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Abstract— The uneven utilisation of modes of transport 

has a big impact on traffic in transport pathway 

infrastrutures. For motor vehicles for instance, this 

situation explains rapid road deterioration and the large 

amounts of money invested in maintenance and 

development due to overuse. There are many approaches 

to managing this problem; however, the impact of 

individual users in infrastructural maintenance is mostly 

ignored.  In this position paper, we hypothesise that 

important changes torwards a more efficient use of the 

transport network start with its users and their 

behavioural changes. To this end, we introduce our vision 

on how to employ data driven, intelligent agent-based 

modelling, incorporating human factors aspects, as a 

toolset to understand travellers and to stimulate 

behavioural changes. The aim is to achieve better 

balanced and integrated mobility usage within the 

transport network. The idea is explored with a few guided 

questions, and a methodology is proposed. We employ 1) 

cognitive work analysis to investigate the reasons for 

travellers’ mode choice; 2) computational intelligence to 

extract and represent knowledge from related datasets; 3) 

agent-based modelling to represent the real-world and to 

observe both individual and  emergent behaviours. Future 

directions to adapt our methodology to alternative smart 

mobility projects are also discussed. 

I. INTRODUCTION  

Globally, transport infrastructure is one of the key set of 

assets enabling the development of the economy. Nowadays, 

billions of dollars are being invested in its development and 

maintenance in response to increased demands as a result of 

population growth and the needs for mobility. Apart from the 

huge costs, the rapid growth in demand and maintenance of 

transport networks brings threats to the environment, 

economy, safety [1],[2], and social life. Transport 

infrastructure management has been mostly focusing efforts 

on minimising maintenance [3],[4] and development costs 

[5], while keeping safety, availability and reliability at 

acceptable levels. Achieving these objectives, however, is 

becoming increasingly challenging due to the shrinking 

global financial status, the ageing and subsequent 

 
 

deterioration of infrastructures [3] due to heavy usage. More 

importantly is also the fact that the roles of transport users in 

infrastructural maintenance is often ignored. All these factors 

combined impact heavily on the health and lifecycle of 

transport networks and should be considered by the 

stakeholders during decision making. Our interest is to 

propose ways of incorporating human factors, human 

behaviour and computational intelligence into simulation 

tools to help promote societal changes that positively impact 

on transport infrastructure health. The transport system is a 

sociotechnical system with people as one of its essential 

components. Regarding transport demand, people tend to 

choose a transport mode that (i) answers their mobility needs; 

(ii) is easy to use; (iii) is reliable and safe; and (iv) ensures 

access to markets and resources [6]. Travellers’ mode choice 

decision processes are complex, depending on many 

interdependent factors, most of which are not crisp, but 

uncertain/fuzzy and subjective to the decision maker [7]. 

Individuals’ preferences in mode choice over time have 

resulted in an uneven usage of available transport modes 

[8],[9], which make some infrastructures being under 

pressure due to heavy usage, and others underutilised. In order 

to tackle this problem, detailed investigations and surveys into 

users’ operations within the transport system is essential, 

because decision-makers need to understand why individuals 

choose a travel mode over another [10]. In addition, it is 

important to identify what effects those choices have on the 

transport infrastructure lifecycle and on users’ safety and 

economy. It is also necessary to understand how intervention 

to promote changes in users’ behaviour can improve the 

health and life of transport infrastructures.  Consequently, a 

few questions arise: How can reliable data be obtained to 

provide insights into the activities of the heterogeneous 

transport users? How can this information be incorporated 

into a simulation system for decision making? Are there 

adaptive intelligent systems to extract information from the 

large interdependent data stream constantly gathered from 

users and their user-transport infrastructural survey? How can 

uncertainty in data due to human nature and structural 

relationship be addressed? Our position is that the questions 

raised can be tackled using data-driven agent-based 

computational intelligence modelling approaches. This 

position paper therefore proposes an intelligent travel mode 
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integration methodology that relies on cognitive work 

analysis, computational intelligence techniques, agent-based 

modelling and data mining algorithms to achieve a data-

driven intelligent integrated mobility decision tool set to 

promote good health of transport infrastructure.  Integration 

in transport mode involves interoperability between travel 

modes and within transport systems. Transport users are 

autonomous entities who have habits, interact, make 

intelligent decisions and adapt to a changing complex 

transport system’s environment. Consequently, our approach 

investigates the dynamic transport environment using a 

Human Factors analytical framework called the cognitive 

work analysis [11],[12] with a view to identifying the 

constraints the system imposes on users. We also explore 

knowledge discovery with appropriate data mining 

algorithms to understand patterns emerging from the system; 

as well as a fuzzy logic systems to capture uncertainty in data 

imprecision. Also to model populations of heterogeneous, 

autonomous travellers that have behaviour and ability to 

interact with other travellers within the system using agent-

based modelling technique. The individual traveller is created 

as an agent equipped with rules of behaviour extracted from 

the real-world data and simulated within the agent-based 

environment. The final objective is to obtain a system where 

it is possible to observe the emergent behaviour arising from 

the interacting entities within a simulation environment and 

their possible responses to new travel policies. We hope that 

the emerging behaviour of the simulation systems assisted 

with the knowledge unveil by the computational techniques, 

our methodology can provide information to aid efficient 

strategic development for mode integration that can lead to 

improvement in the health of the transport infrastructure. 

II. BACKGROUND INFORMATION 

Transport infrastructure includes physical networks, 

terminals and intermodal nodes, information systems and 

refuelling and electrical supply networks [13]. The 

investments in transport infrastructure across the world are on 

the rise[14][8] [15]. Available data show that road and rail 

infrastructure attract large investments [15] [8]. Despite the 

considerable investment in rail infrastructure, 73% of 

domestic freight moved in Great Britain in 2014, for instance, 

was done by road through heavy goods vehicles (HGVs); and 

this percentage increased to 76% in 2015 [9],[16]. 

Furthermore, a larger percentage of passenger mobility in the 

UK is done by road. Car use accounts for 78% of total 

distance travelled either as a driver or a passenger in 2014 [9]. 

The situation is not different in the US. Trucks have the 

largest shares of freight by values, ton, and ton-miles for 

shipment moved up to 750 miles [8]. Also, nearly four-fifths 

of person-miles of travel (PMT) was in cars or other personal 

vehicles while domestic air travel accounted for 11%.  
It is therefore evident that some transport modes attract 

more freights and passengers’ mobility than the others. It is 
also clear that there are uneven distributions in the shares of 
services across the travel modes. Hence, this has made some 
modes such as road transport more problematic regarding 
infrastructural usage, traffic congestions, safety, reduced 

economy and its overall infrastructure health. There are 
several approaches to mitigate the many challenges of the 
transport system regarding mode choice and better use of the 
infrastructure. Among the possible solutions is integrated 
mobility or the travel mode integration approach. Although 
mode integration was suggested to curb greenhouse gas 
emissions  (GHG) [13], with the appropriate deployment of 
specialised knowledge gathering innovations and data-driven 
computational techniques, it can be used to resolve issues of 
serious concern such as infrastructural deterioration due to 
accumulated effects of uneven travel mode distributions. 
Consequently, an in-depth understanding of transport system’s 
entities and their interactions is essential to enhance proper 
strategic policies formulation to propel necessary changes. But 
access to accurate and complete datasets and proper harnesses 
of relevant methodologies to support knowledge discovery is 
necessary for the achievement of efficient transport 
infrastructure management through mode integration.  

A. Sociotechnical Transport System 

The sociotechnical theory is based on the idea that the 

design and performance of an organisational system can only 

be understood and improved if both ‘social’ and ‘technical’ 

aspects are brought together and  are treated as interdependent 

parts of a complex system [17]. The social aspect of the 

transport domain as a sociotechnical system comprises, 

among other things, of heterogeneous human beings with 

behaviour and capabilities to adapt to changes in the 

environment. But the technical systems might not be perfect 

and, as such, not able to cope with the demands of changing 

environments in which human are situated [18], that explains 

changes in humans’ reactions when a situation needs 

improvement or when things go wrong in a system [10]. 

Human activities can be understood in terms of constraints 

that restrict them, and the goals that provide direction to their 

actions, procedures and decision. It is therefore important to 

understand the performance-shaping factors of the domain 

within which users’ operations are performed. Such 

understanding according to Bisantz et al. [19] will not only be 

helpful but will also be necessary to make sense of and 

support performance in complex, unpredictable 

environments. Consequently, Human Factors (HF) 

investigates factors and the development of tools that 

facilitate the achievements of enhancing performance, 

increasing safety and increasing user satisfaction [20]. The 

application of HF analytical techniques is key to 

understanding the factors that shape users’ travel mode 

choices. 

B. Human Factors approaches to complex system analysis 

There are several analytical techniques in Human Factors. 

The methods include normative task analysis that prescribes 

how a system should behave [12],[21]; there is also the 

descriptive task analysis [22],[19] that focus on analyzing 

how a system behaves in practice. The two techniques work 

by decomposing activities into a set of task sequences, which 

can rarely be extended beyond stable and repeatable systems 

[23]. Thus, those techniques are not suitable for unanticipated 



  

events that occur in a dynamic transport environment. 

Consequently, the formative approach has the capabilities to 

handle inherent complexity and adaptability. It also allows the 

examination of unpredicted, and unanticipated actions within 

a system.  Cognitive Work Analysis (CWA) [11],[12] is a 

well-established formative task analysis model that had been 

used in Human Factors and Ergonomics to investigate the 

constraints imposed on the users by the system’s 

environments.  

CWA is a five-phase model that offers deep insight into the 

work analysis of complex systems by defining what is needed 

to perform the task, regardless of the actors, the situation and 

the environment of the system. Details of CWA can be found 

in [12],[24]. It has been applied successfully in many domains 

such as process control [12], transport [25],[26]. This paper 

discusses only the first phase of CWA, i.e. work domain 

analysis (WDA) which is relevant to the proposed 

methodology. The WDA defines the reasons for behaviour 

within the system (functional properties) and defines the 

resources available for the behaviour (physical properties) 

[22]. WDA models system with the Abstraction Hierarchy 

(AH) which uses ‘how-what-why’ triads to describe the 

relationship among the elements within the system domain 

across five conceptual levels in the WDA. An illustrative 

example of how AH works is given in Section III (step 4). The 

emergent behaviours arising from individual autonomous 

traveller is key to understanding the system’s response to 

interventions. The next section discusses the modelling of 

individuals within a complex adaptive system.  

C. Agent-Based Modelling and Travellers’ Heterogeneity 

 Beanland et al. [27] describe agent-based modelling 

(ABM) as a way to model the dynamics of complex systems 

and complex adaptive systems. It models a system from the 

perspective of agents, i.e., viewing any system as consisting 

of agents. Agents are entities within a system that have 

behaviours, can interact with other entities and the 

environment. Their interactions with other entities can 

influence their behaviours [28]. Individual behaviour and 

their interactions are explicitly represented in a program or 

even in another physical entity such as robot [29]. Such agent 

is capable of changing its behaviour during the simulation in 

an adaptive system as agents learn, encounter novel 

situations, or as populations adjust their composition to 

include larger proportion of agents who have successfully 

adapted [30]. However, to mimic the behaviour of humans 

they represent, agents require to be equipped with the right, 

and adequate set of rules developed from extracted real-life 

data representing the observed population. The techniques for 

abstracting knowledge from datasets are reviewed in the 

following section.  

D. Computational Intelligence Techniques 

The nature of transport system as a sociotechnical system, 

and the heterogeneity in travellers’ attributes, as well as 

possible uncertainties that can arise in their mode choice 

decision process, require computational techniques that can 

perform well in the complex and adaptive system 

environment. Such techniques are necessary to handle the 

huge volumes of interdependent data arising from human 

activities and operations within the transport domain. The 

objective is to assist understanding and to mimick ‘intelligent 

behaviour’. Engelbrecht [31] describes Computational 

intelligence (CI) as the study of adaptive mechanisms to 

enable or facilitate intelligent behaviour in complex and 

changing environments. Any methodology that is capable of 

assisting computers to behave intelligently in addressing 

complex world problems involving large and interdependent 

data, as well as imprecision and uncertainty information is 

part of CI. For our methodology, within CI we include the use 

fuzzy logic systems (FLS) [32]. They concern with how 

people describe the world around them [33] and represents 

decisions that are rather ambiguous and blurred [32]. In 

practice, travellers have in mind the vague idea of their 

preference in travel mode with a multitude of attributes and 

factors that have no distinct boundaries; such complex 

situations are often best handled with the application of the 

fuzzy system. These systems will be used to mimick travellers 

decisions. Evolutionary computation [34] and the swarm 

intelligence [31] can assist optimising parameters, modelling 

social networking among the agents (travellers) and also 

selecting neighbour agents to engage in interaction. 

Furthermore, machine learning methods will assist extracting 

data patterns, clustering behavior and predicting classes or 

outcomes. CI techniques will therefore provide the support to 

extract and incorporate knowledge from interdependent 

datasets into agents and their environment.  
The next section describes the processes involved in the 

methodology to support transport infrastructure management 
through mode integration. 

III. PROPOSED SOLUTION 

This section describes our proposed solution by bringing 

together various modelling techniques earlier discussed. 

Illustrative example of freight mobility from the origin-to-

destination is used to work through the stages in the 

methodology process. 

The process flow diagram depicted in Figure 1 provides a 

guide to understanding how the methodology can be used to 

promote transport infrastructure through mode integration. 

Step 1  of the process flow is the starting point.  

Step 2  is to investigate what constitutes the reasons for the 

choice that people make when selecting a mode for their 

freight mobility. Knowledge gathering methods such as 

interviews, questionnaires, document analysis etc., in addition 

to specialized vehicular data collection devices, such as video 

vehicle detection, pneumatic road tube counting, piezoelectric 

sensor that measure vehicular flows and weights can be used. 

The focus of the data gathering  should reflect the reasons for 

the preferences in a mode and people’s perceptions on the 

available existing infrastructure that support their journey, as 

well as their likely responses to interventions if provided.  

Step 3 focuses on the exploration of collected data to extract 

and identify infrastructures, procedures etc., within the 

system that are of concern of the participants. The data 



  

exploration will assist the construction of the abstraction 

hierarchy in step 4 in order to describe the relationships that 

exist within the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Mode Integration Methodology Process Flow 

 

Step 4 is inspired by [35] and thus explained with the aid 

of the AH in Figure 2 which shows our vision of infrastructure 

and resources that support travellers’ activities to achieve the 

purpose of goods delivery to the destination. 

Starting from the top level (see Figure 2), the Functional 

purpose (top-left box on level 1 of Figure 2) of a transport 

system is to provide necessary infrastructural support for a 

comfortable and efficient movement of goods from the origin 

to the destination. The level below the functional purpose 

level (level 2) is the Values and priority measures that have 

Reliability, Journey time and Cost and value for money as the 

criteria defined to evaluate how the system progresses 

towards its functional purposes. For instance, moving goods 

from origin to destination can be impacted by route networks 

hence, prompt the traveler to show preference for alternative 

travel modes that has better network connections. The middle 

level (level 3) is the Purpose-related functions, which 

describe the general functions necessary for a system to 

achieve the functional purpose. Among the general functions 

for our example are cater for tasks needs, which refers to the 

system capability to provide necessary support for freight 

transfer functions; origin-destination connections which 

include efficient routes connection of origin-depots-

destination; information provision that can enhance smooth 

travels; and drivers and freight protections for general safety 

within the system, all are to assist the achievement of efficient 

and comfortable freight movement. The Object-related 

processes (level 4) refer to the functional capabilities and 

limitations of the current objects and infrastructural resources 

within the system which affect achievements of the efficient 

and comfortable freight delivery, and lastly, the Physical 

objects and Resources (level 5) which consist of the actual 

available infrastructural objects and resources within the 

system that the object-related processes refer. The AH nodes 

are connected by the means-ends links that describe the 

relationships among the boxes such that when a node is taken 

within the hierarchy as the ‘what’, nodes linked in the 

hierarchical level above the node indicate ‘why’ the chosen 

node is necessary within the system. Any connected nodes on 

the level immediately below that node can be taken to answer 

the question of ‘how’ that function is to be achieved or 

fulfilled [12].  For example, tracing through the highlighted 

links and boxes in Figure 2, if ‘cater for task needs’ (box 3 in 

level 3) is taken as ‘what’ at the purpose related functions 

level. The links connecting the node up to the value and 

priority measures level show that it can support ‘cost and 

value for money’ node. i.e. it occurs to forms part of the 

considerations to evaluate the costs of moving the good to the 

destination as well as the value for money (i.e. why). Also, to 

show how ‘cater for task needs’ (what) has been derived. The 

level below i.e. the object related processes level that has 

‘route/networks connections’, ‘wayfinding’, ‘general border 

processes’, and ‘energy supply’ highlighted (i.e. how) 

showing how the cater for needs node was derived. 

In step 5, the information provided by the AH components’ 

relationships will be used to organize the survey data with the 

related functions they support. Then the data will further be 

analyzed for travellers’ stereotypes elucidation using  

clustering algorithms such as K-Means. CI techniques extract 

useful information from the survey data. These techniques 

will involve the use of overlay analysis due to possible 

differences in the formats of the collected survey data. 1) Data 

collected from both human and vehicles will require fusion; 

in addition, different sources will require weighting factors 

based on their importance to the overall objective of the 

system. 2)  Correlation analysis of the multiple sources of data 

will establish the relationship of all inputs before combining 

the data for further pattern identification. 3) the challenges of 

the uncertainties and imprecision in the data are better 

handled with a Type-1 fuzzy logic by using precise 

membership functions describing the agents decision based 

on the data analysis and stereotypes defined previously [36].  

Investigate travellers’ mode choice decision process 

with respect to available infrastructures, policies and 
regulations etc. 

 

Explore the survey data to identify functions of 

concerns to the participants. 

Construct Abstraction Hierarchy to reveal the 
relationships among functions of concerns and the 

transport system’s functional purpose 

Use the AH means-ends links to relate the survey data 
to corresponding functions and prepare datasets for 
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Figure 2. The Freight Mobility Abstraction Hierarchy (Inspired by [35] 

 

Duch [37] argues that an important challenge for CI is to 

create flexible systems that can use their modules to explore 

various ways to solve a given problem, proposing a different 

solution that may have different advantages. With agent-

based simulation, each of the agents (virtual traveller)  in the 

system will be preloaded with rules of behaviour which often 

are the products of series of analysis carried out in step 6. 

In step 7, the agents’ stereotypes are calibrated accordingly 

using the information from the previous analysis, and the 

model is simulated in step 8. Based on the parameterisations 

in step 7, the simulated settings represent the system base 

scenario with which further experimentation can be 

compared. The knowledge gained from the CI applications in 

step 6 will also provide support for strategic interventions 

development in step 9, which is for the purpose of stimulating 

travellers behaviours towards the reduction in the share of 

road transport in freight mobility. In step 10, the interventions 

can be applied to the already known base scenario agents’ 

behaviours (i.e. step 8). Several experimentation of such 

interventions can be performed, and individual autonomous 

agent’s behaviour, as well as the aggregate emergent 

behaviours, can be observed to better understand travellers’ 

behaviour in response the interventions. 

IV. DISCUSSIONS AND FUTURE DIRECTIONS 

Effective mode integration through appropriate 

interventions to stimulate travellers mode choice behaviour 

positively impact the whole transport infrastructure lifecycle. 

It reduces for instance development time, maintenance, costs, 

emmissions and violation of land use acts. However, the 

objective of achieving travel mode integration could be 

difficult to accomplish within the current transport policies 

operations in many countries. For instance, in some countries 

including the UK, freight mobility services are autonomous, 

stand-alone, and information about goods movement are 

preserved within each company [38], while the infrastructures 

are owned by both private and public organisations. In the 

future, there is a need for comprehensive information sharing 

among transport companies for the integration of larger 

regional and continental mobility systems so as to promote 

sustainable and efficient linkages among infrastructures and 

other facilities that include all travel modes. Also, policies and 

regulations that encourage collaborative transport solutions 

should be put in place. 

Currently, transport users are embracing digitalisation with 

the use of web applications, smartphones, social media etc. 

These new lifestyles can be explored further in the future to 

promote and improve passengers’ journey experience, 

tailored to their individual needs and preferences. 

Furthermore, actions such as promoting public awareness 

about the needs for modal integration, providing information 

about various mode services and infrastructures such as route 

networks, intermodal terminals, park and ride services, 

transfer yards, and depots for goods can potentially have 

significant transformative effects on passenger’s behaviour. 

Such information can be embedded within smart devices to 

enable door-to-door smart mobility and increase resources 

efficient utilisation. The need to increase integrated 

management of services such as integrated ticketing and 

document processing system, real-time information that cover 

all modes, will encourage mobility across all travel modes. 

V.  CONCLUSION 

A proposed methodology to promote transport 
infrastructure health and lifecycle through travel mode 
integration was introduced in this paper.  There has been an 
increase in the mobility demand and increasing share of road 
travel modes while other modes were underutilised for freight 
and passenger mobility. The situation has impacted negatively 
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on the health of road infrastructures. However, to achieve 
mode integration, decision-makers need to understand why 
individuals choose a travel mode over another, and also, they 
need to identify what effects those choices have on transport 
infrastructure lifecycle and on users’ economy. It is also 
important to understand how stimulating changes in users’ 
behaviour can improve the health and life of transport 
infrastructures.  The structure and activities within the 
transport system environment are both complex and consist of 
elements that exhibit adaptive behaviours. Hence, useful ideas 
from related branch of disciplines such as CWA, ABM and CI 
that deal with complex adaptive systems are carefully 
investigated and harnessed to provide answers to the issues 
raised. A methodology was developed with each of its 
components addressing a part of the concerns as follows: the 
inclusion of Human Factors CWA and its WDA abstraction 
hierarchy provided investigative opportunity to answer the 
question ‘How can reliable data be obtained to provide 
insights into the activities of the heterogeneous transport 
users?’. Features extraction methods and agent-based 
modelling techniques supported with the rules of behaviour 
generated through the application of appropriate 
computational intelligence knowledge which are necessary to 
observe agents’ behaviour will explain ‘How can this 
information be incorporated into a system for decision 
making?’. The integration of CI techniques into the 
methodology process for knowledge extraction provide the 
needed technical support that answers the question ‘Is there 
any technical supporting system with an adaptive mechanism 
to obtain useful information from the vast non-linear data 
constantly gathered from users and the user-transport 
infrastructural survey? The Fuzzy logic system as a CI 
technique is an established tool for dealing with uncertainty in 
data imprecisions which could be a major challenge in 
representing travellers’ perception. The fuzzy system 
incorporation provided solutions to ‘How can uncertainty in 
data due to human nature and structural relationship be 
addressed?’ Lastly, due to the trend in the smart mobility 
projects ongoing globally. Some future directions of making 
mode integration method to be continually relevant to impact 
on infrastructural health and lifecycle are suggested. 
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