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We present a novel approach to the dynamics of reactions of diffusing chemical species with species
fixed in space e.g. by binding to a membrane. The non-diffusing reaction partners are clustered
in areas with a diameter smaller than the diffusion length of the diffusing partner. The activated
fraction of the fixed species determines the size of an active sub-region of the cluster. Linear stability
analysis reveals that diffusion is one of the major determinants of the stability of the dynamics. We
illustrate the model concept with Ca2+ dynamics in living cells, which has release channels as fixed
reaction partners. Our results suggest that spatial and temporal structures in intracellular Ca2+

dynamics are caused by fluctuations due to the small number of channels per cluster.

PACS numbers: 87.16.Ac, 05.40.-a

Huge chemical gradients occur during dynamic changes
of concentrations in living cells. Ions may enter the cy-
tosol through tiny channel pores or chemical species in
solution may react with membrane bound partners caus-
ing gradients by spatially inhomogeneous production or
consumption. An example is the reaction of the mem-
brane bound adenylate cyclase with adenosine trispho-
sphate (ATP) to form cyclic adenosine monophosphate
(cAMP). Usually, reactions are modelled as occurring be-
tween species with spatially uniform concentrations ne-
glecting spatial gradients. Here, we show that these gra-
dients have a substantial impact on the dynamics of the
reaction. That applies in particular when the membrane
bound reaction partners are packed into small clusters
with a few tens of individual molecules, which is the case
we will consider. The small number of elements per clus-
ter may necessitate stochastic approaches which has been
carried out for intracellular Ca2+ dynamics [1–3]. Here,
we present an investigation of the deterministic limit of
a single cluster.

We consider the cluster to be a membrane patch react-
ing with the dissolved reaction partner. The small num-
ber of molecules per cluster entails a cluster size of the
same order of magnitude as the single molecules. There-
fore when a membrane bound molecule enters the reac-
tion (e.g. by activation) or leaves it (e.g. by deactivation)
the area of the reacting patch changes rather than the
concentration of active molecules in a fixed area. Conse-
quently, we model the dynamics of the number of mem-
brane bound molecules taking part in the reaction as a
size change of the reacting area. This modeling concept
is supported by the results of recent investigations [4, 5].
Simulations in which the reaction was release from an
intracellular store through ion channels showed that re-
actions saturate at much lower maximal rates when the
fraction of reacting membrane bound molecules is de-
scribed by a changing concentration in a fixed area com-
pared to the rate values obtained with the approach we
have chosen [4]. Since cluster diameters are smaller than
the diffusion length of the partner in solution, the size

of the cluster limits the transport of reaction partners to
the reaction and therefore the rate.

We will demonstrate our modeling ideas and results
with the example of intracellular Ca2+ dynamics. From
the very beginning of the life of an organism to its end,
calcium is involved in signaling and control of many pro-
cesses in almost all of its cells. As a second messenger,
it communicates the fertilization across an egg cell and
controls apoptosis, it plays an active role in muscle con-
traction and secretion and has many other functions [6].
Ca2+ fulfills its signaling task by a transient rise of the
Ca2+ concentration in the cytosol. That is accomplished
by release and uptake of Ca2+ by storage compartments
like the endoplasmic reticulum (ER) or mitochondria.
These stores are embedded in the cytosol. The flux of
Ca2+ between the cytosol and the ER is controlled by
inositol-1,4,5-trisphosphate receptor channels (IP3R) for
release and the sarco-endoplasmic reticulum Ca2+ AT-
Pase (SERCA) pumps for uptake. Although the recep-
tor channels can be found isolated on the membrane of
the ER, they usually build clusters with a diameter of
60 − 100nm comprising between 5 and 40 IP3Rs . Swil-
lens et al. estimated that channels are densely packed
inside a cluster, whereas the distance between clusters
may range from 3 to 7µm [5, 7]. Thus cluster distances
are two orders of magnitude larger than cluster diame-
ters.

The open probability of IP3Rs depends on the cytoso-
lic Ca2+ concentration. A moderate increase raises the
opening probability whereas a large concentration rise in-
hibits and closes the release channel. The channel cannot
open as long as it is inhibited. Hence, channels are cou-
pled by Ca2+ diffusion in the cytosol since they release
what controls their state. The channels within a clus-
ter are strongly coupled since the concentration does not
decay on the length scale of a cluster diameter, but the
coupling of clusters is only weak.

The small number of channels per cluster and the weak
coupling of clusters suggest that fluctuations caused by
the random opening and closing of channels are impor-
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tant. That was confirmed by stochastic modeling in the
last three years [1–3]. Stochastic models showed spatial
and temporal structures even with parameters providing
a non-oscillatory or non-excitable deterministic regime.
The transition from deterministic to stochastic models
was accompanied by a transition from continuous to spa-
tially discrete models. The loss of the oscillatory regime
in going from the stochastic to the deterministic approach
is explained by the results of this study.

Discrete models require information on the concentra-
tion gradients. Simulations of release of Ca2+ through
IP3Rs close to the experimental situation showed that the
concentration values at an open channel reach 25-170µM,
i.e., they are 3-4 orders of magnitude larger than the rest-
ing level while the concentration increase at the neigh-
boring cluster reaches only 1.1-2.0 times resting level [4].
Experimental observations like propagating waves and
theoretical considerations indicate that the sensitivity of
the activating Ca2+ dependence of the opening proba-
bility on Ca2+ is tuned to concentration levels close to
the resting level and that the inhibitory process has half
maximum values of several µM. Hence, realistic concen-
tration values at an open channel are likely to saturate
inhibition as well as activation by Ca2+. These restric-
tions on the dynamics have to be taken into account in
modeling. Spatially averaged concentration values can-
not be used since they change by one order of magnitude
only.

Our approach to modeling of intracellular Ca2+ dy-
namics incorporates the extreme localization of release.
As mentioned above, channel clusters have a typical di-
ameter below 100nm. The size of a channel molecule with
all its four subunits is about 18nm in diameter. When
a single channel opens or closes, the fraction of cluster
area taking part in conduction of Ca2+ changes to a non-
negligible degree. Open channels are randomly scattered
across the cluster area. However, Swillens et al. [5] have
shown that it is possible to merge the individual areas of
all open IP3Rs to a single area of the same size without
affecting the concentration dynamics around a cluster.
Thus the dynamic change of the number of open chan-
nels in a cluster can be described as the dynamic change
of the radius a of a concentric conducting area. The value
of a is 0 when all channels are closed and equal to the
cluster radius a0 when all channels are open. Merely for
the purpose of simplifying the calculations we consider
the cluster to be a sphere rather than a membrane area.

The dynamics of the cytosolic Ca2+ concentration c
obeys the partial differential equation:

ċ = D∇2
rc + kl(E − c)− kpc + kc(E − c)Θ(a− r) . (1)

Here, ∇2
r denotes the radial part of the Laplace operator

in three dimensions. The second term on the r.h.s. of
eq. (1) refers to a leak flux, the term kpc describes uptake
of Ca2+ by the ER and kc(E − c) release through open
channels. E is the Ca2+ concentration in the ER. Release

is restricted to the volume r ≤ a. Θ(x) is the Heaviside
step function.

The radius a of the conducting area is determined by
the fraction of channels in the open state. The open
state depends on the state of the channel subunits. Each
channel consists of four identical subunits. Subunits have
binding sites for Ca2+ and IP3 . The state of a subunit
is determined by the occupation of the binding sites. We
use the state scheme of the DeYoung-Keizer (DK) model
for the subunit state dynamics. Each subunit has an
IP3 -binding site, an activating and an inhibiting Ca2+

-binding site. If IP3 is bound to its binding site and a
Ca2+ ion to the activating Ca2+ -binding site, the subunit
is activated. The channel is open, if a minimum number
of subunits is activated. Binding of Ca2+ to the inhibit-
ing binding site inhibits the subunit. A subunit can only
be activated again upon recovery from inhibition. Eight
states of a subunit arise from the three binding sites. We
denote the fraction of subunits in a certain state with
pijk where an index is 1, if a binding sites is occupied,
and 0 otherwise. The indices i, j and k represent the IP3

-binding site, activating and inhibiting Ca2+ -binding site
resp. Therefore the fraction of open subunits is p110. We
refer to the set {p} of the pijk as gating variables. Their
dynamics is of the general form

ṗijk = gijk(c(a, t), {p}). (2)

Together with the concentration field c(r, t) the gating
variables {p} determine the radius a by an algebraic re-
lation. The fraction of open channels is given by the
probability that at least three out of four subunits of a
channel are activated. The radius a of the volume occu-
pied by this fraction is

a = a0p110
3
√

4− 3p110 . (3)

Stationary solutions of eqs. (1),(2) are determined by:

0 = D∇2
rc + kl(E − c)− kpc + kc(E − c)Θ(a− r) (4)

0 = gijk(c(a), {p}). (5)

Due to the Heaviside function the equation can be treated
separately for r < a and r > a. Solving equation (4) for
the stationary calcium concentration cst yields

cst(r)=B(a)
exp(k2(r − 2b))− exp(−k2r)

r
Θ(r − a)

+ A(a)
sinh(k1r)

r
Θ(a− r) ,

k2
1 =

kl + kp + kc

D
, k2

2 =
kl + kp

D
.

(6)

We applied the boundary conditions c(b) = klE/(kl +
kp) at the outer radius b of the cytosol, which corresponds
to the base level concentration of the system. The re-
quirement of cst(r) to be C1 at r = a fixes the constants
A(a) and B(a). Using the state scheme of De Young and
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FIG. 1: IP3 concentration of the saddle node bifurcations
(solid and chain dotted) and the Hopf bifurcation (dashed)
in dependence on d5. Parameters read d1 = 0.13µM, d2 =
3µM, d3 = 0.9434µM, d4 = 0.4133µM, kp = 80s−1, kl =
0.002s−1, kc = 34500s−1, E = 750µM, a0 = 0.03µm, D =
40µm2s−1

Keizer for a single subunit [? ], the stationary state of
p110 in dependence on c and the IP3 concentration I is:

pst
110 =

d2cst(a)I
(cst(a)+d5)(d1d2+cst(a)d3+cst(a)I+d2I)

. (7)

Here d1 and d3 denote the dissociation constants for IP3

when no Ca2+ and when Ca2+ is bound to the inhibit-
ing site, resp. The parameters d2 and d4 represent the
dissociation constants for the inhibiting Ca2+ processes,
depending on IP3 binding, and d5 is the dissociation con-
stant for the activating Ca2+ site.

The value of the Ca2+ concentration does not vary sig-
nificantly within the cluster. Hence, we can pick a typical
value to enter the dynamics of the gating variables. The
value of c at the boundary of the conducting area was
chosen (see eq. (7)). The dependence of pst

110 on c(a)
turns eq. (3) into an implicit function for the value of a
at the stationary state: a = f(a). The solution set of this
equation determines the stationary states of the system.
Saddle node bifurcations can be easily obtained by the
condition that the bisection line touches f(a): 1 = f ′(a).
Similarly, the stability analysis can be simplified to the
solution of an algebraic equation, too. That will be ex-
plained in detail in [8]

The DK model assumes that the dynamics of IP3 -
binding and dissociation is much faster than the dynam-
ics of Ca2+ -binding and dissociation. Therefore we elim-
inate the IP3 dynamics in the following by assuming that
it is always in its stationary state. That does not alter
the expression for pst

110. The original DK model is based
on a spatially continuous IP3R density and exhibits two
Hopf bifurcations bounding an oscillatory regime. We
can transform a spatially continuous model into a dis-
crete model by concentrating the flux in an area deter-
mined by a typical cluster distance R into an area of
typical cluster size (a0) while conserving the total flux.
Consequently, we rescale the original parameter kDK

c in
[? ] by kc = kDK

c R3/a3
0. With the resulting large value

of kc, which is close to realistic values of 3 105µms−1 [4],
the oscillatory regime is lost and the model exhibits only
a single stationary state which is stable for all values of
the IP3 concentration. Lowering kc by several orders of

magnitude and thus approaching the original value does
not restore the linear stability properties of the continu-
ous model since gradients still occur. That is similar to
findings in [9].

However, adaptation of a model designed as spatially
continuous to spatially discrete source terms requires
more than rescaling of the source strength. The DK
model was set up for spatially averaged Ca2+ concen-
trations which are much lower than concentrations at
the channel mouth. That would suggest to adapt dis-
sociation constants for Ca2+ -dependent processes. We
increased the value of both Ca2+ dissociation constants
(dissociation constant = dissociation rate / binding rate
constant) for inhibition and activation, d2 and d5 respec-
tively. Experimental results for different IP3 -receptor
subtypes provide dissociation constants of the activation
process from 77nM (type 3 receptor [10]) to 309nM (type
1 receptor [11]). We used d5=0.823µM (see next para-
graph). An estimate of the value of the rate constant
for the transition from the state with Ca2+ not bound
to the activating site to the state with Ca2+ bound to
this site, a5, can be obtained from puff frequencies as
1(µMs)−1 [12]. The inhibition process showed an ef-
fective dissociation constant between 50nM at low IP3

concentrations and 45µM at high concentrations in ex-
periments by Mak et al. [13]. We adopted the data by
Taylor et al. suggesting an effective dissociation constant
of approximately 3µM for the inhibition process and ef-
fective binding rates, a2 and a4, for binding of Ca2+ to
the inhibitory site of about 0.2(µMs)−1 [14]. Finally, the
diffusion coefficient D needs a brief consideration. Diffu-
sion of free Ca2+ in the cytosol is limited by binding of
free Ca2+ to Ca2+ -binding proteins especially buffer pro-
teins. Buffering leads to an effective diffusion coefficient
in the range of 40µm2s−1 . However, buffers saturate at
the values of the concentration of free Ca2+ in the vicin-
ity of an open channel and therefore Ca2+ diffuses in this
area with its own diffusion coefficient of 220-300µm2s−1

. Since buffers are not included in our model we present
results for both D=40µm2s−1 and D=220µm2s−1 .

Dynamic regimes of the model in dependence on the
IP3 concentration and d5 are shown in Fig. 1. There
are two saddle node bifurcation lines terminating in a
cusp. A Hopf bifurcation occurs above the two sad-
dle node bifurcations. Oscillations can be found at IP3

concentrations bounded by the Hopf bifurcation and a
bifurcation occurring between the Hopf bifurcation and
the lower saddle node bifurcation. The type of this bi-
furcation is still under investigation but is probably ho-
moclinic. Fig. 1 demonstrates that oscillations do not
occur at values of d5 suggested by measurements, since
the activation process completely saturates at the con-
centration values occurring at an open channel. Hence,
changing dissociation constants of the original DK model
to larger experimentally supported values did not restore
oscillations. However, even if the cluster dynamics oscil-
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lated, these oscillations would not be the experimentally
observed ones. To demonstrate that we need to choose
parameter values allowing for oscillations. Therefore we
use a value of kc large enough to provide realistic con-
centration values at the releasing cluster (i.e. larger than
25µM [4]), if a large fraction of channels is open, but
small enough to still see a variety of dynamic regimes,
and a value of d5 allowing for oscillations (see caption
Fig. 1). Stationary states with these parameter values
are presented in Fig 2. There is just a single station-
ary state for almost all IP3 concentrations. An oscilla-
tory regime exists close to the bistable area (see Fig. 2).
We did not find limit cycles where the stationary state
is stable. Hence, the discrete DK model does not have
an oscillatory regime of experimentally relevant exten-
sion. Besides the size of the oscillatory regime, there

FIG. 2: Stationary values of the Ca2+ concentration for D =
40µm2s−1 (left) and D = 220µm2s−1 (right). Solid lines
denote linearly stable fixed points, dotted linearly unstable
points. Parameters as in Fig 1 and d5 = 0.8234µM, a2 =
a4 = 0.2(µMs)−1, a5 = 1(µMs)−1.

FIG. 3: Oscillation of the Ca2+ concentration at r = 0µm
(left) and r=1.588µm (right). Note the difference in the order
of magnitude for the amplitude and mean. Parameters as in
Fig 2 and D = 40µm2s−1.

is another observation suggesting that these oscillations
are not the experimentally observed global oscillations in
cells. Fig.3 shows oscillations of the Ca2+ concentration.
The initial transient illustrates that realistic concentra-
tion values at the cluster are reached for a large fraction
of open channels. The amplitude of the oscillations at the
releasing cluster is much smaller than the initial peak. It
is even more damped down to less than 1nM in a dis-
tance of 1.6µm from the cluster. That bulk amplitude
is too small to represent the observed global oscillations.
The oscillation amplitude at the releasing cluster is in the
order of magnitude of the dissociation constant of the in-
hibitory process as is to be expected for such a sinusoidal
oscillation. That amplitude in the range of dissociation

constants - and the small bulk amplitudes - will apply to
other models than the DK model, too. Hence, not only is
the oscillatory regime too small in parameter space to be
the experimentally observed regime but also is it found
at unphysiological values. Moreover the bulk amplitudes
are too small.

In summary, the above results strongly suggest that
discrete deterministic models of intracellular Ca2+ dy-
namics including no other control of the channel state but
activation by IP3, activation and inhibition by Ca2+ do
not show the experimentally observed oscillatory regime
as already suggested in [2]. Vice versa, comparison of the
bifurcation scheme of the deterministic Li-Rinzel model
with simulations of its stochastic counterpart demon-
strated that the deterministic regime cannot be con-
cluded from the stochastic behavior [15]. Oscillation-like
behavior is reintroduced in intracellular Ca2+ dynam-
ics by the fluctuations resulting from the randomness of
binding and dissociation of Ca2+ and IP3 at the reg-
ulatory binding sites [1–3]. This is also illustrated by
array enhanced coherence resonance where stochasticity
can induce global oscillations in non-oscillatory systems
[16]. Hence, fluctuations drive the spatio-temporal struc-
ture formation and render intracellular Ca2+ dynamics a
truly stochastic medium.
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