
 TRACKING SUB-PAGE COMPONENTS WITHIN
DOCUMENT WORKFLOWS

James A. Ollis, Steven R. Bagley and David F. Brailsford
Document Engineering Laboratory

 School of Computer Science
University of Nottingham

Nottingham NG8 1BB, UK

{jao,srb,dfb}@cs.nott.ac.uk

ABSTRACT
Documents go through numerous transformations and
intermediate formats as they are processed from abstract markup
into final printable form. This notion of a document workflow is
well established but it is common to find that ideas about
document components, which might exist in the source code for
the document, become completely lost within an amorphous,
unstructured, page of PDF prior to being rendered. Given the
importance of a component-based approach in Variable Data
Printing (VDP) we have developed a collection of tools that allow
information about the various transformations to be embedded at
each stage in the workflow, together with a visualization tool that
uses this embedded information to display the relationships
between the various intermediate documents.

In this paper, we demonstrate these tools in the context of an
example document workflow but the techniques described are
widely applicable and would be easily adaptable to other
workflows and for use in teaching tools to illustrate document
component and VDP concepts.

Categories and Subject Descriptors
E.1 [Data]: Data Structures — Trees; I.7.2 [Document and Text
Processing]: Document Preparation — Markup languages; I.7.4
[Document and Text Processing]: Electronic Publishing.

General Terms
Languages, Documentation

Keywords
XSLT, XSL-FO, PDF, document components, VDP, document
workflows, Education

1. INTRODUCTION
It is increasingly the case that document creation, particularly in
the business world, can be automated. Each document then
becomes the output from a pipeline of processing and
transformation stages. In these circumstances it becomes ever
more difficult to trace which portions of the source document map
into some given area on the output rasterized page.

Structural components such as paragraphs, diagrams, captions etc.
are often identifiable in the document input language. These
components may appear in some overtly XML-based format such
as DocBook, which we shall use for illustrative purposes in this
paper. But even in proprietary formats, such as MS Word, there is
an increasing tendency to allow the inner structures to be exported
as standardised XML notations. Unfortunately these structural
entities, though identifiable by their rendered visual appearance,
are often lost, in code-demarcation terms, within an amorphous
final page of PDF. Even when the PDF COG model [1] has been
used for the final page there has so far been no mechanism for
tracing the transformation of source components into final-form
COGs.

This can be likened to the effect of a traditional program language
compiler. Here, the input language clearly delineates loops,
conditionals, procedures, objects and data structures. But as the
program is compiled these language structures are refined out and
the result is an amorphous mass of generated machine code. Each
stage of the compile chain (pre-processor, compiler, assembler,
optimiser, linker) transforms part of the document.

We have developed a collection of tools that allows us to annotate
the various intermediate document stages in a processing pipeline,
as well as the final form document, with information regarding the
various sub-page components and how they have been
transformed. In later sections we also demonstrate a visualization
tool for displaying the relationships between the different
components of a document and how these fragments are
transformed to produce the final output document.

2. DOCUMENT WORKFLOWS
Documents frequently undergo changes from one format to
another as they progress from abstract markup to final printable
form. This series of transformations is referred to as a Document
Workflow and details the various formats and technologies used
in producing the final form document.

Typically, a document workflow will start with a high-level
representation that just considers the logical structure of the
documentation (although with Variable Data Printing, it is
common for the starting point to be a more abstract data
representation [2]). This is then successively transformed through

 FINAL DRAFT of Short Paper accepted for
ACM Doc Eng '08 September 16-19. 2008, Sao Paolo, Brazil
 Copyright 2008 Ollis, Bagley and Brailsford.

various stages with the structural information replaced with more
presentational layout information and finally to a page description
(e.g. PDF).

The work described in this paper is based around a workflow that
uses DocBook [3] and XSL-FO [4] but the techniques described
are generic to any XML-based workflow. Here, the
transformations are described by XSLT scripts and the final
transformation from XSL-FO to PDF being performed by
Apache’s FOP [5] (an open-source FO processor written in Java).
Figure 2.1 illustrates this workflow. The reasoning behind the
selection of technologies used in this example workflow is purely
practical. All of the tools used for the document transformations
are open-source thereby allowing us to easily add new features.

The initial DocBook notation of the document describes it in
terms of logical structure. DocBook defines a tagset in XML
notation whereby books are split into chapters, which in turn
contain sections that are further split into paragraphs and so
on. This DocBook document is then transformed into an XSL-FO
file through use of the DocBookXSL stylesheets [6]. These are a
series of XSLT scripts that transform the logical structure of the
DocBook file into a layout description of the document in XSL-
FO markup. XSL-FO is concerned with specifying how ‘areas’ of
content are laid out on the page, but it also allows for styling
information about the content, such as fonts, colours etc. This
extra styling and layout information is added into the document by
the DocBook XSL stylesheets, which can therefore provide a
default appearance for all generated documents. The final stage in
the workflow is concerned with transforming the XSL-FO file
into PDF. This is done using the Apache FOP processor, which
lays out the various ‘areas’ in the document and produces the
required PDF operators to produce the final output in the correct
fonts and colours etc.

Note that the techniques and the resulting tools are applicable to a
wide range of workflows and are not limited to the particular
example discussed here.

3. TRACKING THE WORKFLOW
Each step of the document workflow can be considered as a
function that takes some input and produces a new output. The
generated content will consist of either transformed parts of
source (for example, a marked-up paragraph in DocBook may be

transformed into an <fo:block /> or content generated by the
transformation (the insertion of page numbers for example). To
give an example, consider the following XML document (A):

<hello>world</hello>

that is transformed by the following XSLT script (T):

<xsl:stylesheet>
<xsl:template match=”hello”>
<goodbye>
<xsl:value-of select=’.’ />
</goodbye>
</xsl:template>
</xsl:stylesheet>

The product, T(A), from applying T to A would therefore be:

<goodbye>World</goodbye>

However, if we look only at the output, T(A), it is generally
impossible to tell which part of A was the source for any given
part of the output, even when, as in this case, T is just one simple
transformation. A real-life document workflow would include
numerous transformations of arbitrary complexity.

To enable the transformations to be visualized it is necessary to
augment the output T(A), at every stage, with information that
links each portion of the output to the corresponding part of the
input, A. We have termed this extra information Generational
Side-Band information1 (GSBI) to signify that it is transmitted
alongside the actual document content to track the way in which
each piece of the document content has been generated). This can
be considered analogous to the information [6] added by a
compiler to the final executable to enable source-level debugging.

This leads to the question of where this extra information is
stored. In the case of XML-XML transformations it is possible to
embed the information into the XML output as attributes in some
new namespace. For the final XML-PDF transformation, another
approach must be taken.

3.1. Generational Side-Band Information
The GSBI stored on each generated node must at the very least be
able to highlight the node in the source that was used to generate
this given node, and preferably also details of the transformation
that was used to generate it. Referring back to the example above,
the <goodbye> node in T(A) needs to decorated with the
information that it came from document A, and that more
specifically it came from the <hello> node within document A.

Fortunately, since each stage of the workflow produces an XML
file (except, as we shall see, the final FOP stage, which produces a
PDF), this information can be captured as an XPath expression.
So, in the example above, the <goodbye> node’s source could
be described by the following XPath:

document(uriToA)/hello[1]

1 The authors are aware that this is a gross misuse of the term
side-band as used in telecommunications — we just like the name.

Figure 2.1 – Example document workflow

Note that since an XML element can have many children with the
same name it is necessary to use an XPath predicate to ensure the
correct node is selected.

Since the transformations are all XSLT-based (except, once again
the final FOP stage), and are expressed in XML, it is possible to
use a similar mechanism to express which part of the
transformation script generated a given output node. These
XPaths are much simpler than the ones relating to the source
document and take the form:

 /xsl:template[<predicate>]

where the predicate is specified as a series of tests on attribute
names and values, ANDed together, that can uniquely identify the
appropriate XSLT template. Only attributes that are relevant to the
particular template are included and the list of possible attributes
is limited to match, name, mode and priority. There is also
the possibility that parameters may have been supplied to the
template that would alter its execution, but for simplicity these
have not been considered at the moment and are left as an exercise
for the future.

So, once the GSBI has been calculated, it is necessary to annotate
the generated XML with this information. The easiest storage
option would be to place the GSBI onto each generated node as a
set of attributes in their own gsbi: namespace. The format in
which these attributes are stored is an important consideration
since there may be an unknown number of transformations in the
workflow for which this kind of information must be stored. The
following format is used:

• There is a single attribute, gsbi:stages, that
accumulates the names of the transformation stages as a
space-separated list. This list defines the order in which
the transformations have been applied, with the left-
most stage being the first.

• All attributes relevant to a particular transformation
stage are prefixed with the name of that stage.

The stage name is arbitrary since its sole purpose is to serve as a
prefix for attributes describing a particular step in the workflow.
This means that the stage name needs to be both unique and
consistent across the whole output.

The set of attributes that are stored is dependent on the technology
used in the transformation, but for XSLT transformations, we
envisage storing the filename and XPath of the source node
together with the filename and template node of the
transformation script, as described previously. A final attribute,
gsbi:xxx_type (where xxx is the name of the stage), stores
the type of the transformation performed. In our example case,
this would simply be xslt, however other transformation tools
may specify custom values (e.g. fop for Apache FOP
transformations as discussed later).

At each subsequent stage in the document workflow, the existing
GSBI attributes, generated by previous transformations, must be
copied onto newly generated nodes, as well as adding the
attributes regarding the current transformation. Therefore, in the
final form document, the resulting components will have tracing
information stored that describes every stage of the workflow.

4. XML-XML TRANSFORMATIONS
Since the GSBI data is to be stored as attributes on the XML
source nodes, it falls to the XSLT script to generate these nodes in
the same way that a compiler generates the debugging information
appended to an object file.

There are two problems here: firstly, the transformation scripts are
likely to have already been written without visualization in mind
and so will require modification to support it. Secondly, and more
crucial, altering the XSLT script to generate the GSBI attributes
will require extensive modifications to the XSLT script that will
cloud the desired operation of the script.

To understand this, consider the example XSLT transformation
outlined in section 3. Here, the output document would need to be
augmented as follows:

<goodbye gsbi:stages=”foo”
 gsbi:foo_type=”xslt”
 gsbi:foo_xpath=”document(a)/hello[1]”
 gsbi:foo_transform=”/xsl:template[
 match=’hello’]”>
 World
</goodbye>
To generate the gsbi:stages attribute it is necessary to add
the following XSLT section every time an XML node is added:

<xsl:attribute name=”gsbi:stages”>
<xsl:value-of select=”@gsbi:stages”/>
<xsl:value-of select=”$stage-id” />
</xsl:attribute>
The old attributes value (if present) is copied over, and the new
stage identifier is added (this would be generated by another piece
of XSLT code).

In the same way, the XPath of the current node would be need to
be built up (XSLT provides no way of getting the XPath of the
current node) and added as an attribute. The same is true for the
transformation XPath.

Clearly, the amount of code to support the output is extensive and
the possibility of errors to creeping in is high. Also, updating the
XSLT script would be a complex task — a simple tweak to a
templates match would now require modifying considerable
amounts of code to ensure its output was still tagged correctly.

To avoid the tedium of making the numerous individual changes
to the stylesheets by hand, it is possible to exploit the fact that
XSLT scripts are themselves XML documents that could be
transformed by yet another XSLT script. In this way a single
“modifying” XSLT script can be used to adapt a whole range of
similar “target” XSLT scripts. Once the nature of the
modifications has been decided (i.e the format of the GSBI
attributes) the easiest approach is to make this alteration to all
generated output tags. The key concept is that the modifying
XSLT script is able to differentiate the ‘code generation’ portions
in the target scripts from the controlling XSLT framework and
thus it can arrange that all the code-generated tags are output with
extra attributes.

Secondly, it is perfectly feasible to have the modifying script add
extra code to each target script that has the effect, when the
modified target script is executed on an input node, of calculating
the exact XPath expression for every processed node.

5. XML-PDF TRANSFORMATIONS
The final transformation of the document workflow poses a
unique problem. Up to this point the destination format has been
another XML document, and so it has been possible to tag the
generated XML nodes with the transformational attributes.
However, the final stage of our example workflow produces a
PDF document, which is not expressed in the XML metasyntax.

5.1. Tagging PDF
PDF as discussed in [1,9] describes each page as a monolithic
stream of operators. This means that we are faced with the
problem of how we ‘tag’ which part of the page has been
generated by each source node. Two options exist, the first is to
utilize the logical structure tree present in Tagged PDF [10] and
the second would be to use the Component Object Graphic model
[1]. Both approaches will require modifications to the XSL-FO
processor (Apache FOP) to generate a modified form of PDF.

5.1.1. Logical Structure
The Tagged PDF extensions enable a logical structure tree to be
embedded within the PDF document. This can be considered
equivalent to an XML structure, with the PCDATA at the leaves
replaced by chunks of the PDF content stream (markers are placed
within the content stream to denote specific regions). Support is
included for both elements and attributes.

Therefore, a logical structure tree could be embedded within the
generated PDF document that delineated the generated sections,
and contained the attributes describing the source in the same
manner as the XML documents.

5.1.2. Component-Object Graphic
The PDF-COG model takes an alternative approach. Here, the
page is no longer described as a monolithic stream of operators
but rather as a series of discrete components (COGs), each
completely encapsulated and separate from every other COG.

The destination of the final step of the document workflow is now
a series of discrete COGs rather than an XML tree. This means
that it is no longer possible to store the GSBI as attributes within a
sideband namespace (at least, not without moving to some XML-
ized version of PDF [11]).

However, this does not stop us tagging the COGs with the
required GSBI. In [1] we explain that a COG is implemented
within a COG-PDF file as a FormXObject. Each FormXObject
has a header dictionary (associative array) associated with it as
shown in Listing 5.1.

/CogXXXXXX
<<

/Type /XObject
/Subtype /Form
/Cogged true
/Name /CogXXXXXX
/Width 100
/Height 100
/Length 123

>>

Listing 5.1 — A typical COG
Fortunately, the PDF specification allows for the addition of
domain-specific information to these dictionaries (indeed, the
COG specification already makes use of this ability). Therefore, it
is possible for us to include an additional dictionary containing the

GSBI for the visualizer software to access. Listing X.XX shows
the modified structure. Another entry is added to the COG header
(under the SourceInfo key) that contains the same data
previously stored as attributes in the XML stages of the workflow.
However, the data is now packaged as an array of dictionaries,
one for each stage with the earliest transformation at index zero.
So the transformation described in the example used in section 4,
would be embedded in a COG as shown in Listing 5.2.

/CogXXXXXX
<<

/Type /XObject
/Subtype /Form
/Cogged true
/Name /CogXXXXXX
/Width 100
/Height 100
/SourceInfo
 [
 <<
 /StageName /Foo
 /Type /XSLT
 /SourceXPath (…)
 /Transform (…)
 >>
...
]
/Length 123

>>

Listing 5.2 — Modified COG header for visualization
Ultimately, it was decided to use the COG approach, rather than
the PDF Logical Structure approach, to store the GSBI within the
PDF. There are two reasons for this. Firstly, it was difficult to
decide what the embedded logical structure tree should contain.
Ideally, it should be the source XML document, but this is not fed
to the FO processor and to do so would require more extensive
and complicated modifications to FOP. Secondly, and principally,
it was felt that the self-contained renderability of COGs would
provide more flexibility at the visualization stage.

5.2. Modifying Apache FOP
The final stage of the example workflow converts the XSL-FO
source into a viewable document, in this case PDF. The tool of
choice for this process is Apache’s FOP [5] and the decision to
use it was based upon two main considerations: firstly, it is a
widely used processor with support for a large proportion of the
XSL-FO specification, and secondly that it is open-source
allowing us to easily make any required modifications.

The design of Apache FOP is such that it is split into two halves –
the front end dealing with the parsing of the input XSL-FO file
and the back end dealing with generating the desired output
format. This is illustrated in Figure 5.1.

This separation allows for a modular approach to document
transformation since any number of back end renderers can be
written to target different output formats.

As an intermediate data structure, between these two halves of the
processor, Apache FOP specifies an Area Tree. This is a tree
structure in which the various XSL-FO nodes have been
processed and are represented in a hierarchical structure of
abstract areas.

In order to pass through the GSBI generated in earlier stages of
the workflow, FOP’s front end requires modification to ensure
that this new information is reflected in the Area Tree.

Each of the back-end code-generators included as part of Apache
FOP walks over the area tree structure and generates the
appropriate output format but, by default, FOP will generate PDF.
Unfortunately, PDF is a monolithic Page Description Language
(PDL) with its basic level of document granularity being no finer
than a whole page. This presents a problem since using it as the
target output format would result in there being no method of
selecting individual components within the document, which is
obviously necessary for any low-level component visualization
tool (see section 6). However, if PDF documents are built from
individual COGs on the page then these components can be
identified and manipulated separately. Thus, to support
component objects on the final-form page, the FOP’s PDF code-
generator was modified so that it generated COG PDF as opposed
to ‘normal’ PDF.

5.2.1. Layout Modifications
The front end of Apache FOP takes an input XSL-FO file, parses
it, lays out the various ‘areas’, and generates an intermediate Area
Tree. Internally, FOP does not build a DOM representation of the
XML document but rather creates its own data structures. This is
advantageous since it is possible to extend these data structures to
store the GSBI data. Unlike XSLT, it is not possible build a
generic converter, and the modifications to the FOP source code
must be made by hand.

Two changes were required to ensure that the Area Tree would
contain all the required information for the back end PDF
renderer. Firstly, the GSBI contained within the XSL-FO file
needs to be copied across onto the relevant as they were created.
FOP’s XML parsing routines needed to be modified to make them
aware of the GSBI attributes contained within the XSL-FO source
and to ensure they were parsed alongside the XSL-FO attributes.

Secondly, the GSBI data needs to be updated with information
about the transformation that FOP itself is performing. The parser
keeps track of its current position within the XSL-FO input, and
can use this information to generate an XPath when needed.
Therefore, when a new part of the Area Tree is created the current
XPath (which represents the part of the XSL-FO input that has
caused it to be created) can be fetched from the parser and stored
alongside the GSBI already present within FOP’s internal data
structures.

With the above changes made to the front end of FOP, all the
required information is now stored in the Area Tree. However, as
things stand, this information will be ignored by the default PDF
code-generation engine in FOP and so would be unavailable in the
final PDF output.

5.2.2. PDF Code Generation
FOP’s default PDF code generator produces standard monolithic
PDF documents and is not designed to preserve any segmentation
of the document content that may be visible during earlier stages
of the document workflow (including within FOP’s own internal
data structures). Having made the decision to use COG
technology for preserving this content segmentation in the final
output, it was then necessary to modify the PDF code generator to
produce COG-PDF output.

Figure 5.1 — Apache FOP structure
Initially, it was envisaged that a number of carefully implemented
changes to the existing FOP PDF code generator would be
sufficient to achieve the desired effect. However, after an initial
inspection of the way the PDF code generator was constructed it
became apparent that more extensive modifications would be
required.

The structure of the Area Tree is such that the various areas are
grouped into ‘blocks’, however there are a number of exceptions
that are handled separately. As the PDF renderer descends the
Area Tree, it renders these blocks by calling other methods to
handle the various types of area. Since these blocks typically
correspond to logical blocks in the content (paragraphs, headings
etc) it was decided that this was a good place to ‘hijack’ the
processing of the Area Tree in order to generate COG-PDF. In
this way each input block would correspond to a COG in the
output PDF. This strategy was implemented by setting up the new
objects required for COG output, within the code generator,
followed by a final output of the set of COGs as a PDF stream
together with the resetting of the various state objects.

One of the major obstacles was the way in which the original FOP
PDF code generator handled resources such as fonts. COGs are
treated as self-contained components that do not affect the graphic
state of the PDF because they contain references to all of their
required resources. The default FOP implementation maintains a
single list of resources that is shared among all pages in the
document. Unfortunately this would ruin the self-contained nature
of resources in the COG approach and so the resource handling
within the PDF generator had to be modified so that a new
resource list was generated every time a new COG was initialized
and this list was then associated with the relevant COG.

Another feature of COGs is that all of the drawing operators
inside a COG are drawn relative to a local origin. However, the
layout model in XSL-FO is such that blocks are laid out inside a
flow down the page. Therefore the original PDF code generator
inside FOP needed only to maintain the current position on the

page by accumulating the size of each block of output, plus any
specified spacing. To correctly generate COGs with a local-origin,
it is necessary to also keep track of the starting y-position for each
block so that the co-ordinates can be generated relatively. Things
are further complicated by XSL-FO’s origin being at the top-left
while PDF uses the bottom-left, requiring further mathematical
contortions to be performed to calculate the correct co-ordinates.
Once, the COG has been generated a Spacer object is also inserted
onto the current page to ensure that it is imaged at the correct
point on the page [1].

6. VISUALIZATION
The result of the modified document workflow components is a
COG-PDF file where each COG contains embedded GSBI
detailing the precise transformations that were used to create it.
Using this information, it is possible to write tools that allow the
user to visualize the document workflow.

The first visualization tool developed mimics the one developed
by Hardy [10]. Here, the original XML source document is
showed in tree form alongside, the PDF document. Figure 6.1
shows our implementation. The UI enables the user to see part of
the PDF document with its source XML node highlighted, and
vice versa, i.e. highlighting part of the XML tree and seeing which
part of the PDF it generated.

Figure 6.1 – XML PDF Workflow Visualization
Implemented as an Acrobat plug-in, this visualization tool can be
split into three components: the XML source document view, the
PDF to XML mapping, and the XML to PDF mapping.

6.1. Source XML view
The original source file (the location is retrieved from the GSBI
stored within the PDF) is parsed and used to create a modified
DOM tree. The traditional DOM objects are extended using the
decorator pattern [12] to contain pointers to the user interface
objects that represent each node. This extra information is used
later for efficient update of the UI whenever a COG is highlighted
in the PDF section.

With the DOM built, the plug-in iterates over each node in the
tree to build the user interface. The current implementation makes
use of Apple’s CoreAnimation API in MacOS X 10.5 to provide a
graphically rich front-end, however there is no reason why it
could not be rewritten to use a different UI API.

With the relevant user interface objects built, the XML source
view window can be opened on screen, awaiting user interaction.

6.2. PDF to XML highlighting
To update the XML view when the user highlights a COG
requires the plug-in to be able to track the mouse location within
the PDF window. Fortunately, the existing COG Manipulator
[1,13] tool could be modified, using the Observer pattern, to allow
the Acrobat plug-in to be notified whenever a COG is selected.
The visualization plug-in can then register itself with the modified
COG Manipulator to receive notifications, when a COG is
highlighted. Details of the highlighted COG are passed over as
part of the notification.

When a COG is highlighted, the plug-in looks at the GSBI
embedded inside the COG. This contains an XPath that points at
the XML node that was eventually transformed into this piece of
the document.

This XPath is used to traverse the DOM representation of the
source XML document. The decorated DOMElement object at
the other end of this XPath contains a pointer to the user interface
component that represents this node and we can then update the
XML window to display this node.

6.3. XML to PDF highlighting
At first glance, the implementation of the reverse side of the
visualizer, i.e. letting users click on the XML nodes to update the
PDF view seems simple. However, it soon becomes clear that the
problem is more involved than is first apparent.

Firstly, the source nodes are, obviously, not tagged with details of
COGs that they generated. This in itself is not a problem because
it is simple enough to iterate over all the COGs in the PDF, and to
fill in the identifiers for each COG within the decorated nodes in
the DOM. However, this information alone is not enough because
the COGs have no idea whereabouts in the document they are to
be rendered and so it is necessary to include extra details
concerning which page the COG is to be drawn on. The result is
that each of our decorated DOM objects contains details of the
COG they produced as well as the UI objects that draw them.

While there is usually a one-to-one mapping of COGs to source
XML nodes, the opposite is not true. For example, more than one
COG may be generated if some logical text block happens to split
over a page or column break. And this is not the only
circumstance that can cause a single XML source node to generate
more than one COG; an obvious further example would be the
generation of a Table of Contents. Here, the section headings not
only generate COGs during the normal flow of the document, but
they also generate a second COG at the beginning of the
document representing the accumulated table of contents.

This occasional lack of one-to-one correspondence does not
complicate the programmatic operation of the plugin; it simply
builds up a collection of generated COGs, rather than just a single
COG, when iterating over the document. However, it does
complicate the user interface and poses the question of how the
user should be presented with the fact that two or more COGs
have been generated for some given single XML node.

A naïve solution would be to just pick one generated COG and
display it, ignoring the others. This is not necessarily as naïve as it
sounds. In the case of most documents, there is one COG that can
be considered the default — in the case of a section heading; this
would be the one that appears within the normal document
reading order and not the one in the table of contents. The

question is how to determine programmatically which COG that
is. One method that is currently being tested is too look at the
location of the nodes before and after the node in a depth-first
search of the tree and to chose the location that is closest to them.

It should also be noted that some XML source nodes do not
generate any COGs at all. An example of this would be a tag that
denotes that some text should be emphasised (e.g. by
emboldening or italicizing it). This node would be subsumed into
its parent node’s COG. If these nodes are selected in the XML
source tree, then the plug-in highlights the COG associated with
its parent node.

6.4. Extended Visualization
As it stands, the current visualization tool, built on a document
component approach, might seem to be offering a very similar
display to the structural-tree-based viewer described in previous
work [10]. However, the underlying tagging and component
technologies of the present work enable us to develop more
powerful tools for extending the visualization experience. The
following sub-sections set out some of the possibilities.

6.4.1. Displaying leaf-node material
At present the XML source view displays only XML element
nodes; it makes no attempt to display the text-containing leaf
nodes. However, since COGs can be drawn independently of each
other (and of the page on which there are drawn) there is nothing
to stop us inserting the final COGs into the XML tree view as the
first child of the nodes that generate them. Work is currently
underway to add this feature to the visualizer.

6.4.2. Full Workflow visualization
Currently, only the source form and final form documents are
shown in the visualization, but it would be relatively
straightforward to show all the intermediate stages (assuming that
the appropriate intermediate files are kept on the system and have
not been deleted). In this case, multiple XML windows would be
displayed on screen, one for each XML document. Then as the
user moves around any of the documents, the other views would
be updated synchronously.

6.4.3. Transformation Visualization
Another useful view that could be provided is one that to show all
the transformations that were undergone to create a particular
piece of the final output. Here, working backwards from the right,
the user would see the sections of the XSLT transformations that
produced the given COG together with the input to that part of the
transformational chain (all reduced down to a view which shows
only the nodes involved). Then, to the left of this, would be the
transformations that produced this final stage — and so on, until
the relevant nodes in the initial source document are located.

This approach could be very useful as a debugging tool for
finding errors in a document workflow, because the user would be
able to see exactly which transformations were being used at
every stage.

6.4.4. Handling one-to-many relationships
We have already pointed out that a node in the initial source
document might produce more than one COG in the final PDF.
Work needs to be carried out to develop a method of illustrating
this one-to-many relationship to the user.

7. CONCLUSIONS AND FUTURE WORK
Throughout this paper the tagging information calculated and
stored in the various stages of the document workflow refers back
to particular nodes in the input, and in the intermediate XML files,
as well as to specific filenames. This is a potential source of
problems when modifications are made to the source document
after the final output file has been produced, since the XPath
references in the final PDF may no longer be accurate. A simple
method of solving the problem is to generate and store a hash of
the source file, along with all the other information, and to check
this hash when referring to the file in any way. However, there is
now much research being conducted into versioning of XML
files[14] and in the long run this may lead us to a more suitable
and elegant solution.

As discussed in section 4, the tools developed to modify the
DocBookXSL scripts are capable of modifying any XSLT script
that takes XML-based markup as its input and produces XML as
output. Therefore, an obvious extension to our work is to verify
that our tools and techniques truly do work on XML-based source
document types other than DocBook and also to find a way of
supporting non-XML input. A possible way of tackling this latter
problem is via IML[15] which has processors for a variety of non-
XML inputs that generate a common XML format which could
then be processed by our existing tools. Indeed, this present work
grew out of collaborations with the authors of IML at the
University of Bologna and further collaboration is envisaged.

We have already described an immediate use for our tools and
techniques in debugging document workflows and this leads on
very naturally to the quality checking of final PDF output,
provided it has been produced in COG form. If some ‘rogue’
element appears (or if some desired element fails to appear) then
an audit trail can be established for tracing how the desired
content was generated (or how it failed to be generated). We also
see a potential for using our annotators and visualizers as an aid to
teaching generalised XSLT transformations, and document
workflow techniques, to undergraduates.

8. ACKNOWLEDGMENTS
Thanks are due to Hewlett-Packard Labs (UK) and EPSRC for
supporting James Ollis’s PhD studentship.

9. REFERENCES

[1] Steven Bagley, David Brailsford, and Matthew Hardy,

“Creating reusable well-structured PDF as a sequence of
Component Object Graphic (COG) elements” in
Proceedings of the ACM Symposium on Document
Engineering (DocEng’03), pp. 58–67, ACM Press, 20–22
November 2003, Grenoble, France.

[2] John Lumley, Roger Gimson and Owen Rees, “A Framework
for Structure Layout and Function in Documents,” in
Proceedings of the ACM Symposium on Document
Engineering (DocEng’07), pp. 58–67, ACM Press, 20–22
November 2003, Grenoble, France.

[3] DocBook Technical Committee DocBook Schema
Specification, http://www.docbook.org/schemas/5x. 2008

[4] W3C, World Wide Web Consortium Extensible Stylesheet
Language (XSL) Version 1.1, http://www.w3.org/TR/xsl.
2006

http://www.docbook.org/schemas/5x.%202008

[5] Apache FOP (Formatted Objects Processor) 2008
http://xmlgraphics.apache.org/fop/

[6] Michael J. Eager. Introduction to the DWARF debugging
format February 2007. http://dwarfstd.org/Debugging using
DWARF.pdf

[7] DocBookXSL Stylesheets, 2008
http://docbook.sourceforge.net/

[8] Michael Kay, Saxon XSLT Processor.
http://saxon.sourceforge.net

[9] Adobe Systems Inc, PDF Reference (Third Edition; PDF
1.4), Addison Wesley.

[10] Matthew Hardy and David Brailsford, “Mapping and
Displaying Structural Transformations between XML and
PDF” in Proceedings of the ACM Symposium on Document
Engineering (DocEng’02), pp. 95–102, ACM Press, 8–9
November 2002, McLean Virginia, USA.

[11] Matthew Hardy, “The Mars Project — PDF in XML” in
Proceedings of the ACM Symposium on Document
Engineering (DocEng’07), pp. 161–170, ACM Press, 28–31
August 2007, Winnipeg, Manitoba, Canada.

[12] Erich Gamma et al, “Design Patterns: Elements of Reusable
Object-Oriented Software”, Addison-Wesley 1995. ISBN:0-
201-63361-1

[13] Steven Bagley and David Brailsford, “The COG Scrapbook”
in Proceedings of the ACM Symposium on Document
Engineering (DocEng’05), p. 31, ACM Press, 2–4 November
2005, Bristol, UK.

[14] S. Y. Chien, V. J. Tsotras and C. Zanolio. “XML document
versioning”. SIGMOD Rec. 30, 46–53. Sept. 2001

[15] Angelo Di Iorio, “Pattern-based Segmentation of Digital
Documents: Model and Implementation”, PhD Thesis.
University of Bologna

http://dwarfstd.org/Debugging%20using%20DWARF.pdf
http://dwarfstd.org/Debugging%20using%20DWARF.pdf
http://docbook.sourceforge.net/
http://saxon.sourceforge.net

	1. INTRODUCTION
	2. DOCUMENT WORKFLOWS
	TRACKING THE WORKFLOW
	Generational Side-Band Information

	4. XML-XML TRANSFORMATIONS
	5. XML-PDF TRANSFORMATIONS
	5.1. Tagging PDF
	5.1.1. Logical Structure
	5.1.2. Component-Object Graphic

	5.2. Modifying Apache FOP
	5.2.1. Layout Modifications
	5.2.2. PDF Code Generation

	6. VISUALIZATION
	6.1. Source XML view
	6.2. PDF to XML highlighting
	6.3. XML to PDF highlighting
	6.4. Extended Visualization
	6.4.1. Displaying leaf-node material
	6.4.2. Full Workflow visualization
	6.4.3. Transformation Visualization
	6.4.4. Handling one-to-many relationships

	7. CONCLUSIONS AND FUTURE WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

