. Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH). *International journal of obesity*. 2005;29(7):755-759.
- Müller T., Brönner, G., Wandolski, M., Carrie, J., Nguyen, T., Greene, B., Scherag, A., Grallert, H., Vogel, C., Scherag, S., Rief, W., Wichmann, H., Illig, T., Schäfer, H., Hebebrand, J. and Hinney, A. Mutation screen and association studies for the fatty acid amide hydrolase (FAAH) gene and early onset and adult obesity. *BMC Medical Genetics.* 2010;11(1).
- 19. Monteleone P., Tortorella A., Martiadis V., Di Filippo C., Canestrelli B. and Maj M. The cDNA 385C to A missense polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) is associated with overweight/obesity but not with binge eating disorder in overweight/obese women. *Psychoneuroendocrinology*. 2008;33(4):546-550.
- Durand E., Delplanque J., Benzinou M., Degraeve F., Boutin P., Marre M., Balkau B., Charpentier G., Froguel P., Meyre D. Evaluating the association of FAAH common gene variation with childhood, adult severe obesity and type 2 diabetes in the French population. *Obesity Facts.* 2008;1(6):305-309.
- Ketterer C., Heni, M., Stingl, K., Tschritter, O., Linder, K., Wagner, R., Machicao, F., Haring, H., Preissl, H., Staiger, H. Polymorphism rs3123554 in CNR2 reveals genderspecific effects on body weight and affects loss of body weight and cerebral insulin action. *Obesity*. 2014;22(3):925-931.
- 22. Wangensteen T., Akselsen, H., Holmen, J., Undlien, D. and Retterstøl, L. A Common Haplotype in NAPEPLD Is Associated With Severe Obesity in a Norwegian Population-Based Cohort (the HUNT Study). *Obesity*. 2010;19(3):612-617.
- de Luis D., Sagrado M., Aller R., Izaola O. and Conde R. Relation of G1359A polymorphism of the cannabinoid receptor (CB1) gene with metabolic syndrome by ATP III classification. *Diabetes/metabolism research and reviews*. 2011;27(5):506-511.
- 24. de Luis D., González Sagrado M., Aller R., Izaola O., Conde R., Pérez Castrillón JL, Romero E. G1359A polymorphism of the cannabinoid receptor gene (CNR1) on anthropometric parameters and cardiovascular risk factors in patients with morbid obesity. *Nutricion Hospitalaria*. 2009;24(6):688-692.
- Miguel-Yanes J., Manning, A., Shrader, P., McAteer, J., Goel, A., Hamsten, A., Fox, C., Florez, J., Dupuis, J. and Meigs, J. . Variants at the Endocannabinoid receptor CB1 Gene (CNR1) and insulin sensitivity, type 2 diabetes, and coronary heart disease. *Obesity*. 2011;19(10):2031-2037.

- 26. de Luis D., Izaola, O., Primo, D., de la Fuente, B. and Aller, R. Polymorphism rs3123554 in the cannabinoid receptor gene type 2 (CNR2) reveals effects on body weight and insulin resistance in obese subjects. *Endocrinología, Diabetes y Nutrición.* 2017;64(8):440-445.
- 27. de Luis D., Gonzalez Sagrado, M., Aller, R., Izaola, O. and Conde, R. Effects of C358A missense polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase on weight loss after a hypocaloric diet. *Metabolism.* 2011;60(5):730-734.
- 28. de Luis D., Gonzalez Sagrado, M., Aller R., Izaola O., Conde R. and Romero E. C358A missense polymorphism of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) and visfatin levels in obese females. *International Journal of Obesity*. 2010;34(3):511-515.
- 29. de Luis D., Gonzalez Sagrado, M., Aller R., Izaola O. and Conde R. Influence of G1359A polymorphism of the cannabinoid receptor gene on anthropometric parameters and insulin resistance in women with obesity. *Metabolism.* 2011;60(2):272-276.
- 30. de Luis D., Ballesteros, M., Lopez Guzman, A., Ruiz, E., Muñoz, C., Penacho, M., Iglesias, P., Maldonado, A., San Martin, L., Izaola, O. and Delgado, M. Polymorphism G1359A of the cannabinoid receptor gene (CNR1): allelic frequencies and influence on cardiovascular risk factors in a multicentre study of Castilla-Leon. *Journal of Human Nutrition and Dietetics.* 2015;29(1):112-117.
- 31. de Luis D., Izaola O., Aller R., Lopez J., Torres B., Diaz G., Gomez E. and Romero E. Association of G1359A polymorphism of the cannabinoid receptor gene (CNR1) with macronutrient intakes in obese females. *Journal of Human Nutrition and Dietetics*. 2015;29(1):118-123.
- 32. Zhang Y., Sonnenberg G., Baye T., Littrell J., Gunnell J., de la Forest A., MacKinney E., Hillard C., Kissebah A., Olivier M. Obesity-related dyslipidemia associated with FAAH, independent of insulin response, in multigenerational families of Northern European descent. *Pharmacogenomics.* 2009;10(12):1929-1939.
- 33. Shire D., Calandra, B., Delpech, M., Dumont, X., Kaghad, M., Le Fur, G., Caput, D. and Ferrara, P. Structural features of the central cannabinoid CB1 receptor involved in the binding of the specific CB1 antagonist SR 141716A. *Journal of Biological Chemistry*. 1996;271(12):6941-6946.
- Kimchi-Sarfaty C., Oh J., Kim, I., Sauna, Z., Calcagno, A., Ambudkar, S. and Gottesman, M. A "silent" polymorphism in the MDR1 gene changes substrate specificity. *Science*. 2007;315(5811):525-528.
- 35. Muller T., Reichwald K., Wermter A., Bronner G., Nguyen T., Friedel, S., Koberwitz, K., Engeli, S., Lichtner, P., Meitinger, T. No evidence for an involvement of variants in the cannabinoid receptor gene CNR1 in obesity in German children and adolescents. *Molecular genetics and metabolism.* 2007;90(4):429-434.
- Benzinou M., Chevre, J., Ward, K., Lecoeur, C., Dina, C., Lobbens, S., Dur, Delplanque, J., Horber, F., Heude, B. Endocannabinoid receptor 1 gene variations increase risk for obesity and modulate body mass index in European populations. *Human molecular genetics.* 2008;17(13):1916-1921.
- 37. Romero J., Berrendero, F., Garcia-Gil, L., De la Cruz, P., Ramos, J., Fern, and ez-Ruiz, J. Loss of cannabinoid receptor binding and messenger RNA levels and cannabinoid agonist-stimulated 35guanylyl- 5'-O-(thio)-triphosphate binding in the basal ganglia of aged rats. *Neuroscience*. 1998;84(4):1075-1083.

- Wang L., Liu, J., Harvey-White, J., Zimmer, A. and Kunos, G. Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice. *Proceedings of the National Academy of Sciences*. 2003;100(3):1393-1398.
- 39. Diaz S., Farhang, B., Hoien, J., Stahlman, M., Adatia, N., Cox, J. and Wagner, E. Sex differences in the cannabinoid modulation of appetite, body temperature and neurotransmission at POMC synapses. *Neuroendocrinology*. 2009;89(4):424-440.
- 40. Mela V., Vargas, A., Meza, C., Kachani, M. and Wagner, E. Modulatory influences of estradiol and other anorexigenic hormones on metabotropic, Gi/o-coupled receptor function in the hypothalamic control of energy homeostasis. *The Journal of Steroid Biochemistry and Molecular Biology*. 2016;160:15-26.
- 41. Chiang K., Gerber, A., Sipe, J. and Cravatt, B. Reduced cellular expression and activity of the P129T mutant of human fatty acid amide hydrolase: evidence for a link between defects in the endocannabinoid system and problem drug use. *Human molecular genetics.* 2004;13(18):2113-2119.
- 42. Martins C., Genelhu, V., Pimentel, M., Celoria, B., Mangia, R., Aveta, T., Silvestri, C., Di Marzo, V. and Francischetti, E. Circulating Endocannabinoids and the Polymorphism 385C>A in Fatty Acid Amide Hydrolase (FAAH) Gene May Identify the Obesity Phenotype Related to Cardiometabolic Risk: A Study Conducted in a Brazilian Population of Complex Interethnic Admixture. *PLOS ONE*. 2015;10(11).
- 43. Milewicz, A., Tworowska-Bardzińska, U., Jędrzejuk, D., Lwow, F., Dunajska, K., Łaczmański, Ł. and Pawlak, M. Are endocannabinoid type 1 receptor gene (CNR1) polymorphisms associated with obesity and metabolic syndrome in postmenopausal Polish women? *International Journal of Obesity*, 2010. 35(3):373-377.
- 44. de Luis D., G.S.M., Aller R., Izaola O., Conde R. Relation of C358A polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) with obesity and insulin resistance. *Nutricion Hospitalaria*, 2010. 25(6):993-8.
- 45. Miguel-Yanes, J., Manning, A., Shrader, P., McAteer, J., Goel, A., Hamsten, A., Fox, C., Florez, J., Dupuis, J. and Meigs, J. Variants at the Endocannabinoid receptor CB1 Gene (CNR1) and insulin sensitivity, type 2 diabetes, and coronary heart disease. *Obesity*, 2011. 19(10):2031-2037.
- 46. de Luis, D., Sagrado, M., Aller, R., Conde, R., Izaola, O., De la Fuente, B. and Primo, D., Roles of G1359A polymorphism of the cannabinoid receptor gene (CNR1) on weight loss and adipocytokines after a hypocaloric diet. *Nutricion Hospitalaria*, 2011. 26(2).
- 47. Jaeger, J., Mattevi, V., Callegari-Jacques, S. and Hutz, M., Cannabinoid type-1 receptor gene polymorphisms are associated with central obesity in a Southern Brazilian population. *Disease markers*, 2008. 25(1):67-74.
- 48. Knoll N, Volckmar AL., Pütter C, Scherag A, Kleber M, Hebebrand J, Hinney A, Reinehr T., The fatty acid amide hydrolase (FAAH) gene variant rs324420 AA/AC is not associated with weight loss in a 1-year lifestyle intervention for obese children and adolescents. *Hormone and Metabolic Research*, 2012. 44(1):75-77.
- 49. Baye T, Zhang, Y., Smith, E., Hillard, C., Gunnell, J., Myklebust, J., James, R., Kissebah, A., Olivier, M. and Wilke, R. Genetic variation in cannabinoid receptor 1 (CNR1) is associated with derangements in lipid homeostasis, independent of body mass index. *Future Medicine*. 2008. 9(11):1647-56
- 50. de Luis D, Aller, R., Izaola, O., Conde, R., Sagrado, M., Primo, D. and Castro, M. . Relationship among metabolic syndrome, C358A polymorphism of the

endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) and insulin resistance. *Journal of Diabetes and its Complications.* 2012;26(4):328-332.

- 51. Müller T, Brönner, G., Wandolski, M., Carrie, J., Nguyen, T., Greene, B., Scherag, A., Grallert, H., Vogel, C., Scherag, S., Rief, W., Wichmann, H., Illig, T., Schäfer, H., Hebebrand, J. and Hinney, A. . Mutation screen and association studies for the fatty acid amide hydrolase (FAAH) gene and early onset and adult obesity. *BMC Medical Genetics*. 2010;11(1).
- 52. de Luis D, Sagrado, M., Pacheco, D., Terroba, M., Martin, T., Cuellar, L. and Ventosa, M. . Effects of C358A missense polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase on weight loss and cardiovascular risk factors 1 year after biliopancreatic diversion surgery. *Surgery for Obesity and Related Diseases*. 2010;6(5):516-520.
- 53. Zeng J. LJ, Huang G. 385 C/A polymorphism of the fatty acid amide hydrolase gene is associated with metabolic syndrome in the Chinese Han population. *Archives of medical Science*. 2011;7(3):423-427.
- 54. Grolmusz VK SB, Fekete T, Szendei G, Patócs A, Rácz K, Reismann P. Lack of association between C385A functional polymorphism of the fatty acid amide hydrolase gene and polycystic ovary syndrome. *Experimental and Clinical Endocrinology and Diabetes*. 2013;121(6):338-342.
- 55. Williams C, Rogers P, TC K. Hyperphagia in pre-fed rats following oral delta 9-THC. *Physiology & Behaviour.* 1998;20:104-110.
- 56. Williams C, Kirkham T. Reversal of delta 9-THC hyperphagia by SR 141716 and naloxone but not dexfenfluramine. *Pharmacology, Biochemistry & Behaviour.* 2002(71):333-340.
- 57. Moreira F, Crippa, J. The psychiatric side-effects of rimonabant. *Revista brasileira de psiquiatria.* 2009;31(2):145-153.
- 58. Gutierrez-Hermosillo H, Diaz De Leon-Gonzalez, E., Palacios-Corona, R., Cedillo-Rodriguez, J. A., Camacho-Luis, A., Reyes-Romero, M. A., Medina-Chavez, J. H., Blandon, P. A. C allele of the rs2209972 single nucleotide polymorphism of the insulin degrading enzyme gene and Alzheimer's disease in type 2 diabetes, a case control study. *Medicina Clinica*. 2013;144(4):151-155.
- 59. Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. *Endocrine Reviews.* 2006;27(1):73-100.
- Gomez R., Navarro M., Ferrer B., Trigo JM., Bilbao A., Del Arco I., Cippitelli A., Nava F., Piomelli D., Rodriguez de Fonseca F. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. *Journal of Neuroscience*. 2002;22(21):9612-9617.
- Frade A., Teixeira, P. C., Ianni, B. M., Pissetti, C. W., Saba, B., Wang, L. H. T., Kuramoto, A., Nogueira, L. G., Buck, P., Dias, F. . Polymorphism in the Alpha Cardiac Muscle Actin 1 Gene Is Associated to Susceptibility to Chronic Inflammatory Cardiomyopathy. *PLOS ONE*. 2013;8(12):83446.
- 62. Li Y., Chang, S., Niu, R., Liu, L., Crabtree-Ide, C. R., Zhao, B., Shi, J., Han, X., Li, J., Su, J. TP53 genetic polymorphisms, interactions with lifestyle factors and lung cancer risk: a case control study in a Chinese population. *BMC Cancer*. 2013;13(1):607.

- Ujike H., Takaki, M., Nakata, K., Tanaka, Y., Takeda, T., Fujiwara, Y., Kodama, M., Sakai,
   A. and Kuroda, S. CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia. *Molecular psychiatry*. 2002;7(5).
- 64. Lieb W., Manning, A., Florez, J., Dupuis, J., Cupples, L., Mcateer, J., Vasan, R., Hoffmann, U., O'Donnell, C., Meigs, J. Variants in the CNR1 and the FAAH genes and adiposity traits in the community. *Obesity*. 2009;17(4):755-760.
- Hariri A., Gorka, A., Hyde, L., Kimak, M., Halder, I., Ducci, F., Ferrell, R., Goldman, D. and Manuck, S. Divergent effects of genetic variation in endocannabinoid signaling on human threat-and reward-related brain function. *Biological psychiatry*. 2009;66(1):9-16.
- 66. Aller R., De Luis, D., Pacheco, D., Velasco, M., Conde, R., Izaola, O. and Gonzalez Sagrado, M. Influence of G1359A polymorphism of the cannabinoid receptor gene (CNR1) on insulin resistance and adipokines in patients with non-alcoholic fatty liver disease. *Nutricion Hospitalaria*. 2012;27(5):1637-1642.
- 67. de Luis D., González Sagrado M., Aller R., Izaola O., Conde R., Pérez Castrillón JL, Romero E. G1359A polymorphism of the cannabinoid receptor gene (CNR1) on anthropometric parameters and cardiovascular risk factors in patients with morbid obesity. *Nutricion Hospitalaria*. 2009;24(6):688-692.
- de Luis D., Gonzalez Sagrado, M., Aller, R., Izaola, O., Conde, R. and Romero, E. . G1359A polymorphism of the cannabinoid receptor gene (CNR1) and insulin resistance in patients with diabetes mellitus type 2. *Nutricion Hospitalaria*. 2010;25(1):34-38.
- 69. Suárez-Pinilla P., Ortiz-García de la Foz V., Guest PC, Ayesa-Arriola R., Córdova-Palomera A., Tordesillas-Gutierrez D., Crespo-Facorro B. Brain structural and clinical changes after first episode psychosis: Focus on cannabinoid receptor 1 polymorphisms. *Psychiatry Research*. 2015;233(2):112-119.
- Frost M., Nielsen, T., Wraae, K., Hagen, C., Piters, E., Beckers, S., De Freitas, F., Brixen, K., Van Hul, W. and Andersen, M. Polymorphisms in the endocannabinoid receptor 1 in relation to fat mass distribution. *European Journal of Endocrinology*. 2010;163(3):407-412.
- de Luis D., Aller, R., Izaola, O., Díaz Soto, G., López Gómez, J., Gómez Hoyos, E., Torres, B., Villar, A. and Romero, E. Effects of a High-Protein/Low-Carbohydrate versus a Standard Hypocaloric Diet on Weight and Cardiovascular Risk Factors during 9 Months: Role of a Genetic Variation in the Cannabinoid Receptor Gene (CNR1) (G1359A Polymorphism). Annals of Nutrition and Metabolism. 2015;66(2-3):125-131.
- 72. Jensen D., Andreasen, C., Andersen, M., Hansen, L., Eiberg, H., Borch-Johnsen, K., Jørgensen, T., Hansen, T. and Pedersen, O. The functional Pro129Thr variant of the FAAH gene is not associated with various fat accumulation phenotypes in a population-based cohort of 5,801 whites. *Journal of Molecular Medicine*. 2007;85(5):445-449.
- 73. Dinu I., Popa, S., Mota, M., Mota, E., Ioana, M. and Cruce, M. The association of rs12720071 polymorphism of the CNR1 gene with glucose metabolism abnormalities. *Annals of the Romanian Society of Cell Biology.* 2010;1(15):299-303.
- 74. Buraczynska M WP, Zukowski P, Dragan M, Ksiazek A. Common polymorphism in the cannabinoid type 1 receptor gene (CNR1) is associated with microvascular complications in type 2 diabetes. *Journal of Diabetes and its Complications*. 2014;28(1):35-39.

- 75. Dinu I., Popa, S., Mota, M., Mota, E., Stanciulescu, C., Ioana, M. and Cruce, M. The association of the rs1049353 polymorphism of the CNR1 gene with hypoadiponectinemia. *Romanian Journal of Morphology and Embryology.* 2011;52(3):791-795.
- 76. de Luis D., Aller, R., Sagrado, M., Conde, R., Izaola, O. and de la Fuente, B. Genetic variation in the cannabinoid receptor gene (CNR1) (G1359A polymorphism) and their influence on anthropometric parameters and metabolic parameters under a high monounsaturated vs. high polyunsaturated fat hypocaloric diets. *The Journal of nutritional biochemistry*. 2013;24(8):1431-1435.
- 77. Silver H., Niswender, K., Keil, C., Jiang, L., Feng, Q., Chiu, S., Krauss, R. and Wilke, R. . CNR1 genotype influences HDL-cholesterol response to change in dietary fat intake. *PLOS ONE.* 2012;7(5):361-366.
- Feng Q., Jiang, L., Berg, R., Antonik, M., MacKinney, E., Gunnell-Santoro, J., McCarty, C. and Wilke, R. A common CNR1 (cannabinoid receptor 1) haplotype attenuates the decrease in HDL cholesterol that typically accompanies weight gain. *PLOS ONE*. 2010;5(12):15779.
- 79. Feng Q., Vickers, K., Anderson, M., Levin, M., Chen, W., Harrison, D. and Wilke, R. A common functional promoter variant links CNR1 gene expression to HDL cholesterol level. *Nature communications*. 2013;4.
- Chmelikova M., Pacal L., Spinarova, L. and Vasku, A. Association of polymorphisms in the endocannabinoid system genes with myocardial infarction and plasma cholesterol levels. *Biomedical Papers.* 2014;159(4):535-539.
- 81. Aberle J., Flitsch, J., Beck, N., Mann, O., Busch, P., Peitsmeier, P. and Beil, F. Genetic variation may influence obesity only under conditions of diet: analysis of three candidate genes. *Molecular genetics and metabolism.* 2008;95(3):188-191.
- 82. Lenarcik-Kabza A, Łaczmański Ł, Milewicz A, Bidzińska-Speichert B, Pawlak M, Kolackov K, Kuliczkowska-Płaksej J, Trzmiel-Bira A, Brona A. . The influence of endocannabinoid receptor 1 gene variations on anthropometric and metabolic parameters of women with polycystic ovary syndrome. *Endokrynologia Polska*. 2014;65(3):181-188.
- 83. Schleinitz D, Carmienke, S., Böttcher, Y., Tönjes, A., Berndt, J., Klöting, N., Enigk, B., Müller, I., Dietrich, K., Breitfeld, J., Scholz, G., Engeli, S., Stumvoll, M., Blüher, M. and Kovacs, P. Role of genetic variation in the cannabinoid type 1 receptor gene (CNR1) in the pathophysiology of human obesity. *Pharmacogenomics*. 2010;11(5):693-702.
- 84. de Luis D., Sagrado, M., Aller, R., Conde, R., Izaola, O., de la Fuente, B. and Primo, D. Role of G1359A polymorphism of the cannabinoid receptor gene on weight loss and adipocytokines levels after two different hypocaloric diets. *The Journal of Nutritional Biochemistry*. 2011;23(3):287-291.
- 85. Aberle J FI, Klages N, George E, Beil FU. Genetic variation in two proteins of the endocannabinoid system and their influence on body mass index and metabolism under low fat diet. *Hormone and Metabolic Research.* 2007;39(5):395-397.
- 86. Wei R, Yang, F., Urban, T., Li, L., Chalasani, N., Flockhart, D. and Liu, W. . Impact of the interaction between 3'-UTR SNPs and microRNA on the expression of human xenobiotic metabolism enzyme and transporter genes. *Frontiers in Genetics*. 2012;21(3):248.
- 87. Dunajska K, Lwow, F., Jedrzejuk, D., Milewicz, A., Tworowska-Bardzinska, U. and Laczmanski, L. Are endocannabinoid type 1 receptor gene (CNR1) polymorphisms

associated with obesity and metabolic syndrome in postmenopausal Polish women? *Nature Publishing Group.* 2009;35(3):373-377.

- 88. Bordicchia M, Battistoni, I., Mancinelli, L., Giannini, E., Refi, G., Minardi, D., Muzzonigro, G., Mazzucchelli, R., Montironi, R., Piscitelli, F. Cannabinoid CB1 receptor expression in relation to visceral adipose depots, endocannabinoid levels, microvascular damage, and the presence of the CNR1 A3813G variant in humans. *Metabolism.* 2010;59(5):734-741.
- 89. Greenwood TA., Kelsoe Jr. Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. *Genomics.* 2003;82(5):511-520.
- 90. Egertova M, Cravatt, B. and Elphick, M. Comparative analysis of fatty acid amide hydrolase and CB1 cannabinoid receptor expression in the mouse brain: evidence of a widespread role for fatty acid amide hydrolase in regulation of endocannabinoid signaling. *Neuroscience*. 2003;119(2):481-496.
- 91. Łaczmański Ł, Milewicz, A., Dunajska, K., Jędrzejczuk, D., Pawlak, M. and Lwow, F. Endocannabinoid type 1 receptor gene (CNR1) polymorphisms (rs806381, rs10485170, rs6454674, rs2023239) and cardiovascular risk factors in postmenopausal women. *Gynecological Endocrinology*. 2011;27(12):1023-1027.
- 92. Tiwari AK ZC, Likhodi O, Lisker A, Singh D, Souza RP, Batra P, Zaidi SH, Chen S, Liu F, Puls I, Meltzer HY, Lieberman JA, Kennedy JL, Müller DJ. A common polymorphism in the cannabinoid receptor 1 (CNR1) gene is associated with antipsychotic-induced weight gain in Schizophrenia. *Neuropsychopharmacology*. 2010;35(6):1315-1324.
- 93. Caruso M.G. GP, Notarnicola M., Cisternino A.M., Guerra V., Misciagna G., Laezza C., Bifulco M.c Cannabinoid Type 1 Receptor Gene Polymorphism and Macronutrient Intake. *Journal of Nutrigenetics and Nutrigenomics*. 2012;5(6):305-313.
- Zhuang M, Yang, Y., Cao, F., Lu, M., Wang, X., Zhang, J., Chen, X., Cheng, P., Zhang, N., Ye, W. Associations of variants of CNR1 with obesity and obesity-related traits in Chinese women. *Gene.* 2012;495(2):194-198.
- 95. Bellini G. GA, Torella M., Miraglia del Giudice E., Nobili B., Perrone L., Maione S., and Rossi F. The Cannabinoid Receptor 2 Q63R Variant Modulates the Relationship between Childhood Obesity and Age at Menarche. *PLOS ONE.* 2015;10(10).
- 96. Papazoglou D PI, Papanas N, Gioka T, Papadopoulos T, Papathanasiou P, Kaitozis O, Papatheodorou K, Maltezos E. The fatty acid amide hydrolase (FAAH) Pro129Thr polymorphism is not associated with severe obesity in Greek subjects. *Hormone and Metabolic Research*. 2008;40(12):907-910.
- 97. Reinhard W., Stark K, Neureuther K, Sedlacek K, Fischer M, Baessler A, Weber S, Kaess B, Wiedmann S, Erdmann J, Lieb W, Jeron A, Riegger G, Hengstenberg C. Common polymorphisms in the cannabinoid CB2 receptor gene (CNR2) are not associated with myocardial infarction and cardiovascular risk factors. *International Journal of Molecular Medicine*. 2008;22(2):165-74.
- Vazquez-Roque M., Camilleri M, Vella A, Carlson P, Laugen J, Zinsmeister AR. Association of genetic variation in cannabinoid mechanisms and gastric motor functions and satiation in overweight and obesity. *Neurogastroenterology & Motility*. 2011;23(7):637-e257.
- 99. Harismendy O., Bansal V, Bhatia G, Nakano M, Scott M, Wang X, Dib C, Turlotte E, Sipe JC, Murray SS, Deleuze JF, Bafna V, Topol EJ, Frazer KA. Population sequencing of two endocannabinoid metabolic genes identifies rare and common regulatory variants

associated with extreme obesity and metabolite level. *Genome Biology*. 2010;11(11):R118