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Abstract 

The comparison of classification accuracy statements has generally been based upon tests 

of difference or inequality when other scenarios and approaches may be more 

appropriate. Procedures for evaluating two scenarios with interest focused on the 

similarity in accuracy values, non-inferiority and equivalence, are outlined following a 

discussion of tests of difference (inequality). It is also suggested that the confidence 

interval of the difference in classification accuracy may be used as well as or instead of 

conventional hypothesis testing to reveal more information about the disparity in the 

classification accuracy values compared.  

 

 

1.  Introduction 

Classification accuracy statements are often compared in remote sensing research. Such 

comparisons often form the basis of studies that have sought, amongst other things, to 

evaluate image pre-processing methods (Song et al., 2001), classifiers (Mitrakis et al., 

2008; Ngigi et al., 2008) and impacts of sensor properties such as spatial and spectral 

resolution (Gao and Liu, 2008) on the ability to discriminate classes. The central focus of 
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such comparative analyses has been the magnitude of the difference in the accuracy 

values contained in the classification accuracy statements.  

 

Quantitative comparisons of accuracy have typically been achieved using popular 

hypothesis testing approaches based on tests of the statistical significance of the 

difference or inequality in the values observed. Studies have generally used either a 

popular approach for testing the statistical significance of a difference, such as the 

comparison of kappa coefficients (Congalton et al., 1983; Sha et al., 2008) or proportion 

of correctly allocated cases (Gao and Liu, 2008), or recently promoted approaches such 

as the McNemar test (Foody, 2004; De Leeuw et al., 2006; Demir and Ertürk, 2008). 

Most studies have focused on the difference in accuracy, irrespective of the direction of 

the difference, although one-sided hypothesis testing may be used to help studies with a 

directional component. Although popular, there are, however, sometimes problems with 

the use of statistical tests of difference (inequality). For example, the use of an 

inappropriate sample size of testing cases can be a major problem (Foody, 2009). If the 

sample size is too large, a comparative study may ascribe statistical significance to any 

non-zero difference in accuracy, even if the difference is trivially small and so not of a 

meaningful or important magnitude. Conversely, if the sample size is too small, the 

comparative evaluation may be lacking in power and so may not result in the detection of 

a large and meaningful difference. Additionally, the focus on the straightforward 

difference or inequality in accuracy values may not always be appropriate and the 

limitations of hypothesis testing based approaches should be recognised. 
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Although comparative tests focus on the difference in the magnitude of the accuracy 

values, the nature of the difference and test may vary greatly. In distinguishing between 

types of statistical test, the main concern in this paper is on the objective of study and 

hence the hypotheses evaluated. With the popular test for a difference (inequality), for 

example, the alternative to the null hypothesis evaluated is that the accuracy values are 

unequal or different. Other types of test, albeit based on differences in the magnitude of 

accuracy values, evaluate different hypotheses as a function of study objectives. 

Sometimes the objective of a study is not really focused on the detection of a difference 

(inequality) in accuracy but on an evaluation of the similarity in accuracy, a subtle but 

important distinction. The use of a statistical test of the difference (inequality) in such a 

study may have some value but would often be inappropriate. The use of such a test 

could, for example, show that a statistically significant difference existed, and so might 

be used to suggest that the accuracy statements that have been compared could not be 

considered similar. Alternatively, the test may lead to the conclusion that no significant 

difference exists. This result may, however, simply be a consequence of the test lacking 

sufficient power due to the use of a small sample (Hoenig and Heisey, 2001; Aberson, 

2002; Trout, 2007). Perhaps more importantly, non-significant results present a 

philosophical concern, with the failure to find a difference not being proof of similarity 

(Altman and Bland, 1995; Barker et al., 2002; Carlin and Doyle, 2002; Martinez-Abrain, 

2007). This is a major concern for studies that seek to evaluate similarity in accuracy 

values. 
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This brief paper aims to illustrate the statistical basis for a variety of comparative 

analyses. Specifically, the article addresses some issues in the statistical testing for three 

types of comparison. For clarity, tests will be named throughout in relation to the 

alternative hypothesis evaluated in the comparison. The discussion will show how 

hypothesis testing approaches may be used for each type of comparative analysis but, in 

response to limitations, will also promote the use of confidence intervals as a general 

basis for the comparison of accuracy values. The article draws on an extensive literature 

in other disciplines in the hope that it may be a step in the advancement of 

methodological practice in remote sensing. 

 

 

2.  Comparative tests 

This section will consider three types of comparative statistical testing: tests of difference 

(inequality), equivalence and non-inferiority. All three tests focus on the difference in the 

magnitude of the accuracy values compared but evaluate a dissimilar set of hypotheses. 

The discussion will first illustrate how each type of comparison may be undertaken 

within a conventional hypothesis testing framework before considering the potential of 

confidence intervals as a basic tool in classification comparison. Other types of 

comparative analyses, such as non-superiority testing, which may be of only rare use in 

remote sensing and which are generalisations of the scenarios outlined will not be 

discussed. Additionally, while sampling issues are important (Stehman, 1997; 2000) 

these will not be considered further so that the focus may be on the general nature of 
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comparative analyses. It is, however, assumed that the samples used were acquired by 

simple random sampling and that the estimates derived are unbiased.  

 

Statistical tests of the difference (inequality) in accuracy values are commonly 

encountered in remote sensing. For example, many studies have sought to evaluate a set 

of classifiers and have done so on the basis of the accuracy with which they can classify 

data (De Leeuw et al., 2006). Using this common application as a basis for discussion, 

this section outlines key issues in statistical comparisons. These typically involve 

comparing the accuracy of, say, a new classifier against that derived from the application 

of a standard classifier. Thus, for instance, one of the most widely promoted means to 

compare classification accuracy statements in remote sensing is through the comparison 

of kappa coefficients. With this approach, the statistical significance of the difference 

between two independent kappa coefficients is evaluated through the calculation of a z 

value with 
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associated variances (Congalton et al., 1983; Rosenfield and Fitzpatrick-Lins, 1986). 

Assuming a normal distribution, a difference is taken to be statistically significant  if 

|z|>zα/2 where zα/2 is taken to represent the value cutting off the proportion α/2 in the 

standard normal curve’s upper tail and may be determined from statistical tables. Thus, if 
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α=0.05 and equation 1 yielded z>1.96 or z<-1.96 the difference would be declared 

significant at the 5% significance level. The approach may also be adapted for the 

situation in which related rather than independent samples have been used (McKenzie et 

al., 1996; Donner et al., 2000; Foody, 2004). There are, however, many concerns about 

the use and interpretation of the kappa coefficient (Stehman, 1997; Pontius and Millones, 

2008; Foody, 2008) which may make it preferable to sometimes express accuracy as the 

proportion of correctly allocated cases and base the comparison on a test of the difference 

between proportions.  

 

When comparing proportions, the aim is generally to make an inference about the 

population proportions, P0 and P1, from the proportions estimated from samples, p0 and 

p1. The statistical significance of a difference between two proportions may be evaluated 

through 
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 with x0 and x1 representing the number of correctly allocated cases in 

the classifications of samples of size n0 and n1 respectively (Fleiss et al., 2003).  It may 

sometimes be appropriate to apply a correction for continuity. This involves making a 

minor adjustment to the numerator of equation 2 with the test then based on 
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Continuity correction only has a major impact on tests when the sample sizes are small 

and is not considered further in this paper. Further discussion on continuity correction, 

including formulae for a variety of scenarios, is given by Fleiss et al. (2003).  

 

Comparative studies founded on equations 1-3 (or similar) are based on conventional 

statistical hypothesis testing. In this, two competing hypotheses are evaluated. These are 

the null hypothesis (Ho) which states that there is no difference in accuracy (i.e. P0-P1=0 

or P0=P1) and an alternative hypothesis (H1) that the accuracy values differ (i.e. P1≠P0); a 

directional hypothesis may sometimes be suitable and stated. The derived z value is 

interpreted in the same way as for the comparison of kappa coefficients, with the null 

hypothesis rejected and a difference viewed as being statistically significant if |z| >zα/2. 

Within a deductive scientific methodology based on the principle of falsification, it is the 

rejection of the null hypothesis that is particularly useful, showing that the difference is 

not the value stated in the null hypothesis. Rejection of the null hypothesis, of no 

difference in accuracy, is central to the declaration that a difference exists. 

 

A popular refinement of the above approaches is to report also the ‘p-value’ for the 

outcome of a test. The latter is the probability of obtaining the derived test statistic or one 

more extreme if the null hypothsis is true; the ‘p-value’ is a standard expression and 
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should not be confused with symbols used in this paper to indicate proportions. As the 

magnitude of the ‘p-value’ is directly related to the plausibility of the null hypothesis 

(Carlin and Doyle, 2002), it provides more detail on the outcome of a test than a 

dichotomous decision based on a single threshold level of probability.  

 

In planning a study that involves a test of the significance of a difference in proportions 

the analyst should define three attributes or conditions. These conditions are the 

significance level (α), the power of the test (1-β) and the minimum meaningful difference 

in accuracy or effect size. The α and β define the likelihood of making a type I error 

(rejecting Ho when it is true) and a type II error (failing to reject Ho when it is false) 

respectively. The effect size should be specified by the analyst for the task at-hand. With 

these three conditions defined at the beginning of an analysis it may be possible to define 

the required sample size for the construction of a testing set to meet the objectives of a 

study (Fleiss et al., 2003; Foody, 2009). While such an approach may often be useful and 

help ensure that a study is designed to meet its objectives it must be noted that sometimes 

studies are not focused on determining if a difference in accuracy exists but whether one 

is, essentially, absent or insignificantly small. While the remainder of this section is 

focused on tests with an alternative aim to difference (inequality) testing, the design 

considerations still require attention. 

 

Often the desire in remote sensing studies is not to test for a difference (inequality) in 

accuracy but to evaluate the similarity in accuracy values. Two scenarios are commonly 

encountered. First, some studies aim to assess non-inferiority. That is, the study might 
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seek to show that one classification is not substantially worse, in terms of accuracy, than 

another. For example, the aim might be to determine if a new method yields a 

classification that is not substantially worse than that from a standard method. This might 

be the case when some simplifying approach or approximation is under evaluation. For 

example, in testing a fast approximation of the maximum likelihood classification (Settle 

and Briggs, 1987) or a knowledge-based procedure for training site selection (Foody and 

Mathur, 2004; Mathur and Foody, 2008) or perhaps in some feature reduction analyses 

(Demir and Ertürk, 2008; Wang and Li, 2008) the aim is commonly to maintain the level 

of accuracy derived from some standard approach. The second scenario of testing in 

relation to evaluations of similarity relates to studies that aim to evaluate equivalence. 

That is, a study that seeks to show that the two classifications are comparable or similar 

in terms of their accuracy. This might be the case when the aim is to compare 

classifications derived using imagery acquired by different versions of the same sensing 

system. Given concerns on sensor data continuity (Wulder et al., 2008) one might wish to 

ensure that classifications of a site derived from old and new versions of a sensor are of 

comparable accuracy. In such a situation, the aim is to show the accuracy values are 

similar. That is, the accuracy values derived may differ slightly, and in either direction, 

but not by an appreciable or important amount. Both non-inferiority and equivalence may 

be evaluated using a standard hypothesis testing approach similar to that used in testing 

for a difference (inequality) in accuracy. This can be readily illustrated for comparative 

analyses of proportions. 
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Key features of both of the non-inferiority and equivalence testing scenarios are the 

specification of a degree of indifference, a tolerable level of a difference in accuracy, and 

a change in the hypotheses tested. In relation to the latter, it is important to note the 

change in emphasis given the desire to work within a scientific paradigm based on the 

principle of falsification. With non-inferiority and equivalence testing there is a 

transposition of what might normally be expected to be the null and alternative 

hypotheses (Fleiss et al., 2003). For example, with equivalence testing, the burden of 

proof is reversed from the normal situation with testing for a difference and recognises 

that it is insufficient to fail to show a difference as the researcher must be highly 

confident that a large difference does not exist (Hoenig and Heissey, 2001). Critically, the 

null hypothesis stated is no longer one of no difference but is instead one of a large 

difference. Thus the null hypothesis is, essentially, that the accuracy values differ by a 

magnitude larger than a tolerably small amount while the alternative hypothesis is one of 

similarity (Barker et al., 2002; Colegrave and Ruxton, 2003). The resulting test is one 

that can provide proof of similarity. Although researchers are often conditioned to use a 

null hypothesis of no difference it is essential to note that there is choice over the value 

stated in the null hypothesis and this is central to both non-inferiority and equivalence 

testing (Hoenig and Heisey, 2001).  Again it is important to remember that useful 

scientific information is gained through the rejection of the null hypothesis and so a null 

hypothesis of no difference would be unhelpful in some studies. 

  

For a test of non-inferiority, the researcher needs to specify the limit of indifference. The 

latter is, essentially, a measure of largest reduction in accuracy that could be considered 
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to be unimportant. With this limit of indifference defined as ∆, if the two classifiers differ 

in accuracy by a value < ∆ then non-inferiority may be inferred. More formally, if Po is 

the proportion of correctly allocated cases observed from the standard method and P1 the 

proportion correct derived from the classifier being evaluated, the null hypothesis of the 

test, Ho, is P1≤Po-∆ (i.e. that P1 is inferior) and H1 is P1>Po-∆ (i.e. that that P1 is non-

inferior). Fleiss et al. (2003) show that the test itself is then based on the critical region 

z≥zα, where 
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Solving equation 5 for 
0P̂ allows the test based on equation 4 to be undertaken. Rejection 

of the null hypothesis provides evidence in support of the alternative hypothesis of non-

inferiority.  
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With a test of equivalence, a zone of indifference is specified around Po. Should accuracy 

values differ by an amount that lies within this zone they would be deemed to be of 

equivalent accuracy. The null hypothesis is that the accuracy values are not equivalent 

(i.e. that the accuracy values differ). The desire in an equivalence trial is, essentially, to 

reject this hypothesis in favour of the alternative hypothesis of equivalence. More 

formally, and assuming for simplicity a symmetrical zone of indifference |P1-Po|<∆, the 

hypotheses may be considered as a Ho of P1≤Po-∆ or P1≥Po+∆ and a H1 of |P1-Po|<∆. The 

Ho would be rejected when both one-sided components would be rejected. Fleiss et al. 

(2003) show that in this situation Ho is rejected when z’≥ zα and z’’≤ -zα where z’ is given 

by equation 4 and  z’’ is from 
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where 
1P̂  represents the maximum likelihood estimate for the proportion correct from 

classifier 1 when the difference between proportions is at the upper limit of indifference 

with P1-P0=∆ and satisfies 
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Solving equation 7 for 
1P̂ allows the test based on equation 6 to be undertaken 
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As before, it is the rejection of the null hypothesis that provides useful information, 

providing evidence in support of the view that the accuracy values are equivalent. As 

with tests of difference (inequality), both non-inferiority and equivalence testing are 

sensitive to sample size issues. An equivalence test based on a very small sample may, 

for example, commonly be expected to suggest equivalence but the result is of little value 

as the test is lacking in power (Tai and Lee, 1998). To help plan accuracy assessment 

programmes, equations for sample size selection may be used (e.g. Fleiss et al., 2003). 

 

Although widely used, the comparison of proportions by methods such as those outlined 

above is often only appropriate for use with data sets that may be considered to be 

independent. This is often not the case in remote sensing applications. Commonly, for 

example, the same testing set is used in comparative studies. Thus, for example, in 

studies evaluating a set of classifiers it is common for the same testing set to be used to 

aid like-for-like comparison. In such circumstances the assumption of independence that 

underlies the methods described above is unsatisfied and an alternative techniques should 

be used (Foody, 2004; De Leeuw, 2006). One such technique that may sometimes be 

appropriate as a test for the difference (inequality) of proportions is the McNemar test. 

Although the latter has been adopted in remote sensing studies as a tool for evaluating the 

significance of a difference (inequality) in accuracy when a common testing set has been 

used it, or closely related techniques, may also be used for tests of equivalence and non-

inferiority (Nam, 1997; Newcombe, 1998; Tango, 1998). However, rather than seek an 

alternative statistical test to use within a hypothesis testing framework it may be 

preferable to consider the use of an alternative approach for accuracy comparison which 
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is of broader applicability and conveys additional information. One attractive approach is 

to base comparative analyses on the confidence interval fitted to the estimated parameter. 

The latter has the potential to form a more general basis for classification accuracy 

comparison, whether in testing for difference (inequality), non-inferiority or equivalence. 

 

3. Confidence intervals 

One problem with the conventional hypothesis testing process is that it provides a basic 

dichotomous outcome in which the null hypothesis is either rejected or not. Although 

further information may be conveyed by the provision of a ‘p-value’ this is not always 

useful and is often mis-interpreted (Goodman, 1999; Di Stefano, 2004; Morgan et al., 

2005). One major concern, for example, is that a ‘p-value’ may highlight statistical 

significance but this need not relate to practical significance (Di Stefano, 2004; Morgan 

et al., 2005; Kay, 2007). Furthermore while rejecting a null hypothesis is scientifically 

useful and indicates that the value stated in the null hypothesis is unlikely to be observed 

in the population it gives no indication of the likely magnitude of the difference in 

accuracy that exists. That is, the ‘p-value’ conveys no information on the possible size of 

difference that may occur. Thus, for example, if a difference is determined to be 

significant the hypothesis testing approach only indicates what the effect size may not be 

(i.e. the difference is not the value in the null hypothesis) rather than what it may be. 

Interpretation is also difficult if the result is non-significant and may simply indicate that 

a study was underpowered (Hoenig and Heissey, 2001; Aberson, 2002; Trout, 2007; 

Foody, 2009). Since the ‘p-value’ indicates the probability of obtaining a result as or 

more extreme than the one obtained, under the assumption of the null hypothesis, it 
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relates to the risk of making a type I error (Goodman, 1999; Trout et al., 2007). The ‘p-

value’ does not provide information in relation to the risk of making a type II error which 

is a function of the power of the test undertaken. A more useful approach may be to base 

the comparative assessment of accuracies, whether seeking to evaluate non-inferiority, 

equivalence or difference (inequality), on confidence intervals fitted to the estimated 

difference. Confidence intervals may also be used in relation to a variety of scenarios and 

for results derived from use of both independent and related samples. 

 

The confidence interval provides a range of values within which the population parameter 

is likely to lie. Assuming a normal distribution, the general expression of the confidence 

interval is 

 

Estimate ± zα/2(SE)     (8) 

 

where SE is the standard error of the estimate and, if α=0.05, z=1.96. The provision of 

confidence limits to accompany classification accuracy statements has been encouraged 

(Stehman, 1997, 2000; Foody, 2008) but they may be particularly useful in comparative 

analyses. With the latter interest is focused on the confidence interval of the difference 

(inequality) in accuracy values. The confidence interval of the difference between two 

proportions is 

 

p1 - p0 ±  zα/2
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where 
01

SE pp 
 is the standard error of the difference between the estimated proportions. 

The latter may be viewed generally as 
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Note that the standard error of the difference in equation 10 differs from that represented 

in the denominator of a standard test for the difference between two proportions, such as 

that based on equation 2, since an assumption of common population proportions is made 

in the latter.  

 

The confidence interval derived from equation 9 is appropriate when the samples used 

were independent and could usefully accompany the outcome of a conventional 

hypothesis based test. If related samples have been used an alternative approach based on 

the McNemar test may be more appropriate. A confidence interval for the difference 

between related proportions to accompany the results of a McNemar test may be 

achieved following equation 8 using an appropriate estimate of the standard error, SEM 

(Lloyd, 1990; Newcombe, 1998; Tango, 1998; 1999). For example, one method for the 

calculation of the standard error is 
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where b and c represent the frequency of the discordant pairs (the cases for which the two 

classifiers compared differed in labelling, which lie in the off-diagonal elements of the 

2x2 confusion matrix used in the McNemar test) in the sample of size n (Newcombe, 

1998); although there are concerns with methods of estimating the confidence interval for 

use in association with a McNemar test (Lloyd, 1990; Newcombe, 1998). Confidence 

intervals may also be fitted for use in relation to other tests used in comparing 

classifications derived from remotely sensed data such as the receiver operating 

characteristics (ROC) curve (Kerekes, 2008). 

     

To facilitate appreciation of the value of confidence intervals in comparative analyses  

Figure 1 provides some illustrative scenarios in relation to difference (inequality) and 

equivalence testing. For scenarios I and II, the entire confidence interval lies outside the 

zone of indifference and, consequently, also does not span 0. In each of these cases, 

therefore, the analyst has evidence that the difference is statistically significant as well as 

evidence that the classifications evaluated are not equivalent. In addition, the confidence 

intervals give a guide to the range of possible differences that might be expected to occur 

and highlight the greater uncertainty of the estimated difference in scenario II as opposed 

to scenario I. With scenario III the confidence interval lies entirely within the zone of 

indifference providing evidence of equivalence. In addition, the confidence interval 

includes 0 and so gives evidence that suggests that the classifications compared do not 

differ significantly in accuracy. This differs slightly from scenario IV in which there is 

evidence of a statistically significant difference but also that the magnitude of this 

difference is small, lying within the zone of indifference and so providing evidence for 
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equivalence within the definition of indifference adopted. Finally, scenarios V and VI 

provide somewhat ambiguous evidence, especially with regard to equivalence. With 

scenario V there is evidence that a statistically significant difference exists, as the 

confidence interval does not cross 0, but part of it lies within the zone of indifference. 

With scenario VI the confidence interval is wide, with part lying inside the zone of 

indifference and spanning 0, and indicates that further study, perhaps with a larger 

sample, may be required to evaluate the disparity in accuracy values more fully. In each 

scenario, the confidence interval may be used to determine whether the null hypothesis 

specified in a test is rejected or not but also conveys information on the likely range of 

values in which the difference lies. Additionally, the definition of the zone of indifference 

is useful in providing context to an interpretation. For example, while the difference 

observed in scenario IV is statistically significant it is of no practical significance as less 

than ∆. 

 

The use of confidence intervals does not remove the problems associated with sample 

size and power that impact on hypothesis tests. For example, the width of the confidence 

interval will be large if the sample size is small. Indeed, confidence intervals and 

hypothesis testing are intimately linked (Daly, 1991; Thomas, 1997). The confidence 

interval may, however, provide a richer assessment to use either independently or in 

addition to the hypothesis testing based approaches. The confidence interval provides a 

simple summary of what the difference in classification accuracy might reasonably be. 

All of the values that lie within the confidence interval derived in an analysis are, for 

example, not-refuted by the analysis. It is, therefore, possible to appreciate how far the 
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population parameter value may deviate from the value specified in the null hypothesis 

(Hoenig and Heisey, 2001; Aberson, 2002). If, for example, the 95% confidence interval 

does not include the value identified in the null hypothesis (0 in the popular situation of 

difference (inequality) testing), the null hypothesis can be rejected at the 0.05 level of 

significance and its width illustrates the range of plausible effects sizes or differences that 

exists (Daly, 1991; Di Stefano, 2004). Since standard hypothesis testing does not indicate 

the size of the difference, considerable additional information is, therefore, conveyed to 

the analyst by the confidence interval.  

 

In conclusion, therefore, the common objectives for the comparison of accuracy values 

encountered in remote sensing may be met through the application of tests of difference 

(inequality) and similarity. While hypothesis test based approaches can be undertaken for 

each of the three scenarios of test considered in this paper and has attractions (e.g. ease of 

planning for sample size to satisfy project objectives) there are concerns which may be 

addressed through the use of confidence intervals. The latter can be used to derive the 

same dichotomous decision as a basic hypothesis test but also give valuable information 

on plausible effect sizes. The use of confidence intervals may also help differentiate 

statistical and practical significance. In many situations it may be useful to view 

confidence intervals as adding information to the outcome of a hypothesis test and so 

provision of both may be helpful to interpreting the results of a comparative study (Di 

Stefano, 2004; Kay, 2007; Trout et al., 2007). 
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4. Summary and conclusions 

Classification accuracy statements are commonly compared in remote sensing studies. 

Quantitative evaluations undertaken have generally focused on the statistical significance 

of the difference or inequality in accuracy values. There are, however, many scenarios in 

which this type of testing is inappropriate. In particular, with studies that are addressing 

similarities in accuracy it may be more appropriate to test for non-inferiority or for 

equivalence depending on the specific nature of the study. A key feature of these latter 

types of test is the use of a null hypothesis of the existence of a difference (as opposed to 

the widely used null hypothesis of no difference that is the basis of difference testing) 

which allows the test to provide evidence of similarity in accuracy values. One concern 

with all of the basic hypothesis testing approaches, however, is that they give only a 

binary output, indicating if the null hypothesis is rejected or not. Although this is often 

very useful, the testing does not convey any information on what the magnitude of the 

difference in accuracy may be, it only indicates what it is unlikely to be. A richer basis 

for classification comparisons may be provided by the interpretation of confidence 

intervals. The confidence interval provides a summary of the plausible sizes of the 

difference in accuracy that are supported by the data (Aberson, 2002; Colegrave and 

Ruxton, 2003; Trout et al., 2007). Thus the confidence interval provides a richer basis for 

interpretation and allows stronger conclusions to be drawn about the null hypothesis than 

standard hypothesis testing (Aberson, 2002; Di Stefano, 2004; Martinez-Abrain, 2007). 

Indeed, the confidence interval provides information well beyond the basic dichotomous 

decision from hypothesis testing, which may be helpful if the difference is significant or 

not. 
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Figure 1. Six scenarios to illustrate the interpretation of confidence intervals in relation to 

difference and equivalence testing based on the comparison of proportions. The 

horizontal axis shows the computed difference between two proportions on an arbitrary 

scale (-x, +x) centered on the point of no difference. For each scenario shown, the width 

of the arrow depicts the confidence interval at a desired level of significance (e.g. 95% 

level) which is centred on the observed difference in accuracy. Additionally, with each 

scenario it has been assumed that the same zone of indifference, highlighted in grey, 

applies. 

 

 

 

 

 


