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Abstract 

Remote sensing is a major source of land cover information. Commonly, interest 

focuses on a single land cover class. Although a conventional multi-class classifier may 

be used to provide a map depicting the class of interest the analysis is not focused on 

that class and may be sub-optimal in terms of the accuracy of its classification. With a 

conventional classifier, considerable effort is directed on the classes that are not of 

interest. Here, it is suggested that a one-class classification approach could be 

appropriate when interest focuses on a specific class. This is illustrated with the 

classification of fenland, a habitat of considerable conservation value, from Landsat 

ETM+ imagery. A range of one-class classifiers are evaluated but attention focuses on 

the support vector data description (SVDD). The SVDD was used to classify fenland 

with an accuracy of 97.5% and 93.6% from the user’s and producer’s perspectives 

respectively. This classification was trained upon only the fenland class and was 

substantially more accurate in fen classification than a conventional multi-class 

maximum likelihood classification provided with the same amount of training data, 
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which classified fen with an accuracy of 90.0% and 72.0% from the user’s and 

producer’s perspectives respectively. The results highlight the ability to classify a single 

class using only training data for that class. With a one-class classification the analysis 

focuses tightly on the class of interest, with resources and effort not directed on other 

classes, and there are opportunities to derive highly accurate classifications from small 

training sets. 

 

 

I. Introduction 

 

Given that the remotely sensed response is predominantly a function of Earth surface 

properties, remote sensing has great potential as a source of information on land cover. 

Remote sensing has been used to map and monitor land cover at a range of spatial and 

temporal scales in order to satisfy a range of scientific and practical requirements [1,2]. 

Supervised classification lies at the heart of such studies as a means of converting the 

remotely sensed image into a thematic map depicting the land cover classes. Typically, 

the land cover map produced depicts many classes. However, interest is often focussed 

on just one specific class [3-7]. This is evident, for example, in many studies of major 

land cover transformations such as deforestation and urbanization. Attention has also 

focused on deriving information on specific crop types since pioneering major 

programmes such as LACIE which exploited imagery from early satellite remote 

sensing systems [8]. It is also the case in many ecological studies where attention is 

focused perhaps on an invasive species [9,10] or a rare habitat for conservation 

monitoring [11]. With such applications the use of conventional image classification 

techniques may be inappropriate and wasteful of resources, particularly when a 

competitive and efficient approach is required [11].  
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Many problems are encountered in mapping land cover from remotely sensed data by a 

classification analysis [12]. One concern is that the correct execution of a conventional 

supervised classifier for the derivation of the desired information typically requires the 

analyst to train the classifier on every class that occurs in the study area, even if most 

are of no interest to the analysis, in order to satisfy the underlying assumption of an 

exhaustively defined set of classes. Failure to exhaustively define the set of classes may 

result in substantial error which may not be captured in the evaluation of classification 

accuracy [13]. Moreover, with a conventional statistical classifier such as the maximum 

likelihood (ML) classification, the analysis may aim to optimize classification accuracy 

over all land cover classes rather than focus on that specific class of interest. The 

classification analysis may, therefore, not be focussed on the needs of a particular 

application. Thus, when there is a specific land cover class of interest, it may sometimes 

be preferable to adopt an alternative to the standard multi-class classifiers that are 

predominantly used in remote sensing.  

 

A variety of approaches may be used to shift the focus from the general to specific class 

of interest (e.g. [14,15]). One simple approach is to adopt binary classifiers to separate 

the specific class of interest from all others [11,16]. A further refinement of this 

approach is to conduct a one-class classification. With such an approach, classification 

resources (e.g. training data) and processes (e.g. class allocation) can be focused on the 

specific class of interest only. A range of techniques have been developed for this type 

of analysis. For example, approaches commonly referred to as partially supervised 

classification [3,5] seek to separate the class of interest from others with the aid of 

unlabelled training samples. Although these approaches have been used with some 

success there are limitations to their use. For example, the use of some approaches is 
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based on the assumption that the probability density of the class of interest, unless 

known in advance, can be estimated accurately from the training set, which may require 

the use of a large training sample [5]. As the expense of training data acquisition is one 

reason for the adoption of partially supervised classifications [17] the requirement for a 

large sample may be a major limitation in some studies. Here attention is focused on a 

straightforward approach to classifying a specific class of interest that requires training 

in a manner similar to conventional supervised classifications but only training data for 

the class of interest. This paper proposes the adoption of such a one-class classification 

approach based on the principles of the support vector machine (SVM) for accurate 

classification of a single class of interest from remotely sensed data. The classifier is 

introduced in section III after briefly reviewing in section II a range of one-class 

classifiers. In section IV the study area and class of interest are introduced. The data and 

methods used are outlined in section V before presenting the results in section VI. The 

paper closes with a brief summary of the work and key conclusions in section VII.  

 

II. One class classification 

 

The term one-class classification is believed to have originated from [18]. Other terms 

have been used in the recent literature that refers to the same or similar concept, such as 

outlier detection [19], novelty detection [20] and concept learning [21]. One-class 

classification has proved valuable in a variety of research arenas, such as document 

classification [22], texture segmentation [23], image retrieval [24] and ecological 

modeling [25]. 

 

A range of approaches exist to classify a specific class of interest, including 

reconstruction methods [26,27], density methods [28-30] and boundary methods 
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[31,32]. Reconstruction methods and density methods require extensive knowledge and 

large amount of information about the dataset of interest. Boundary methods, however, 

are more flexible in that they do not require the extensive knowledge of the dataset, as 

they concentrate on the boundary that fits around the class of interest [33]. This makes 

the boundary method very attractive to use in remote sensing applications which are 

focussed on a specific land cover class, particularly when a competitive and efficient 

approach is required. Boundary methods are largely based upon the principles of SVMs. 

One is a model in which a hypersphere is computed to describe the specific class of 

interest [32]. The model is written in a form comparable to SVMs [34], and is called the 

support vector data description (SVDD) [33].  

 

A variety of one-class classifiers are therefore available. Here, some key details on a set 

used in this research are briefly provided. In all of the one-class classification methods 

two elements can be identified. The first element is a measure for the distance d(z) or 

resemblance (sometimes a probability) p(z) of a case z to the target class. The second 

element is a threshold θ on this distance or resemblance. New cases may be are accepted 

by the description when the distance to the target class is smaller than the threshold or 

when the resemblance is larger than the threshold. The one-class classification methods 

differ, however, in their definition of p(z) or d(z), in their optimization of p(z) or d(z) 

and thresholds with respect to the training set [33].  

 

The most straightforward method to obtain a one-class classifier is to estimate the 

density of the training data and to set a threshold on this density. It is assumed that the 

target data were derived from a family of known distributions (e.g. Gaussian or Parzen 

distributions). The probability density is then estimated from available data samples. 

Cases of unknown membership may then be assigned to the target class if p > θ where θ 
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> 0 is a chosen threshold level. Therefore, the whole classification process is defined by 

the choice of θ. Several data distributions can be assumed. The Gaussian distribution 

assumes a unimodal and convex model of the data which can sometimes be overly rigid 

and inappropriate. To address this issue a Mixture of Gaussians can be used which is a 

linear combination of normal distributions. An extension of this approach is the Parzen 

density estimation method where a mixture of Gaussian kernels are centred on 

individual training points [35]. 

 

Reconstruction methods have not been primarily constructed for one-class 

classification, but rather to model the data. By using prior knowledge about the data and 

making assumptions about the generating process, a model is chosen and fitted to the 

data. Most of these methods make assumptions about the clustering characteristics of 

the data or their distribution in subspaces. With the application of the reconstruction 

methods, it is assumed that outlier objects do not satisfy the assumptions about the 

target distribution. The reconstruction error of a test object is used as a distance to the 

target set. Because these methods were not developed for one-class classification, the 

empirical threshold has to be obtained using the training set. The simplest method is the 

k-means classifier. In this method it is assumed that the data are clustered and can be 

characterized by a few prototype cases. The distance d of a case z to the target set is 

then defined as the squared distance of that case to the nearest prototype [35]. In the 

self-organizing map (SOM) the placing of the prototypes is not only optimized with 

respect to the data, but also constrained to form a low-dimensional manifold [36]. In 

these methods the Euclidean distance is used in the definition of the error and the 

computation of the distance. Another method is the principal components analysis 

(PCA). The PCA mapping finds the orthonormal subspace which captures the variance 

in the data as best as possible. The reconstruction error of a case z is now defined as the 
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squared distance from the original object and its mapped version. Other reconstruction 

methods include those based on auto-encoders and diabolo networks [37-39].  

 

In the boundary methods, only a closed boundary around the target set is optimized. In 

most cases the distances or weighted distances d to an (edited) set of cases in the 

training set are computed and objects are accepted or rejected according to a threshold. 

For example, the k-centre method covers the dataset with k small balls with equal radii 

[40]. The ball centres are placed on training cases such that the maximum distance of all 

minimum distances between training cases and the centres is minimized. When the 

centres have been trained, the distance from a test case z to the target set can be 

calculated. In the NN classifier, a test object z is accepted when its local density is 

larger or equal to the local density of its (first) nearest neighbour in the training set. This 

means that the distance from case z to its nearest neighbour in the training set is 

compared with the distance from this nearest neighbour to its nearest neighbour [41]. In 

the SVDD on the other hand, a boundary in the form of a sphere contains all the target 

data within the smallest radius and all the outliers will lie outside this sphere. These 

outliers are identified by calculating the distance of a new case z to the centre of the 

sphere [32]. As classification with the SVDD is the main focus of this article it is more 

fully described in the following section.  

 

III. One-class classification by SVDD 

 

The support vector data description (SVDD) is a one-class classifier based on the 

principles of the SVM. A SVM is binary classifier that may be used to separate a 

specific class from others. Recent studies have shown the SVM concept to have much 

promise in remote sensing and land cover mapping applications with the SVM approach 
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often shown to be more accurate than standard parametric classifiers (e.g., maximum 

likelihood) and popular alternatives (e.g. feedforward neural networks) for land cover 

mapping [42-45]. To provide an introduction to the SVDD, SVM classification will first 

be briefly discussed.  

 

The basic SVM is a binary classifier that seeks to fit an optimal separating hyperplane 

or decision boundary between the classes. For simplicity, the discussion will assume a 

simple two-dimensional scenario. The classification process is based on support vectors, 

essentially training samples that lie on the very edge of the class distributions in feature 

space in the border region between the classes. Although a binary classifier, the basic 

SVM approach may be extended for multi-class classifications [42,45].  

 

The binary SVM is trained on two classes of data where {xi yi}, i = 1,.., l, yi  {-1,1}, xi 

 R
d
. A hyperplane that separates the two classes, positives from negatives, may be 

expressed as w · x + b =0. Where w is the normal to the hyperplane, wb  is the 

perpendicular distance from the hyperplane to the origin and w  is the Euclidean norm 

of w (Fig. 1). Many hyperplanes may be able to separate the classes but the aim is 

typically to find the optimal separating hyperplane. The definition of the optimal 

separating hyperplane is based on the margin or distance between the classes. If d+ (d-) 

is the shortest distance from the hyperplane to the closest positive (negative) case then 

the margin of a separating hyperplane is d+ + d-. When the classes are linearly separable, 

the aim is to maximize the margin. If all the training data satisfy the following 

constraints: 
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Two hyperplanes, H1 and H2, may be defined (Fig. 2). Cases that lie on H1, 

1 bwxi
, and H2, 1 bwxi

, are called support vectors and are the critical 

elements of the training set. H1 and H2  are parallel and no training points fall between 

them. Also d+ = d­=1/ w  and the margin is 2/ w .  

 

A binary SVM may be used to concentrate the resources used in the collection of 

training data on the specific class of interest by aggregating all remaining classes in the 

image into a single class [11], here referred to as the class other. The analyst then has to 

simply train the classification on the two classes to allow a hyperplane that separates 

them to be defined. This type of approach results in a binary land cover map in which 

the class of interest may be more accurately mapped than from a standard multi-class 

classifier [11]. Although this type of approach may be accurate and is focused tightly on 

the class of interest, some effort is still required to characterize cases outside the class of 

interest to enable the classification hyperplane that separates the class of interest from 

others to be fitted to the data. The approach can, however, be further refined by 

adopting a classifier that requires only training data from the single class of interest.  

That is, it may be possible to train only upon the class of interest. It may, however, 

sometimes be beneficial to include training cases from other classes. Even in such 
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circumstances, however, training is biased toward the class of interest. This option is 

discussed in more detail below.   

 

In the SVDD, a model f (x;w) is defined in such a way that instead of looking for a 

hyperplane it searches for a closed boundary around the data, a hypersphere [46]. The 

hypersphere is characterised by a centre a and radius R (Fig. 3). During the training 

stage of a classification only examples of the class of interest are used and, therefore, all 

of them are assumed to be within the radius R of the hypersphere. The aim is to find the 

hypersphere with minimum radius R and for that an error function F is formulated so 

that: 

 

2),( RRF a           (3) 

With the constrains that all the training data, xi, are within that R
2 

 

iR  ,22
axi

        (4)
 

 

In order to allow the possibility of outliers in the training set, the distance from xi to the 

center a should not be strictly smaller than R
2
, but larger distances should be penalized. 

Therefore, slack variables, 
i  ≥ 0 may be introduced and the minimization problem 

changes to: 
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i
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with constraints that almost all objects are within the sphere: 
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iiR  ,0,22
ξaxi         (6) 

 

where C is a parameter that gives a trade-off between the volume of the description and 

the misclassification errors. 

 

Constraints (6) can be incorporated into equation (5) by using Lagrange multipliers. The 

resultant Lagrangian formula is,  
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with the Lagrange multipliers 0i  and 0i . L should be minimised with respect to 

R,ξ , a, and maximised with respect to α and γ  with the constraints,  
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From equation (10),  
ii C   . Instead of the constraint 0i  and 

ii C   , a 

new constraint on 
i  can be introduced as Ci 0 where the value of i lies in the 

range {1,…, N}. With this constraint and substituting (8)-(10) into (7) gives the 

simplified formula,  

 

     
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jiiL
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The magnitude of the Lagrangian multipliers varies with the position of the case relative 

to the hypersphere (Fig. 4). For a case within the hypersphere 
i = 0 and Ci  . For a 
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case on the hypersphere boundary, 
i = {0-C} and }-{0 Ci  . Alternatively, for a case 

outside the hypersphere 
i = C and 0i .  

 

Only objects xi with αi > 0 are needed in the description and these objects are the 

support vectors of the description. In the SVDD, the pixels that are support vectors lie in 

the border of the hypersphere. As well as with the support vectors in the SVM, these 

support vectors are essential for the calculation of the optimal hypersphere. The 

magnitude of the parameter C must be selected by the analyst for the application in-

hand [46]. An appropriate value for this parameter may be selected from empirical trials 

or cross-validation [47-49] and there is a degree of robustness to the inclusion of 

outliers, in part through the specification of C. 

 

Because it is possible to calculate the centre of the hypersphere a, it is easy to test if a 

new object, here a pixel with a particular spectral response, z, is accepted by the sphere 

description and, therefore, belongs to the class of interest. This requires the calculation 

of the distance from the pixel z to the centre of the hypersphere. A pixel z is accepted 

within the hypersphere when this distance is smaller than or equal to the radius:  

 

       
i ji

jii R
,

22
2 jii xxxzzzaz             (12) 

The squared distance from the center of the sphere a to (any of the support vectors on) 

the boundary is R
2
. Support  vectors which fall outside the description (αi = C) are 

excluded [46].  

 

The one-class SVDD classification can, therefore, be expressed as: 
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As with SVMs, to extend the model to non-linear cases, to give it generality and prevent 

over-fitting, a mapping  of the data using kernel functions may be undertaken [33]. 

These kernel representations were introduced by Boser et al. [50], based upon the work 

of Aizerman et al. [51] and they consist of projecting the data into a high dimensional 

Euclidean space  in which the linear learning machines can be implemented. When a 

kernel function maps the target data into the feature space the hypersphere model fits 

the data more appropriately and a more accurate classification may be obtained [33].  

 

To avoid the trivial solution of accepting all cases, an assumption about the outlier 

distribution is made. If no example outliers are available, it is assumed that the outliers 

are uniformly distributed around the target data. Using the Bayes rule, the posterior 

probability for the target class can be computed by: 

 

)()()()(

)()(

)(

)()(
)(

OOTT

TTTT

T
pppp

pp

p

pp
p






xx

x

x

x
x


   (14) 

 

where ωO  is the outlier data and ωT  the target data. When it is assumed that p(x|ωO) is 

independent of x (i.e. it is uniformly distributed in the area of the feature space that it is 



 Page 15 

being considered) p(x|ωT) can be used instead of p(ωT |x). The p(ωT |x) is transformed 

into p(x|ωT) by a strictly increasing function. So when 

 p(ωT |x1) < p(ωT |x2) also p(x1| ωT) < p(x2| ωT) holds. The values of p(ωT ) and p(ωO) 

have to be assumed a priori. 

 

Using a uniform outlier distribution also means that when false positives are minimized, 

the data description with minimal volume is obtained. So instead of minimizing both 

false positives and false negatives, a combination of false positives and the volume of 

the description can be minimized to obtain a good data description. When the true 

outlier distribution deviates from the uniform distribution, another data description will 

show better generalization performance, but this cannot be checked without the use of 

example outliers. Therefore, the generalization can only be given on the target data. It 

may, however, sometimes be useful to include outlier cases in the analysis. This is an 

option to enhance the basic SVDD but as the number of outliers grows the analysis is 

turned increasingly into a binary classification. Thus,when data about outliers (i.e., 

cases of the other classes in the image that are not of direct interest) are available they 

too can be used during the training to potentially enhance the data description and to 

help obtain a tighter boundary around the class of interest in the areas where outlier 

objects are present. Within the remote sensing context, this would be the equivalent of 

training a SVDD on examples of two classes, the specific class of interest and others. 

When data on outliers are available they may, therefore, be used to train a SVDD and a 

more traditional binary classifier. However, the SVDD differs from a conventional 

classifier because it always obtains a closed boundary around the class of interest. 

Furthermore, it does not require a representative sample of the outliers. Also a 

conventional classifier typically distinguishes between two (or more) classes without 

special focus on any of the classes.  
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The research reported in this article uses the SVDD approach in both modes: (i) training 

on one class only and (ii) training on one class with a small amount of data on the other 

classes in the image. The latter was included as the outliers may sometimes help fit an 

appropriate hypersphere. The inclusion of outlier cases is merely an option that may 

sometimes help extend the basic SVDD classification. The principal aim of the research 

reported was to assess the potential of the SVDD, one-class classifier, for mapping a 

specific class of interest from remotely sensed data.  

 

 

IV. Study Site  

 

The study focussed on the area known as The Norfolk Broads, East Anglia, UK (Fig. 5). 

This is an area renowned internationally for its wetland ecosystem and comprises a 

range of different landscapes, land-uses, habitats, and a considerable richness of wildlife 

[52]. One habitat of major interest is fen, which supports a large diversity of plant and 

animal communities. The UK, in general, and the Norfolk Broads in particular, are 

thought to host a large proportion of the surviving fen within Europe, and as such they 

require management under a number of legislative directives [53]. Fenlands, however, 

are dynamic semi-natural systems, thus informed management is required to maintain 

open-fen communities and their associated species richness. Central to fenland 

conservation and management, therefore, are maps of fen distributions and these could 

be derived from remote sensing. Here, interest is focussed on the fen class, with the 

remaining classes that make up the land cover mosaic of the region being of no interest. 
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V. Data and Methods  

 

A Landsat 7 ETM+ image of the test site acquired on 19
th

 June 2000 was provided by 

the UK’s NERC Earth Observation Centre. The six non-thermal spectral wavebands 

(wavebands 1-5, and 7) with a spatial resolution of 30 m, and the computed normalised 

difference vegetation index (NDVI) which is widely used to characterise land cover, 

were selected for use in the analyses. These data were geometrically corrected to the 

UK national grid with an estimated RMS error of 0.12 pixel. Aerial photography 

acquired at a 1:10,000 scale in June 1999, was also geo-corrected to the Landsat ETM+ 

image. These photographs were used to delineate eight broadly defined land cover 

classes that dominated the land cover of the Broads; these being fen (the specific class 

of interest) together with saltmarsh, grazing marsh, agriculture, forest, urban, sand and 

water (which represent the outliers).  

 

Although feature reduction may not be required for SVM based classification [54] its 

application can increase classification accuracy and methods designed for application 

with SVM classifications have been proposed [55,56]. As the Landsat ETM+ data 

provides a relatively low dimensional data set, the degree of redundancy in the data 

could be evaluated through assessment of simple measures of spectral separability. 

Thus, here a feature selection analysis was undertaken to reduce the size of the data set 

and remove unnecessary variables through assessment of transformed divergence 

statistic values [57]. This feature selection analysis was undertaken in earlier work 

evaluating binary classifications [11] and used a set of 150 pixels, 75 belonging to the 

class of interest (fens) and 75 belonging to the rest of the land cover types amalgamated 

to one class. For each pixel sampled, the digital number (DN) in each of the 6 ETM+ 

non-thermal spectral wavebands and the NDVI, derived from the data acquired in 
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ETM+ wavebands 3 and 4, were derived for the investigation. The transformed 

divergence statistic was calculated for every possible pair of features. Evaluation of the 

derived transformed divergence statistics indicated that the data acquired in Landsat 

ETM+ waveband 2 and the NDVI (Fig. 6) offered the highest average separability and 

only these data were used in the research reported here.  

 

Although attention was focused on the SVDD a small pilot study was undertaken to 

evaluate a series of one-class classifiers to confirm its suitability for the application. 

This pilot study did not aim to rigorously evaluate all the classifiers but to provide a 

general assessment of their ability to classify the fen and illustrate the suitability of the 

SVDD, in particular, for this task.  In total, eight one class classifiers, outlined briefly in 

section II, were applied to the data. For some classifiers a range of key parameter 

settings were applied, using values selected on the basis of previous research. Each 

classification analysis was trained with a sample of 100 pixels of the class of interest, 

fen, only. The accuracy of each classification was evaluated with a testing set of 250 

pixels, comprising 125 pixels representing fen and 125 from the other classes. 

 

Building on the pilot study attention focused on three sets of classification analyses 

performed: (i) using the SVDD trained on the specific class of interest only (i.e., a one-

class classification); (ii) using the SVDD trained on the specific class of interest with a 

limited amount of data on the outliers and (iii) a conventional multi-class maximum 

likelihood (ML) classification to provide a benchmark for evaluative purposes. Since 

training set size can influence the accuracy of classifications, including those by ML 

and SVM-based classifiers [42,45], and the sample used in the pilot study was very 

small a larger training sample was acquired. From this sample, training sets for each 

classification could be formed. The main focus is on training sets comprising 150 
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pixels, a size that is small for inexpensive acquisition but just large enough to satisfy 

assumptions in the benchmark analysis. The size and composition of the training set 

used in each analysis, however, varied between the classifications and is described 

below. Some analyses also used smaller training sets derived by sampling from the 150 

available cases to explore the effect of variations in training set size on the analysis. 

 

 A. One-class SVDD Classification   

The training dataset for the SVDD classification comprised 150 pure pixels from areas 

of fenland only. Using this training dataset a number of classifications were conducted 

with a variety of kernels. The use of kernels makes it possible to map the data implicitly 

into a feature space and to train a linear machine in such space. The aim was to find the 

kernel function that made the calculations of hypersphere in the feature space efficient. 

The literature provides relatively little guidance on the selection of appropriate kernel 

functions and associated parameters [44] and hence the kernel, kernel parameters and 

value of C were selected from a series of analyses using a range of kernel types and 

five-fold cross validation. These were the polynomial kernel (with degrees 1 to 10 

inclusive evaluated with an increment of 1); the gaussian radial basis function kernel 

(with free parameters of 1 to 10 inclusive evaluated with an increment of 1) and the 

exponential radial basis function kernel with degrees 1 to 10 inclusive evaluated with an 

increment of 1). In each case, a variety of settings for the penalty for misclassification 

term C, with a focus on accuracy assessed through a five fold cross-validation approach, 

were performed. In a one-class classification, C may be expressed as a threshold that 

describes the fraction of target cases rejected and the values used were 0.1, 0.01 and 

0.001. On the basis of these analyses, the polynomial degree function kernel of free 

parameter value 2 and C=0.01 was selected for all subsequent SVDD analyses 

undertaken for fenland classification.  
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B. One-class SVDD Classification with Outliers  

Classifications were conducted exactly as with the one-class SVDD except that the 150 

training cases used were drawn from the class of interest as well as some drawn from 

the other seven land cover classes. To ensure resources were focussed mainly on the 

class of interest, the composition of the training dataset was imbalanced. Here, 75% of 

the training cases were drawn from the class of interest with the remaining 25% of data 

composed of randomly selected cases drawn from the other 7 classes present in region 

(i.e., the outliers). This composition was selected arbitrarily to ensure that effort was 

focused on the class of interest. 

 

C. ML Classification 

A standard multi-class ML classification was undertaken to provide a benchmark 

analysis. This analysis represented what may be considered to be a standard approach to 

thematic mapping from remotely sensed imagery. Here, the training dataset of 150 

pixels was composed of cases of the 8 land cover classes present in the region in 

approximately equal proportions. The number of training pixels ranged from 15 to 20 

for each class. Although the number of training samples for each class was relatively 

small the sizes are close to those suggested for a two dimensional data set (represented 

here by the data in ETM+ band 2 and the NDVI) by a widely used heuristic for use with 

this type of classification [58]. Moreover, the sample size was much larger than those 

that may actually be required for accurate classification [59]. The sample size may, 

however, not be optimal but it must be noted that this ML classification was used here 

to indicate the degree of accuracy achievable by a standard classifier using a small 

training set of the same size as that used with the SVDD classifications. A further ML 

classification, trained with 1200 pixels (150 per-class) was, however, undertaken to 
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illustrate the accuracy achievable by a conventional classifier when a very large training 

sample was available. The first ML classification was, therefore, based on a training set 

the same size as that used in the main classifications by the SVDD while in the second 

ML classification the same number of training cases for the fen as in the SVDD 

classifications was available and the sample size for each class greatly exceeded the 

minimum requirements for a ML analysis. 

 

D. Accuracy Assessment 

All of the classifications were evaluated using an independent testing data set and the 

accuracy with which the class of interest, fen, was classified was computed (%).The 

testing set comprised 125 cases of fenland, the class of interest, and 125 cases drawn 

from the other 7 classes. Since the same testing set was used throughout, the statistical 

significance of differences in classification accuracy was assessed using a M
c
Nemar test 

[60]. With this test, the assessment is based on the evaluation of the derived Z statistic, 

and two classifications differ at the 95% level of confidence if Z> ا1.96ا. Throughout the 

evaluation, particular attention was focused on the accuracy with which the fen class 

was classified. As both commission and omission error can represent a problem in one-

class mapping, the exact details depending on the specific application in-hand, both 

were calculated along with the related user’s and producer’s accuracy values from each 

classification confusion matrix derived [12].  

 

 

V. Results and Discussion 

 

Initial attention focused on the results of the pilot study. All of the one-class classifiers 

evaluated were able to yield a highly accurate classification (Table 1). In particular, four 
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classifiers produced classifications with an overall accuracy of up to ~94%. Critically, 

however, the results confirmed the potential of the SVDD for one class classification of 

fenland. With the SVDD the largest overall accuracy observed was 94.8% and there was 

typically relatively little difference in accuracy when viewed from the user’s and 

producer’s perspectives (Table 1). All further one-class classification analyses were, 

therefore, undertaken with the SVDD and, except where stated, all discussion below 

relates to analyses based upon the larger training set, comprising up to 150 pixels. 

 

The overall accuracy with which the test set was classified by the ML classification, the 

benchmark analysis, was 68.8%, with a commission error of 10.0% and omission error 

of 28.0% for fens (Table 2a). Thus, the user’s and producer’s accuracy for fenland 

classification were 90.0% and 72.0% respectively. The large degree of omission error in 

the ML classification is manifest in its output, with the extent of the fenland class 

substantially under-estimated (Figs 5 and 7a). The accuracy of this ML classification is 

substantially below widely used map accuracy targets and the map derived from it may, 

therefore, be viewed as being inadequate for use in fenland monitoring. For example, 

the widely used map accuracy targets discussed by Anderson et al. [61] suggest a 

minimum producer’s accuracy of 85.0%, a value 13.0% above that derived. 

Furthermore, the accuracy of the ML classification did not change markedly when the 

larger training set, comprising 1200 pixels (150 per-class) was used (Table 2b). 

Although post-classification fieldwork could be undertaken to mitigate for the high 

errors of omission and commission this requires extra effort and resources, and indicates 

a lack of faith in the map derived by ML classification. This also negates a fundamental 

aim of using remote sensing for land cover mapping, which is to cover large areas with 

acceptable accuracy without the need for excessive post-classification fieldwork. .  
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The one-class SVDD approach yielded a classification (Fig. 7b) that was significantly 

more accurate than that from the benchmark ML analysis (comparison against Table 2a, 

Z=5.01, significant at 99.9% level; Table 3). This SVDD classification had an overall 

accuracy of 95.6%, with commission errors of 2.5% and omission errors of 6.4% for 

fenland (Table 3). The accuracy of the fenland classification was, therefore, 97.5% and 

93.6% from the user’s and producer’s perspectives respectively. The accuracy of the 

SVDD classification was, therefore, above the widely used target accuracy of 85%. 

With the one-class SVDD classification, the class of interest, fen, was targeted 

throughout the classification procedure and a high accuracy derived. The results 

highlights that very accurate land cover maps of the class of interest can be produced 

with effort and resources directed on the class of interest. 

 

The provision of information about outliers had no significant impact on the analysis 

with the output of the resulting classification (Fig. 7c) similar to that derived from the 

SVDD trained upon only the fenland class (Fig. 7b). Indeed, the exact same set of class 

allocations for the testing set were obtained when the classifier was trained on just the 

class of interest or with a training set containing outliers. Thus, in this research, the 

addition of training data on classes other than that of interest had no impact on 

classification accuracy. 

 

The results of the classifications highlight a potential to focus resources, especially 

those required for training data collection, on the class of interest. This could lead to 

substantial savings in classification production, an advantageous feature for often 

resource-limited conservation applications. To further reduce resource effort, analyses 

were conducted to explore an important feature of SVM based classifications, namely 

their capacity to use small training data sets for accurate classification [62]. The one-
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class classifications were repeated 9 times with a set of randomly selected training cases 

removed from the training set on each occasion. A series of classifications trained on 

between 5 and 150 cases of the class of interest were, therefore, undertaken. From these 

classifications, it was evident that variation in training dataset size had no significant 

effect (at the 95% confidence level) on the overall classification accuracy (Table 4) 

except when fewer than 10 training samples were used and the overall classification 

accuracy dropped to 86.0%. Thus, decreasing the training set size did not result in the 

loss of critical information to the description of the class of interest until the training set 

contained a very small sample (<10 training cases). Thus, the classifier could find the 

support vectors necessary to fit a suitable hypersphere from a small sample. Moreover, 

training sets considerably smaller than those derived from the application of 

conventional heuristics for training set definition, which suggest, for example, that the 

training set should contain in the order of  10-30 cases per-class per-waveband used 

[57,58], could be used for accurate classification. The use of such heuristics for a 

conventional multi-class classification would result in a large training set in which the 

cases of the class of interest could be a very small component. For example, for the 

mapping scenario considered in this paper involving two spectral features and 8 classes, 

the required training set would comprise in the order of 160-480 pixels of which only a 

small component, ⅛
th 

, were drawn from the fenland class. From Table 4 it is apparent 

that very accurate classification of fen can be derived from the one-class SVDD with a 

small training set of fenland pixels. Indeed, if attention was on the user’s accuracy of 

fenland classification a very small sample could be used for the production of an 

accurate classification (Table 4). Critically, the training set for the SVDD classification 

is, however, not just small but also focused entirely on the class of interest. 
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The findings of this research demonstrate the potential of the SVDD for the mapping of 

a specific class of interest from remotely sensed data. The approach may also be used 

for any class. For example, repeating the analyses with a focus on the other major class 

of high conservation value in the study area, saltmarsh, yielded similar results. 

Specifically, a SVDD (C=0.01, exponential kernel with a free parameter of 10 trained 

on 150 cases of saltmarsh) yielded a classification in which saltmarsh was classified 

with an accuracy of 93.6% and 98.3% from the map user’s and producer’s perspectives 

respectively [63]. Further research on the approach is, however, required to fully 

evaluate its potential. For example, the utility of the approach will clearly vary as a 

function of the separability of the class of interest from other classes. Nonetheless, the 

adoption of the SVDD may often be more appropriate than a conventional multi-class 

classifier. Moreover, the ability of the SVDD classifier to operate with small training 

data sets means that a competitive and efficient approach to the classification can be 

adopted. This is likely to be attractive for applications with limited resources. It is likely 

that the analysis can be further refined by training on those pixels (support vectors) that 

are used in the calculations to describe the hypersphere in a similar manner to intelligent 

training of SVM based classification [62].  

 

 

VI. Summary and Conclusions 

 

Remote sensing has considerable potential as a source of land cover information and in 

particular, for monitoring land cover and its dynamics at various scales. Commonly, 

supervised image classification is the basis of land cover and land cover change 

assessments. This type of analysis aims to convert the remotely sensed image into a 

thematic map that depicts the spatial distribution of the various land cover classes found 
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within the region. In standard statistical supervised image classifications, the aim is 

often to maximize the overall probability that a case is allocated correctly to a class. 

This requires that each class within the area to be mapped is included in the analysis to 

satisfy the implicit assumption made in standard classification analyses of an 

exhaustively defined set of classes. Although this is a logical basis for some 

classifications it is not always appropriate, especially as it treats all classes, including 

those of no interest, equally rather than focussing on the class that is of actual interest. 

To ensure efficient use of resources and time, an approach that concentrates on and 

maps the specific class of interest may be advantageous.  

 

A set of one-class classifiers were evaluated and the results highlighted their potential 

for accurate classification of fenland. In particular, this paper demonstrated that the use 

of a classification approach based on SVM such as the SVDD can be used to accurately 

map a single class of interest from remotely sensed data. This is valuable for 

challenging applications such as the implementation of European Union directives 

focused on key habitats but for which resources are limited and awareness of new 

techniques low [64]. A key attraction of the SVDD approach is that it provides a very 

simple to use supervised classification analysis that requires only the training data for 

the class of interest. Moreover, the accuracy of the SVDD classification was 

considerably higher than that derived from a conventional multi-class parametric 

classification. A standard ML classification yielded a classification in which the 

accuracy of fenland classification was 90.0% and 72.0% from the user’s and producer’s 

perspectives respectively while the corresponding values for the SVDD classification 

were 97.5% and 93.6%. The SVDD was, therefore, able to provide very accurate 

information on the class of interest and only required training data on that class. 

Moreover, the high level of accuracy was obtained using a small training data set, 
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considerably smaller than would be suggested by conventional approaches. This 

research has demonstrated the viability of one-class classifiers and the SVDD in 

particular where only information about the class of interest is needed and its potential 

to reduce training set size in this particular application. The use of a true one-class 

classifier is a novel approach to remote sensing for land cover classification and its full 

potential should be explored further. 
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Figure captions  

 

 

Figure 1. A hyperplane separating two classes. 

 

Figure 2. Support vectors and the optimal separating hyperplane. The support vectors 

lies on the hyperplanes H1 and H2 and are ringed for emphasis. 

 

Figure 3. The hypersphere containing the target data. The shaded objects on the edge of 

the sphere are the support vectors.  

 

Figure 4. Magnitude of the two Lagrange multipliers for cases inside, on the boundary 

and outside the hypersphere (Based on [33]. 

 
 

Figure 5. Location of the study site with a generalised representation of fenland 

distribution. 

 

Figure 6. The two features used in the classification. (a) Landsat ETM+ waveband 2 and 

(b) NDVI. 

 

Figure 7. Classification outputs for the test site. (a) maximum likelihood, (b) SVDD and 

(c) SVDD with information on outliers. 
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       Classification accuracy (%) 

Classifier (parameter) Accuracy measure C=0.1 C=0.01 C=0.001 C=0.0001 

Gaussian  Overall 91.60 92.00 87.20 87.20 

  Fens producer's 84.80 98.40 99.20 99.20 
  Fen user's 98.15 87.23 80.00 80.00 
 
Mixture of (2 clusters) Overall 91.51 95.30 93.13 89.78 

Gaussians  Fen producer's 84.35 94.51 95.90 98.09 

  Fen user's 99.07 96.75 91.67 84.93 
 (5 clusters) Overall 92.00 94.80 94.00 94.82 

  Fen producer's 84.80 92.80 92.00 95.62 

  Fen user's 99.07 96.67 95.83 94.49 
 (8 clusters) Overall 88.42 93.37 92.40 92.22 

  Fen producer's 78.95 91.40 90.43 88.69 

  Fen user's 99.01 96.67 95.83 97.41 
 (10 clusters) Overall 91.60 94.40 93.60 94.80 

  Fen producer's 84.80 91.20 91.20 95.20 

  Fen user's 98.15 97.44 95.80 94.44 
 
Parzen  Overall 91.60 94.80 94.40 94.40 
  Fen producer's 84.80 94.40 94.40 94.40 

  Fen user's 98.15 95.16 94.40 94.40 
 
k-means (2 prototypes) Overall 91.60 92.00 90.40 90.40 

  Fen producer's 84.80 98.40 99.20 99.20 
  Fen user's 98.15 87.23 84.35 84.35 

 (5 prototypes) Overall 91.60 92.80 87.20 90.40 
  Fen producer's 84.80 96.80 99.20 99.20 

  Fen user's 98.15 89.63 80.00 84.35 

 (8 prototypes) Overall 91.60 91.60 82.80 90.00 
  Fen producer's 84.80 98.40 99.20 99.20 

  Fen user's 98.15 86.62 74.70 83.78 

 (10 prototypes) Overall 88.80 93.20 93.60 94.00 
  Fen producer's 78.40 96.80 92.00 89.60 

  Fen user's 98.99 90.30 95.04 98.25 
 
 SOM (2x2 neurons) Overall 89.20 90.40 90.00 92.00 

  Fen producer's 84.00 99.20 99.20 96.80 
  Fen user's 93.75 84.35 83.78 88.32 

 (5x5 neurons) Overall 88.80 94.40 94.00 94.00 

  Fen producer's 79.20 90.40 90.40 90.40 
  Fen user's 98.02 98.26 97.41 97.41 

 (8x8 neurons) Overall 88.00 92.00 94.40 94.80 

  Fen producer's 76.80 85.60 91.20 92.00 
  Fen user's 98.97 98.17 97.44 97.46 

 (10x10 neurons) Overall 87.60 92.80 93.20 94.00 

  Fen producer's 76.00 87.20 88.00 89.60 
  Fen user's 98.96 98.20 98.21 98.25 
 
PCA  Overall 80.00 85.60 82.80 82.80 

  Fen producer's 79.20 96.00 96.80 96.80 

  Fen user's 80.49 79.47 75.63 75.63 
 
k-centre (2 prototypes) Overall 90.80 92.40 90.00 92.00 
  Fen producer's 84.00 96.80 99.20 96.80 

  Fen user's 97.22 88.97 83.78 88.32 

 (5 prototypes) Overall 87.20 92.80 93.60 90.40 
  Fen producer's 79.20 93.60 92.80 89.60 

  Fen user's 94.29 92.13 94.31 91.06 

 (8 prototypes) Overall 87.60 92.80 92.80 92.80 
  Fen producer's 81.60 91.20 91.20 91.20 

  Fen user's 92.73 94.21 94.21 94.21 

 (10 prototypes) Overall 87.60 92.80 93.60 93.20 
  Fen producer's 81.60 91.20 90.40 89.60 

  Fen user's 92.73 94.21 96.58 96.55 
 
SVDD (degree 2) Overall 92.80 93.20 94.80 94.80 

Polynomial Fen producer's 87.20 96.80 96.80 96.80 
Kernel  Fen user's 98.20 90.30 93.08 93.08 

 (degree 5) Overall 93.20 90.80 90.80 90.80 

  Fen producer's 96.80 96.80 96.80 96.80 
  Fen user's 90.30 86.43 86.43 86.43 

 (degree 8) Overall 93.20 88.00 88.00 88.00 

  Fen producer's 96.80 97.60 97.60 97.60 
  Fen user's 90.30 81.88 81.88 81.88 

 (degree 10) Overall 93.20 88.00 88.00 88.00 

  Fen producer's 96.80 97.60 97.60 97.60 
  Fen user's 90.30 81.88 81.88 81.88 

Table 1. Summary of the one-class classification results. 
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Class FE SM A FO G S U W Σ Producer’s 

accuracy (%) 

Fen (FE) 90 18 2 15 0 0 0 0 125 72.00 

Saltmarsh (SM) 3 14 0 0 0 0 3 0 20 70.00 

Agriculture (A) 0 0 0 1 13 3 3 0 20 0.00 

Forest (FO) 7 1 0 5 1 0 0 0 14 35.71 

Grassland (G) 0 0 0 1 20 0 0 0 21 95.23 

Sand (S) 0 0 0 0 0 12 3 0 15 80.00 

Urban (U) 0 3 1 0 0 0 14 0 18 77.77 

Water (W) 0 0 0 0 0 0 0 17 17 100.00 

Σ 100 36 3 22 34 15 23 17 250  

User’s accuracy (%) 90.00 38.88 0.00 22.72 58.82 80.00 60.86 100.00   

       (a) 

 

Class FE SM A FO G S U W Σ Producer’s 

accuracy (%) 

Fen (FE) 97 14 0 14 0 0 0 0 125 77.60 

Saltmarsh (SM) 3 14 0 0 0 0 3 0 20 70.00 

Agriculture (A) 0 0 1 8 5 3 3 0 20 0.00 

Forest (FO) 11 0 0 3 0 0 0 0 14 21.43 

Grassland (G) 0 0 2 1 18 0 0 0 21 85.71 

Sand (S) 0 0 0 0 0 15 0 0 15 100.00 

Urban (U) 0 3 1 0 2 1 14 0 18 77.77 

Water (W) 0 0 0 0 0 0 0 17 17 100.00 

Σ 111 28 4 26 25 19 20 17 250  

User’s accuracy (%) 87.39 50.00 25.00 11.54 72.00 78.95 70.00 100.00   

       (b) 

Table 2: Confusion matrices from the maximum likelihood classification. (a) for the classification trained with a total of 150 training cases 

with an overall accuracy of 68.8% and (b) for the classification trained with 1200 training cases (150 of each class) with an overall accuracy of 

71.6%. The rows and columns of the matrices represent the actual and predicted class of membership respectively. . 
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 Fen Others Σ 

Producer’s 

accuracy (%) 

Fen 117 8 125 93.6 

Others 3 122 125 97.6 

Σ 120 130 250  

User’s 

accuracy (%) 97.5 93.8  

 

 

Table 3: Confusion matrix for the one-class SVDD classification. The rows and 

columns of the matrix represent the actual and predicted class of membership 

respectively. The overall classification accuracy was 95.6%. 
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Number of 

training cases 

Overall 

accuracy (%) 

User’s 

accuracy (%) 

Producer’s 

accuracy (%) 

5 86.0 97.8 73.6 

10 90.8 98.1 83.2 

15 90.8 98.1 83.2 

20 92.8 98.2 87.2 

25 94.8 97.4 92.0 

50 94.8 97.4 92.0 

75 93.2 90.3 96.8 

100 93.2 90.3 96.8 

125 93.2 90.3 96.8 

150 95.6 97.5 93.6 

 

Table 4: Effect of variation in training sample size on the accuracy (%) of the SVDD 

classifications. 
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