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Abstract
Two fundamental goals in programming are correctness
(producing the right results) and efficiency (using as few
resources as possible). Property-based testing tools such
as QuickCheck provide a lightweight means to check the
correctness of Haskell programs, but what about their ef-
ficiency? In this article, we show how QuickCheck can be
combined with the Criterion benchmarking library to give
a lightweight means to compare the time performance of
Haskell programs. We present the design and implementa-
tion of the AutoBench system, demonstrate its utility with
a number of case studies, and find that many QuickCheck
correctness properties are also efficiency improvements.

CCSConcepts •General and reference→Performance;
• Software and its engineering→ Functional languages;
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1 Introduction
Correctness and efficiency are two fundamental goals in
programming: we want our programs to produce the right
results, and to do so using as few resources as possible.

In recent years, property-based testing has become a pop-
ular method for checking correctness, whereby conjectures
about a program are expressed as executable specifications
known as properties. To give high assurance that properties

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Haskell ’18, September 27-28, 2018, St. Louis, MO, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5835-4/18/09. . . $15.00
https://doi.org/10.1145/3242744.3242749

hold in general, they are tested on a large number of inputs
that are often generated automatically.

This approach was popularised by QuickCheck [7], a light-
weight tool that aids Haskell programmers in formulating
and testing properties of their programs. Since its introduc-
tion, QuickCheck has been re-implemented for a wide range
of programming languages, its original implementation has
been extended to handle impure functions [8], and it has
led to a growing body of research [3, 16, 36] and industrial
interest [1, 22]. These successes show that property-based
testing is a useful method for checking program correctness.
But what about program efficiency?
This article is founded on the following simple observa-

tion: many of the correctness properties that are tested using
systems such as QuickCheck are also time efficiency improve-
ments. For example, consider the familiar monoid properties
for the list append operator in Haskell, which can all be
tested automatically using QuickCheck:

xs ++ [ ] == xs

[ ] ++ xs == xs

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

Intuitively, each of these correctness properties is also a time
efficiency improvement in the left-to-right direction, which
we denote using the ▷∼ symbol as follows:

xs ++ [ ] ▷∼ xs

[ ] ++ xs ▷∼ xs

(xs ++ ys) ++ zs ▷∼ xs ++ (ys ++ zs)

For example, the associativity property of append is intu-
itively an improvement because the left side traverses xs
twice, whereas the right side only traverses xs once. How-
ever, formally verifying improvements for lazy languages
like Haskell is challenging, and usually requires the use of
specialised techniques such as improvement theory [27].

In this article, we show how improvement properties can
be put into the hands of ordinaryHaskell users, by combining
QuickCheck with Criterion [35] — a popular benchmarking
library — to give a lightweight, automatic means to compare
the time performance of Haskell programs. More specifically,
the article makes the following contributions:

– We present the design and implementation of the Au-
toBench system, which uses Criterion to compare the
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runtimes of programs executed on inputs of increasing
size generated using QuickCheck (section 3);

– We develop a method for estimating the time complex-
ity of a program by analysing its runtime measure-
ments using ridge regression [21] (section 3.3.2);

– We demonstrate the practical applicability of our sys-
tem by presenting a number of case studies taken from
the Haskell programming literature (section 4).

Surprisingly, this appears to be the first time that QuickCheck
and Criterion have been combined, despite this being a nat-
ural idea. AutoBench comprises around 7.5K lines of new
Haskell code, and is freely available on GitHub [20] along
with instructions for installing and using the system.

This article is aimed at readers who are familiar with the
basics of functional programming in Haskell, but we do not
assume specialised knowledge of QuickCheck, Criterion, or
statistical analysis. In particular, we introduce the necessary
background on these topics where necessary.

2 Example
We start with a simple example to demonstrate the basic
functionality of our system. Consider the following recursive
function that reverses a list of integers:

slowRev :: [Int ] → [Int ]
slowRev [ ] = [ ]

slowRev (x : xs) = slowRev xs ++ [x ]

Although this definition is simple, it suffers from a poor,
quadratic time performance due to its repeated use of the
append operator, which has linear runtime in the length of
its first argument. However, it is straightforward to define
a more efficient version using an accumulator [39], which,
although less clear, has linear runtime:

fastRev :: [Int ] → [Int ]
fastRev xs = go xs [ ]

where
go [ ] ys = ys
go (x : xs) ys = go xs (x : ys)

An easy way to check that slowRev and fastRev give the
same results is to use QuickCheck [7]. In particular, given
a testable property, the quickCheck function will generate
a number of random test cases and check the property is
satisfied in all cases. Here we can use a simple predicate that
compares the results of both functions

prop :: [Int ] → Bool
prop xs = slowRev xs ≡ fastRev xs

and, as expected, the property satisfies all tests:

> quickCheck prop
+++ OK, passed 100 tests.

From a correctness point of view, QuickCheck gives us con-
fidence that slowRev and fastRev give the same results, but
what about their relative efficiencies?

An easy way to compare their time performance is to
use AutoBench. Given two or more programs of the same
type, the quickBench function will generate random inputs
of increasing size and measure the runtimes of each pro-
gram executed on these inputs. The measurements are then
analysed to produce time performance results. In the case
of our example, the system is invoked by supplying the two
functions and their identifiers for display purposes:

> quickBench [slowRev, fastRev ] ["slowRev", "fastRev"]

Two results are produced. The first is a graph of runtime mea-
surements, which is saved to the user’s working directory
as a portable network graphics (png) file:

The graph illustrates the comparative runtimes of slowRev
and fastRev for each input size. Both sets of measurements
also have a line of best fit, which is calculated using re-
gression analysis and estimates the time complexity of the
corresponding function. In this case, the graph’s legend con-
firms that slowRev’s line of best fit is a quadratic equation
and fastRev’s line of best fit is linear. While in some cases
one may be able to estimate such results ‘by eye’, in general
this is unreliable. For example, it is difficult to determine the
exact degree of a polynomial by simply looking at its graph.

Remark Readers are advised to download the article in
electronic form so that graphs of runtime measurements can
be readily enlarged to show their detail. A larger version of
each time performance figure is also available as supplemen-
tary material on the ACM website.

The second result produced is a table, output to the user’s
console, which displays the value of each runtime measure-
ment and the precise equations of the lines of best fit:

Input Size 0 5 10 15 20 . . .

slowRev (µs) 14.00 16.00 19.00 22.00 23.00 . . .

fastRev (µs) 14.00 16.00 18.00 19.00 21.00 . . .

slowRev y = 2.91e−5 + 2.28e−11x + 5.28e−9x2
fastRev y = 1.65e−5 + 2.53e−7x

Optimisation slowRev Q fastRev (0.95)
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Moreover, at the bottom of the table is an optimisation, writ-
ten slowRev Q fastRev, which is derived from the combination
of (i) AutoBench’s performance results, which show that for
almost all test cases fastRev is more efficient than slowRev, i.e.
slowRev ▷∼ fastRev; and (ii) QuickCheck’s correctness results,
which show that for all test cases fastRev is denotationally
equal to slowRev, i.e. slowRev == fastRev. The decimal 0.95
that appears in parentheses after the optimisation indicates
that it is valid for 95% of test cases.

In conclusion, AutoBench suggests that replacing slowRev
with fastRev will not change any results, but will improve
time performance. Furthermore, considering each function’s
derived time complexity, it suggests that slowRev Q fastRev
indeed gives a quadratic to linear time speedup. Thus, overall,
knowing that one program is more efficient than another,
and by how much, allows the user to make an informed
choice between two denotationally equal programs.
The quickBench function is designed for analysing the

time performance of programs using the Haskell interpreter
GHCi, in a similar manner to how QuickCheck is typically
used. Its primary goal is to generate useful results quickly.
Consequently, by default, its performance results are based
on single executions of test programs on test inputs. For this
example, testing takes just a few seconds, with its primary
cost being the benchmarking phase. Though this approach
sacrifices precision for speed (as demonstrated by the notable
‘noise’ in the example graph), in practice it is often sufficient
for basic exploration and testing purposes.

For more thorough and robust performance analysis, the
system provides an executable called AutoBench. In contrast
to quickBench, this tool makes extensive use of the Crite-
rion [35] library to accurately measure the runtimes of com-
piled Haskell programs. Furthermore, its results are based
on many executions of test programs on test inputs. For
this example, testing takes a few minutes, with its primary
cost also being the benchmarking phase. The architecture of
AutoBench largely encapsulates that of quickBench. There-
fore, for the remainder of the article we focus on the design,
implementation, and application of AutoBench.

3 AutoBench
In this section, we introduce the core architecture of the Au-
toBench system. Figure 1 illustrates the system’s three major
components (data generation, benchmarking, and statistical
analysis) and how they are linked together. We discuss the
details of each component in a separate subsection along
with the key user options it provides.

3.1 Data Generation
Given a number of programs to compare, the system must
be able to generate a suitable range of inputs in order to test
their time performance. To produce such inputs, our system
exploits the random data generation facilities of QuickCheck.

Figure 1. AutoBench’s system architecture

These provide generators for all standard Haskell types, to-
gether with a rich set of combinators that aid users in defin-
ing their own generators for custom data types.

3.1.1 QuickCheck Generators
The notion of a QuickCheck random generator is based on
the following simple class declaration:

class Arbitrary a where
arbitrary :: Gen a

Intuitively, this class contains types that support the genera-
tion of arbitrary values. In turn, the type Gen a can be seen
as a pseudo-random generator for values of type a.
For example, the following instance declaration in the

QuickCheck library allows us to generate an arbitrary integer
using a primitive choose :: (Int, Int) → Gen Int that randomly
chooses an integer in a given interval:

instance Arbitrary Int where
arbitrary = choose (−100, 100)

Sampling this generator then yields random integers:
> sample′ (arbitrary :: Gen Int)
[0, 2,−4, 3,−3,−7, 10,−1, 2,−1, 15]

3.1.2 Sized Inputs
Any function to be tested using our system must have an
Arbitrary instance for its argument type to allow random in-
puts to be generated using QuickCheck. Furthermore, users
must ensure that the generator for this type incorporates a
sensible notion of size. This is a key requirement, as compar-
ing the time performance of programs relies on benchmark-
ing their runtimes using different sized inputs.

The QuickCheck primitive sized ::(Int → Gen a) → Gen a
can be used to define generators that depend on a size param-
eter, giving users full control over how the size of a data type
is realised in practice. However, in some cases the standard
generators defined using this primitive are not suitable to
use with AutoBench. For example, the arbitrary instance for
lists is usually defined as follows:

instance Arbitrary a⇒ Arbitrary [a] where
arbitrary = listOf arbitrary
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listOf :: Gen a→ Gen [a]
listOf gen = sized (λn→ do

k ← choose (0, n)
vectorOf k gen)

That is, an arbitrary list is generated by first generating a
random number k in the interval 0 to n, where n is the given
size parameter, and then generating a vector of arbitrary
values of size k. For performance testing, however, we require
finer control over the size of the resulting lists. In particular,
rather than generating lists of varying size up to the given
parameter n, we wish to generate lists of precisely this size.
In this manner, as the size parameter is increased, we will
obtain an even distribution of different sized inputs with
which to measure runtime performance.

To this end, we define our own custom generator that
produces arbitrary lists with precisely n elements:

instance Arbitrary a⇒ Arbitrary [a] where
arbitrary = sized (λn→ vectorOf n arbitrary)

To help users avoid Arbitrary instances in the QuickCheck
library that are incompatible with our system, we provide a
library of instances that override the default versions.

3.1.3 User Options
Random inputs are generated in accordance with a given
size range, which is specified by a lower bound, step size,
and upper bound. To ensure there are sufficient test results
to allow for meaningful statistical analysis, the size range
must contain at least 20 values. For example, the default
range is 0 to 200 in steps of 5, as illustrated in the example
in section 2, but this can be easily modified by the user. The
online repository for the paper [20] gives further details on
how user options can be specified.

3.2 Benchmarking
The system measures the runtimes of programs executed
on random inputs using Criterion [35], a popular Haskell
benchmarking library. Two of Criterion’s key benefits are
its use of regression analysis and cross-validation, which
respectively allows it to eliminate measurement overhead
and to distinguish real data from noise generated by external
processes. As such, measurements made by Criterion are
much more accurate and robust than, for example, those
made by operating system timing utilities.

3.2.1 Defining Benchmarks
Criterion’s principle type is Benchmarkable, which is simply
a computation that can be benchmarked by the system. A
value of this type can be constructed using the nf function,
which takes a function and an argument, and measures the
time taken to fully evaluate the result of applying the func-
tion to the argument. For instance, the application of slowRev
to an example list can be made benchmarkable as follows:

nf slowRev [0 . . 200] :: Benchmarkable

Evaluating to full normal form ensures runtime measure-
ments reflect the full potential cost of applying a function, as
due to Haskell’s laziness, computations are only evaluated
as much as is required by their surrounding contexts. The
standard class NFData comprises types that can be fully eval-
uated, and hence nf requires the result type of its argument
function to be an instance of this class:

nf :: NFData b⇒ (a→ b) → a→ Benchmarkable

In some situations, however, using nf may force unde-
sired evaluation, such as when measuring the runtimes of
programs whose outputs are, by design, produced lazily.
For this reason, Benchmarkable computations can also be
constructed using the whnf function, which only evaluates
results to weak head normal form and requires no extra
conditions:

whnf :: (a→ b) → a→ Benchmarkable

Finally, a Benchmark is given by a Benchmarkable com-
putation together with a suitable description, constructed
using the bench function as in the following example:

bench "slowRev, [0..200], nf"

(nf slowRev [0 . . 200]) :: Benchmark

Such a benchmark can be passed to one of Criterion’s top-
level functions to be executed and have its runtime measured.

3.2.2 Benchmarking with Generated Data
Each Benchmarkable computation defined using nf or whnf
requires a function f :: a→ b and an argument x :: a. For the
purposes of our system, the function will be a test program
specified by a user, and the argument will be a random test
input generated using QuickCheck.

Because Haskell is lazy, in general we cannot assume that
the argument x is already in normal form. This is problematic
for benchmarking because measurements may then include
time spent evaluating x prior to applying f . Fortunately,
Criterion provides an alternative method for defining bench-
marks that ensures x is fully evaluated before f is applied,
using which we can define the following functions:

genNf :: (Arbitrary a,NFData a,NFData b) ⇒
(a→ b) → Int → String → Benchmark

genWhnf :: (Arbitrary a,NFData a) ⇒
(a→ b) → Int → String → Benchmark

For example, given a function f :: a→ b, a size n :: Int and an
identifier s :: String, the benchmark genNF f n s generates a
random, fully evaluated argument x ::a of size n andmeasures
the time taken to fully evaluate the result of applying f to this
argument. The function genWhnf acts similarly, however,
the result of the application is only evaluated to weak head
normal form. Note that the computation f x is evaluated in
a lazy manner as usual.
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3.2.3 Compiling and Executing Benchmarks
It is preferable to use the GHC compiler rather than the GHCi
interpreter when benchmarking. In particular, whereas the
compiler generates optimised machine code, the interpreter
executes unoptimised bytecode. As such, programs executed
in the interpreter are inherently less time efficient than their
compiled counterparts. Consequently, Criterion provides a
number of utility functions that can be used to construct a
top-level main action that performs benchmarking tasks in
a compiled program. For example, defaultMain takes a list
of benchmarks and executes them sequentially:

defaultMain :: [Benchmark ] → IO ()

To ensure testing is fully automated, AutoBench must
generate, compile, and execute benchmarks on behalf of
users. This is achieved using the Hint [19] and Ghc [38]
packages. The former is used to interpret and validate user
input files (containing, for example, test programs), and the
latter is used to compile files generated by the system that
contain appropriate benchmarks. Benchmarking executables
are invoked using the Process [30] package.

3.2.4 User Options
Users can configure how benchmarks are compiled by spec-
ifying GHC flags in their user options, such as the level of
optimisation required (if any). Users can also state whether
results should be evaluated to normal form or to weak head
normal form, which dictates whether benchmarks are gen-
erated using genNf or genWhnf .

3.3 Statistical Analysis
After benchmarking, runtime measurements are analysed
by the system to give time performance results. In partic-
ular, high-level comparisons between programs are given
in the form of time efficiency improvements. In addition,
each program’s time complexity is estimated using a custom
algorithm. Finally, the runtimes and complexity estimates
are graphed to provide a visual performance comparison.
As the results produced by our system are based on ran-

dom testing, we also collate a number of statistics output
by Criterion (such as standard deviation and variance in-
troduced by outliers) to give users a basic overview of the
quality of the benchmarking data and, by extension, the
reliability of the performance results.

3.3.1 Efficiency Improvements and Optimisations
The system generates improvement results by comparing the
runtimes of programs pointwise. That is, for each input size, it
compares the runtimes of two programs to determine which
program performed better. If one program performs better
than another for a certain percentage of test cases, then the
system concludes that it is more efficient and generates a
corresponding improvement result.

For example, when comparing the time performance of
the functions slowRev and fastRev in section 2, the system
generated the following improvement result,
slowRev ▷∼ fastRev (0.95)

which states that fastRev was more efficient than slowRev in
95% of test cases. By default, 95% of test cases must show
one program to be more efficient for an improvement result
to be generated. This accounts for the fact that performance
may not be improved for small inputs due to start-up costs,
and allows for minor anomalies in the benchmarking data.
A fundamental assumption of our system is that the pro-

grams being tested are denotationally equal. Nevertheless, a
sanity check is performed by invoking QuickCheck to verify
that the results of test programs are indeed the same. If this
check is passed, any improvement results will be upgraded to
correctness-preserving optimisations. This was also exempli-
fied in section 2, as the results table included an optimisation
rather than just an improvement:
slowRev Q fastRev (0.95)

3.3.2 Approximating Time Complexity
Runtime measurements are combined with size information
to give sets of (x ,y) data points, where x is an input size and
y is the runtime of a program executed on an input of size x.
The system uses each such set of data points to approximate
the time complexity (linear, quadratic, logarithmic, . . .) of the
corresponding program. Surprisingly, there appears to be no
standard means to achieve this. Moreover, the problem itself
is difficult to define precisely. Through experimentation, we
have developed a technique based on the idea of computing
a line of best fit for a given set of data points, and then using
the equation of this line to estimate the time complexity.
In the example from section 2, the system computed the

following lines of best fit for slowRev and fastRev:
y = 2.91 × 10−5 + 2.28 × 10−11x + 5.28 × 10−9x2

y = 1.65 × 10−5 + 2.53 × 10−7x
Using these equations, it then estimated the time complexi-
ties as quadratic and linear, respectively. In general, therefore,
the system must determine which type of function best fits a
given data set. Surprisingly, there appears to be no standard
means to achieve this either. Our technique is to consider
many different types of functions and choose the one with
the smallest fitting error according to a suitable measure.

Ordinary least squares To fit different types of functions
to a data set, our system uses regression analysis [17].

Given a set of (x ,y) data points comprising input sizes and
runtimes, a regression model in our setting is a particular
type of function that predicts runtimes using input sizes. For
example, we might consider a linear function ŷ = mx + c ,
where ŷ is the runtime predicted by the model for a given
input size x. Using this idea, the ordinary least squares (OLS)
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method estimates the unknown parameters of the model, for
examplem and c in the case of a linear function, such that
the distance between each y-coordinate in the data set and
the corresponding predicted ŷ-value is minimised:

minimise
n∑
i=0
(yi − ŷi )

2

The data points are called the training data, and the expres-
sion being minimised is the residual sum of squares (RSS).

Overfitting When fitting regression models to data sets
using the OLS method, those of higher complexity will al-
ways better fit training data, resulting in lower RSS values.
Informally, this is because models with higher numbers of pa-
rameters are able to capture increasingly complex behaviour.
For example, a polynomial equation of degree n − 1 can
precisely fit any data set containing n unique points.
Higher complexity models can thus overfit training data

by fitting small deviations that are not truly representative
of the data’s overall trend. As such, they may accurately fit
the training data, but fail to reliably predict the behaviour
of future observations. The size of the training data can also
affect the likelihood of overfitting, as, in general, it is more
difficult to separate reliable patterns from noise whenmodels
are trained using small data sets.

Overall, our system must be able to assess regression mod-
els of varying complexities, as different programs can have
different time complexities. Furthermore, the benchmarking
process can often be time consuming, and hence it is likely
that the models will be fitted to comparatively small data sets.
Therefore, the possibility of overfitting must be addressed
so that comparisons made between models do not naively
favour those that overfit training data.

Ridge regression One way to reduce the variance of mod-
els and prevent overfitting is to introduce bias. This is known
as bias-variance tradeoff. Bias can be introduced by penalis-
ing the magnitude of the coefficients of model parameters
when minimising RSS. This is a form of regularization. To
achieve this, our system uses ridge regression [21], which
places a bound on the square of the magnitude of coeffi-
cients. That is, for a model ŷ = a0 + a1x1 + a2x2 + · · · + apxp ,
ridge regression has the following objective function,

minimise
n∑
i=0
(yi − ŷi )

2 subject to
p∑
j=1

a2j ⩽ t

where t ⩾ 0 is a tuning parameter that controls the amount
of regularization, i.e. coefficient ‘shrinkage’.

The overall effect of constraining the magnitude of coeffi-
cients is that models then placemore emphasis on their ‘influ-
ential’ parameters. That is, the magnitudes of the coefficients
of model parameters that have little effect on minimising
RSS values are reduced. Thus, fitting models with superflu-
ous parameters to a data set using this method reduces the
effects of those parameters and prevents overfitting.

Fitting polynomial equations of increasing complexity to
the runtimes of slowRev in section 2 using the OLS and ridge
regression methods gives the following results, in which the
lowest fitting error in each case is highlighted in bold:

Model OLS Fitting Error Ridge Fitting Error
Quartic 6.52 × 10−13 3.88 × 10−10
Cubic 1.12 × 10−12 1.70 × 10−10
Quadratic 8.40 × 10−12 7.21 × 10−11

The results in this table demonstrate the susceptibility of
the OLS method to overfitting, as it favours quartic runtime
for slowRev. In contrast, the results calculated using ridge
regression show the quadratic model to be the best fitting,
which is what we would expect for slowRev given the overall
trend in its runtime measurements.

Model selection Selecting a model from a number of candi-
date models is known as model selection. This often involves
assessing the accuracy of each model by calculating a fitting
error, and then choosing the model with the least error.

As the overall aim is to approximate time complexity, it is
good practice to assess each model’s predictive performance
on unseen data, i.e. data not in the training set. This way,
time complexity estimates have a higher likelihood of being
representative of inputs that are outside of the size range of
test data. To achieve this with relatively small data sets, the
system uses Monte Carlo cross-validation [40].

Cross-validation is a technique used to evaluate amodel by
repeatedly partitioning the initial data set into a training set
Tk to train the model, and a validation set Vk for evaluation.
For each iteration k of cross-validation, a fitting error is
calculated by comparing the y-values of data points in the
evaluation set Vk with the corresponding ŷ-values predicted
by the model trained on setTk . Errors from each iteration are
combined to give a cumulative fitting error for the model.

Model selection is then performed by comparing cumula-
tive fitting errors. By default, the system compares models
using predicted mean square error (PMSE). The model with
the lowest PMSE is chosen and its equation is used to ap-
proximate the respective program’s time complexity.

In the example in section 2, runtimes were split randomly
into 70% training and 30% validation data in every iteration of
cross-validation and a total of 200 iterations were performed.
The following results were obtained in which models are
ranked by decreasing PMSE value:

slowRev: fastRev:
Rank Model PMSE Model PMSE
1 Quadratic 7.21 × 10−11 Linear 1.59 × 10−11

2 Cubic 1.70 × 10−10 n log2 n 1.06 × 10−10
3 Quartic 3.88 × 10−10 log22 n 2.17 × 10−10
.
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The equations of the top ranked models (in bold) were then
used to approximate the time complexities of slowRev and
fastRev as quadratic and linear, respectively.

3.3.3 User Options
Users can specify which types of functions should be con-
sidered by the system when approximating time complexity
and how to compare them. The system currently supports
functions of the following types: constant, linear, polynomial,
logarithmic, polylogarithmic, and exponential.
For each type of function, a range of parameters is con-

sidered, such as degrees between 2 and 10 for polynomials,
and bases 2 or 10 for logarithms. By default, all types of func-
tions are considered. These models can be compared using a
number of different fitting statistics, including R2, adjusted
R2, predicted R2 and predicted square error (PSE).

4 Case Studies
In this section, we demonstrate the use of the AutoBench sys-
tem with three sets of examples. In each case, the programs
being tested were added to a file along with QuickCheck
generators to produce necessary inputs, NFData instance
declarations to ensure test cases could be fully evaluated,
and appropriate user options. Unless otherwise stated, the
user options specified the size range of the inputs and con-
figured the results of test cases to be evaluated to normal
form. Test files were then passed to the AutoBench system
and the time performance of the programs compared.

4.1 QuickSpec
Research on property-based testing has also introduced the
notion of property generation. Given a number of functions
and variables,QuickSpec [9] will generate a set of correctness
properties that appear to hold for the functions based upon
QuickCheck testing. This facility gives users the opportunity
to gain additional knowledge about their code.
For example, given the append function (++), the empty

list [ ], and variables xs, ys, and zs, QuickSpec will generate
the following identity and associativity properties:

xs ++ [ ] == xs

[ ] ++ xs == xs

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

In previous work, these equational laws have been formally
shown to be time improvements [27]:

xs ++ [ ] ▷∼ xs

[ ] ++ xs ▷∼ xs

(xs ++ ys) ++ zs ▷∼ xs ++ (ys ++ zs)

With this in mind, a fitting first case study for our system
was to test the equational properties presented in the Quick-
Spec paper [9] to see which give improvement results. For
example, our system indicates that all three of the above
properties are correctness-preserving optimisations:

Figure 2. Graphs of results for the QuickSpec examples

xs ++ [ ] Q xs

[ ] ++ xs Q xs

(xs ++ ys) ++ zs Q xs ++ (ys ++ zs)

If the QuickSpec inputs are then extended to include the
standard reverse and sort functions, a number of additional
properties are generated by the system, including:

reverse (reverse xs) == xs

reverse xs ++ reverse ys == reverse (ys ++ xs)

sort (reverse xs) == sort xs

sort (sort xs) == sort xs

For each equation, we compared the time performance of
its left-hand side against that of its right-hand side on lists
of random integers using two corresponding test programs.
For example, the second reverse property above was tested
by comparing appRev and revApp, defined as follows:

appRev :: ([Int ], [Int ]) → [Int ]
appRev (xs, ys) = reverse xs ++ reverse ys

revApp :: ([Int ], [Int ]) → [Int ]
revApp (xs, ys) = reverse (ys ++ xs)

The graphs of runtime measurements produced by our
system for each of the reverse and sort examples are depicted
in Figure 2. As before, performance results indicate that all
of the properties are correctness-preserving optimisations:

reverse (reverse xs) Q xs

reverse xs ++ reverse ys Q reverse (ys ++ xs)

sort (reverse xs) Q sort xs

sort (sort xs) Q sort xs

4.1.1 Baseline Measurements
Consider the graphs in Figure 3 for append’s identity laws.
The first graph indicates that xs++ [ ] ▷∼ xs is a linear time im-
provement, because xs must be traversed to evaluate xs ++ [ ]
to normal form. In comparison, we may expect the second
graph to indicate that [ ] ++ xs ▷∼ xs is a constant time im-
provement, because [ ] ++ xs is the base case of the append
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operator’s recursive definition. However, the graphs in Fig-
ure 3 indicate linear time complexity for both functions. This
is because, for each test case, the resulting list must be tra-
versed in order to ensure each computation is fully evaluated.
This takes linear time in the length of the list.

Although the system can evaluate test cases to weak head
normal form, the true cost of applying append would not be
reflected in the runtime measurements of xs ++ [ ] if this user
option was selected. This option is, however, appropriate
when testing [ ] ++ xs. How then can users best compare the
time performance of xs ++ [ ] and [ ] ++ xs directly?
To aid users in these kind of situations, the system pro-

vides a baseline option, which measures the cost of normal-
ising results in each test case. When this option is selected,
the system simply applies one of the test programs to each
test input, and then benchmarks the identity function on
the results of these applications. Baseline measurements are
plotted as a black, dashed line of best fit, as in Figure 3.
If we compare the runtimes of xs ++ [ ] against the base-

line measurements, the line of best fit’s gradient suggests
additional linear time operations are being performed during
evaluation. In contrast, the runtimes of [ ]++xs approximately
match the baseline measurements. Thus, interpreting these
results with respect to the baseline measurements suggests
that xs ++ [ ] is linear while [ ] ++ xs is constant.

Our online repository [20] includes many more examples
from the original QuickSpec paper [9], each of which gives
an improvement or cost-equivalence result, where the latter
indicates that two programs have equal runtimes within a
user-configurable margin of error.

4.2 Sorting
The sort function in Haskell’sData.List module was changed
in 2002 from a quicksort algorithm to a merge sort algorithm.
Comments in the source file [29] suggest that the change oc-
curred because the worst-case time complexity of quicksort
is O(n2), while that of merge sort is O(n log2 n). Included
in the comments is a summary of performance tests, which
indicated that the new merge sort implementation did in-
deed perform significantly better than the previous quicksort
implementation in the worst case.
Performance tests carried out at that time predate the

development of systems such as Criterion andAutoBench. As
such, runtimes were measured using an OS-specific timing

Figure 3. Graphs of results for append’s identity laws

(a) Strictly-increasing lists (b) Random lists

(c) Nearly sorted lists (d) Sorted lists

Figure 4. Graphs of results for merge sort and quicksort

utility and testing was coordinated using a bash script. Our
second case study was thus to rework the performance tests
using our system. Doing so has a number of advantages over
the previous approach. First of all, AutoBench uses Criterion
to measure runtimes, which is more accurate and robust.
Secondly, testing is fully automated, so there is no need to
develop a custom script. And finally, our system produces
lines of best fit and estimates time complexities.
When sorting lists that are strictly-increasing or reverse

sorted, quicksort suffers from its worst-case time complexity
ofO(n2). In contrast, merge sort’s time complexity is always
O(n log2 n) [12]. To put the theory to the test, we compared
the time performance of the previous quicksort and new
merge sort algorithms from Data.List when executed on
strictly-increasing and reverse sorted lists of integers. All
test files are available on our system’s GitHub page [20].

The graph of runtimemeasurements for strictly-increasing
input lists is given in Figure 4a, and shows a significant dif-
ference between the runtimes of quicksort and merge sort.
Furthermore, for both types of list, our system estimated the
time complexity of merge sort as n log2 n and quicksort as n2,
and output a corresponding optimisation:

ghcQSortStrictlyIncreasing Q ghcMSortStrictlyIncreasing (0.95)
ghcQSortReverseSorted Q ghcMSortReverseSorted (0.95)

Hence, the results from our system concur with the previ-
ous performance tests, indicating that merge sort performs
significantly better than quicksort in the worst case.

Different list configurations It is perhaps unfair to com-
pare two implementations exclusively by their worst-case
behaviour. As such, we added further tests to assess the time
performance of each implementation when run on sorted,
nearly sorted, constant, and random lists of integers.
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A key advantage of our system’s automated testing is that
supplementary tests can be added easily, by simply defining
additional generators that produce the necessary inputs. For
example, we defined a generator for random lists,

instance Arbitrary RandomIntList where
arbitrary = sized (λn→ RandomIntList
<$> vectorOf n arbitrary)

and then added one line test programs to accept values of this
type and pass the underlying list of integers to the quicksort
and merge sort implementations defined in the test file:

ghcQSortRandom :: RandomIntList → [Int ]
ghcQSortRandom (RandomIntList xs) = ghcQSort xs

Runtime measurements for random and nearly sorted lists
are depicted in Figures 4b and 4c, respectively. In all tests,
except that of random lists, the merge sort implementation
performed best, while for random lists both implementations
were polylogarithmic. Thus, overall, our system suggests that
the decision to change the implementation from a quicksort
algorithm to a merge sort algorithm was a good one.

Smooth merge sort The current implementation of sort in
Data.List is a more efficient version of merge sort than the
one that originally replaced quicksort. By exploiting order
in the argument list, this smooth merge sort algorithm [32]
captures increasing and strictly-decreasing sequences of ele-
ments as base cases for its recursive merge step:

> sequences [0, 1, 2, 3] > sequences [0, 1, 2, 3, 2, 1, 0]
[[0, 1, 2, 3], [ ]] [[0, 1, 2, 3], [0, 1, 2], [ ]]

In particular, by taking sequences such as [0, 1, 2, 3] as base
cases rather than singleton lists such as [0], [1], [2], and [3],
the merge sort algorithm runs in linear time when the initial
list is sorted or strictly-decreasing.
To see if this theory is supported by testing, we anal-

ysed the time performance of sort on sorted and strictly-
decreasing lists. At this point, our test file already included
all definitions required to test sort, so all that was left to do
was import Data.List and define a one-line test program:

sortSorted :: SortedIntList → [Int ]
sortSorted (SortedIntList xs) = sort xs

Results in Figure 4d estimate the time complexity of sort
when executed on sorted lists as linear. Similar linear time es-
timates were given when testing its performance on strictly-
decreasing and nearly sorted input lists.

Sorting random lists While exploring tests for this case
study, we came across an interesting result: merge sort had
worse time performance than quicksort when sorting ran-
dom lists of integers (see Figure 4b). We were, therefore,
curious to see how sort compared to different implementa-
tions of quicksort for random lists. Here we focus on the
naive implementation often presented in textbooks [23]:

(a) Random lists, no optimisation (b) Random lists, O3 optimisation

Figure 5. Graphs of results for the sort function

qsort :: [Int ] → [Int ]
qsort [ ] = [ ]

qsort (x : xs) = qsort smaller ++ [x ] ++ qsort larger
where

smaller = [a | a← xs, a ⩽ x ]
larger = [b | b← xs, b > x ]

Two graphs of runtime measurements are displayed in
Figures 5a and 5b, which show that, under different levels
of optimisation, the library function sort performs notably
worse than the naive quicksort function. Given that in real-
life settings lists to be sorted are often ‘nearly sorted’ [14],
this result may only have minor practical significance. Nev-
ertheless, it is an outcome that surprised us, especially given
the source of each implementation, and one that we feel
underlines the importance of efficiency testing.

4.3 Sieve of Eratosthenes
The Sieve of Eratosthenes is a classic example of the power
of lazy functional programming, and is often defined by the
following simple recursive program: [23, 26]:

primes :: [Int ]
primes = sieve [2 . . ]

where sieve (p : xs) = p : sieve [x | x ← xs, x ‘mod‘ p > 0]

However, while this definition produces the infinite list of
primes, O’Neill [33] demonstrated that it is not in fact the
Sieve of Eratosthenes. In particular, it uses a technique known
as trial division to determinewhether each candidate is prime,
whereas Eratosthenes’ original algorithm does not require
the use of division. Consequently, the above algorithm per-
forms many more operations than the true version.
In keeping with a list-based approach, the following pro-

gram by Richard Bird, which appears in the epilogue of [33],
implements the true Sieve of Eratosthenes:

truePrimes :: [Int ]
truePrimes = 2 : ([3 . . ] ‘minus‘ composites)

where
composites = union [multiples p | p← truePrimes ]

multiples n = map (n∗) [n . . ]

(x : xs) ‘minus‘ (y : ys)
| x < y = x : (xs ‘minus‘ (y : ys))
| x ≡ y = xs ‘minus‘ ys
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| x > y = (x : xs) ‘minus‘ ys

union = foldr merge [ ]
where

merge (x : xs) ys = x :merge′ xs ys

merge′ (x : xs) (y : ys)
| x < y = x :merge′ xs (y : ys)
| x ≡ y = x :merge′ xs ys
| x > y = y :merge′ (x : xs) ys

Given that the simple but ‘unfaithful’ sieve performs many
more operations than the true sieve, it is natural to ask how
primes and truePrimes perform in practice. For the purposes
of this particular case study, therefore, we were interested
in comparing their time performance.

O’Neill’s article [33] gives a detailed theoretical treatment
of both implementations: to find all primes less thann, the un-
faithful sieve primes is shown to have Θ(n2/ln2 n) time com-
plexity and the true list-based implementation truePrimes
Θ(n
√
n ln ln n/ln2 n). Thus, from a theoretical standpoint,

primes is asymptotically worse than truePrimes.
In addition, O’Neill’s article includes a number of per-

formance tests whereby implementations are compared ac-
cording to the number of reductions performed by the Hugs
interpreter [25] during their evaluation. In contrast, we wish
to compare time performance in GHC using the AutoBench
system. To achieve this, we defined the following two test
programs to extract the first n prime numbers from each list,
and compared them using the AutoBench executable.

unfaithfulPrimes :: Int → [Int ]
unfaithfulPrimes n = take n primes

truePrimesList :: Int → [Int ]
truePrimesList n = take n truePrimes

Test results in Figure 6a demonstrate a clear distinction be-
tween the runtimes of the unfaithful sieve and that of the
true list-based sieve. Although AutoBench does not currently
support time complexities as advanced as Θ(n2/ln2 n) and
Θ(n
√
n ln ln n/ln2 n), its prediction of quadratic and linear

runtimes for primes and truePrimes are reasonable approxi-
mations. Moreover, when truePrimes is tested on larger input
sizes (see Figure 6b), the system approximates its time com-
plexity as n log2 n, which is closer to the theory.

(a) Unfaithful and true list-based sieves (b) True list- and p.q.-based sieves

Figure 6. Graphs of results for the sieve implementations

Nevertheless, the results in Figure 6a do clearly indicate
that truePrimes has the better time performance,

unfaithfulPrimes Q truePrimesList (1.0)

and suggest that the time complexity of primes is asymp-
totically worse than truePrimes. Thus, overall, our testing
agrees with the theory and also with the corresponding per-
formance results presented in O’Neill’s article [33].

4.3.1 An Alternative Data Structure
An implementation of the Sieve of Eratosthenes using prior-
ity queues is also presented in [33], which is shown to have
a better theoretical time complexity than Bird’s list-based
implementation. As a final test for this case study, we were
interested to see whether using a more complex data struc-
ture in this instance was worthwhile or not. To this end,
we tested the list and priority queue implementations by
generating the first million prime numbers.

The graph of runtime measurements for this test is given
in Figure 6b and shows that both implementations perform
comparably. Here our results differ fromO’Neill’s, who stated
that the priority queue implementation was more time effi-
cient for all primes beyond the 275, 000th prime. As a further
validation of our results, we then tested both implementa-
tions up to the ten millionth prime. In this case, the list
implementation performed marginally better.

The Haskell community has sometimes been criticised for
overuse of the built-in list type in preference to more effi-
cient data structures. Though the performance results above
are very specific, they do illustrate that when used with care,
lists can give solutions that are efficient. Nonetheless, these
results certainly show that the unfaithful sieve’s list-based
implementation is not efficient, and that both true implemen-
tations have a significantly better time performance.

4.3.2 Operational Error
Although the unfaithful sieve produces the right results, it
does not correctly implement Eratosthenes’ algorithm. How-
ever, property-based testing tools such as QuickCheck can-
not detect this error, because it is operational in nature, rather
than denotational. On the other hand, our system estimated
the unfaithful sieve’s time complexity as n2, which is sig-
nificantly different from the true sieve’s known complexity
Θ(n ln ln n). This difference highlights the implementation
error, and demonstrates how AutoBench can be used to un-
cover operational implementation errors.

5 Related Work
Much research has focused on automatically checking the
correctness of Haskell programs, inspired by the develop-
ment of the QuickCheck system. In contrast, our system
appears to be the first aimed at automatically comparing the
time performance of two or more Haskell programs. In this
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section, we review work from the literature according to
how it relates to the three major components of our system.

5.1 Data Generation
Another popular Haskell library for property-based testing
is SmallCheck [36]. In comparison to QuickCheck’s random
testing, SmallCheck tests properties for all values up to a
certain depth. In theory it would be possible for our system
to use SmallCheck to generate inputs instead of QuickCheck.
However, a single Criterion benchmark can often take in
excess of one minute to run. Hence, measuring the runtimes
of programs executed on all possible inputs up to a certain
depth is unlikely to be practical.

In the wider literature, EasyCheck [5] is a property-based
testing library written in the functional logic programming
language Curry. It takes a similar approach to data gener-
ation as SmallCheck, making use of a technique known as
narrowing to constrain generated data to values satisfying a
given predicate. Research on constrained data generation has
also been undertaken by Claessen et al. [6], who introduced
a technique to ensure that data generated in this manner has
a predictable and useful distribution.
The Fake package [2] was recently introduced as an al-

ternative to QuickCheck for random data generation. Un-
like QuickCheck, Fake focuses on generating random data
that ‘appears realistic’. This package was released after Au-
toBench had been developed, but we are keen to explore
whether the data generation mechanism that it provides is
useful for the purposes of our system.

5.2 Benchmarking
The systemmost closely related to ours isAuburn [28], which
is designed to benchmark Haskell data structures. Similarly
to our system it can generate inputs on behalf of users in
the form of data type usage graphs (dugs), which combine
test inputs with suitable operations on them. Each dug’s
performance is measured by its evaluation time.
As Auburn analyses sequences of operations, it can give

insights into the amortised cost of individual operations. In
contrast, our system’s performance analysis is more coarse-
grained and compares the runtimes of complete programs.
Auburn does not compare or extrapolate its time measure-
ments, instead they are simply output in a tabular format.

GHC Cost Centres [31] are used to measure time and space
resource usage at particular locations inside functions. When
code is compiled with profiling enabled, information regard-
ing resource usage at each location is automatically gener-
ated. In comparison to our system, which benchmarks the
runtimes of programs for comparative purposes, profiling is
more fine-grained, and aims to reveal specific locations of
maximum resource usage inside a single function. GHC cost
centres could thus be used in conjunction with our system
as part of a subsequent optimisation phase.

5.2.1 Comparing Benchmarks
Earlier versions of Criterion [35] included a function to com-
pare benchmarks, known as bcompare. However, it turned
out that this complicated many of the system’s internals and
as a result was removed, and has yet to be replaced.

Progression [4] is a Haskell library that builds on Criterion.
It stores the results of Criterion benchmarks in order to
graph the runtime performance of different program versions
against each other. Users assign each benchmark a label, and
then select which labelled data to compare graphically.

As Progression is a wrapper around Criterion, test inputs
and benchmarks must be specified manually. Users are also
responsible for compiling and executing their test files. Our
system differs in this respect, as inputs are generated auto-
matically and the benchmarking process is fully automated.
In addition, Progression uses Gnuplot to produce its graphs,
which it invokes via a system call. We preferred to use the
Chart [13] package (similarly to Criterion) in order to keep
our implementation entirely Haskell based.

5.3 Statistical Analysis
The field of study aimed at classifying the behaviour of pro-
grams (for example, their time complexity) using empirical
methods is known as empirical algorithmics.

Profiling tools are the primary method of empirical analy-
sis, which assign one or more performance metrics to indi-
vidual locations inside a single program in order to collect
runtime information in specific instances. Unlike our sys-
tem, which compares the time performance of one or more
programs, traditional profiling tools do not characterise per-
formance as a function of input size.
Though some recent articles [10, 11, 41] have aimed to

develop profiling tools that do specify runtime as a function
of input size, they appear to focus primarily on automatically
calculating the size of inputs, rather than describing in detail
their methods for model fitting and selection. Nonetheless,
input size inference could be useful for our system.
Model fitting and selection is discussed in the work of

Goldsmith et al. [18], where the authors introduce a tool for
describing the asymptotic behaviour of programs by measur-
ing their ‘empirical computational complexity’. In practice,
this amounts to measuring program runtimes for different
input sizes and then performing regression analysis on the
results to approximate asymptotic time complexity.

Although this approach is similar to that used in our work,
their system only supports polynomial models. Moreover,
their choice of regression method is OLS and their model se-
lection process is user-directed and centred on the R2 fitting
statistic. Both of these approaches favour models that overfit
training data, but overfitting is not discussed in the article.
In contrast, we use ridge regression and cross-validation to
counteract overfitting, and provide a range of fitting statistics
that can be used to automatically compare models.
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The idea of inferring asymptotic bounds from runtime
measurements is one we are keen to explore, but there ap-
pears to be no generally accepted solution to this prob-
lem [10]. However, some researchers have proposed heuris-
tics for the ‘empirical curve bounding’ problem, showing
their effectiveness on a number of occasions [15]. Some com-
mercial software packages do advertise ‘curve fitting’ fea-
tures [24, 34, 37], but as they are not freely available and
don’t publicise their underlying technologies, unfortunately
we are not able to compare them with our system.

6 Conclusion and Further Work
In this article, we have taken two well-established systems,
namely QuickCheck and Criterion, and combined them to
give a lightweight, fully automated tool that can be used by
ordinary programmers to compare the time performance of
their Haskell programs. In addition, we have developed a
simple but effective algorithm for approximating empirical
time complexity based on regression analysis.

There are a number of potential avenues for further work.
Firstly, this article has focused on time performance, but
space performance is often just as important. Thus, it seems
fitting that our system be extended to provide both time
and space comparisons. Secondly, inspired by QuickCheck’s
domain-specific language (DSL) for specifying correctness
properties, we would like to develop a DSL for specifying
more sophisticated forms of improvement properties. Thirdly,
it can be difficult to produce arbitrary inputs of a fixed size
in an unbiased way, and an alternative approach would be to
select inputs from real-world program runs instead. We are
also keen to expand the system to handle multi-argument
functions, and investigate how to visualise related results.
Finally, tools such as QuickSpec are able to generate cor-

rectness properties in a fully automatic manner. As we have
seen in the first case study in section 4.1, many such proper-
ties are also time improvements, and it would be beneficial
to interface AutoBench directly to such a tool.
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