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a  b  s  t  r  a c  t   
 
Biologically-inspired methods such as evolutionary algorithms and neural networks are  proving useful in the field of  information  fusion. Artificial  
immune systems (AISs)  are   a  biologically-inspired approach which take  inspiration from the biological immune system. Interestingly, recent  research 
has shown how AISs which use multi-level information  sources  as  input data can  be  used to build effective algo-rithms for realtime computer 
intrusion detection. This  research is based on biological information fusion mechanisms used by  the human immune  system and as  such might be  of  
interest to the information fusion community. The  aim of this paper is to present a summary of some of the biological information fusion mechanisms 
seen in the human immune system, and of how these mechanisms have been implemented as AISs. 
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1.  Introduction 

 
There is an  increasing interest within the field of multi-sensor 

data fusion in biologically-inspired methods such as evolutionary 
algorithms [27]  and neural networks [16].  The field of artificial im-  
mune systems (AISs) is an  emerging biologically-inspired method 
which builds systems based on algorithms inspired by the biolog- 
ical  immune system. AIS research has  provided a number of gen- 
eral purpose  techniques and algorithms which have successfully 
been applied to  a  range of  optimisation,  classification and data 
mining problems. As with evolutionary algorithms and neural net- 
works, AISs could also  provide useful solutions to optimisation and 
classification problems in multi-sensor data fusion. 

More interestingly though perhaps, recent  research in  
AISs [14,15,35,36] shows the importance of multi-level 
information in the  construction of AISs. New  models for  AISs are  
emerging that are  inspired by research in immunology into the 
role  of the innate immune system in overall immune system 
dynamics. These AISs, which incorporate mechanisms inspired 
by  both the innate and adaptive immune systems, are called 
second generation AISs. They stand in  contrast  to  first 
generation AISs, which are  inspired by adaptive immune  
system mechanisms only.   One  of  the  conse- quences of 
incorporating innate and adaptive mechanisms, as well  as one  of 
the defining characteristics of second generation AISs, is the need 
for a multi-level problem representation, and a multi-le- vel 
interaction of the components of the AIS with the problem [36]. 

As systems that integrate multi-level information sources, sec- 
ond   generation AISs share much in  common with multi-sensor 
data fusion systems. In this sense, researchers within the fields of 
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AISs  and multi-sensor data fusion have the  potential  to  benefit 
from each other’s findings. This paper focusses on  the integration 
of  multi-level  information in  AISs. The  first section gives  a  brief 
introduction to AISs, and is followed by a short overview of biolog- 
ical mechanisms of information fusion seen in the human immune 
system. An implementational framework which allows AISs to be 
built which model these mechanisms is then summarised. An algo- 
rithm inspired by  biological  information fusion seen in  the im-  
mune  system   is  then  presented,  along  with  results  from  a 
number of  experiments. This  paper concludes with  a  discussion 
of the role  of multi-level information sources in AISs. 

 
2.  Artificial immune systems 

 
The  field of artificial immune systems began in the early 1990s 

with a number of independent groups conducting research which 
used the biological immune system as inspiration for solutions to 
problems in  other domains. There are  several  general reviews of 
AIS research  [1,5,17], and a  number of  books including 
[6,8,32] covering the field. Large bibliographies have been collated 
by Das- gupta and Azeem [7] (over 600  journal and conference 
papers) and an  annual international  conference, ICARIS [30],   has   
been held since 2002. 

AISs can  be  broadly divided into two categories  based on  the 
mechanisms they implement: network-based models and popula- 
tion-based models [8], although this distinction is blurred as many 
hybrid models also  exist. The first of these categories refers to sys-  
tems that are  largely based  on  idiotypic networks. Idiotypic net- 
works   are     networks which model interactions between 
antibodies and antibodies as well  as between antibodies and anti- 
gens. Population-based models use  negative or clonal selection as 
the  method  of   generating  and  maintaining  a   population   of 
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detectors.   Generally, population-based   models   begin   with  the 
pseudo-random generation of a population of detectors. Negative 
selection refers to the removal of detectors which match instances 
in  a  training set.   Clonal   selection refers to  the  expansion 
and refinement of detectors which match instances. 

AISs have been built for  a  wide range of  application 
domains including document  classification, clustering, 
optimisation, fraud detection, and network- and host-based 
intrusion  detection. On benchmark datasets, AISs have been  
shown to  offer  comparable and in some cases better performance 
compared to existing statis- tical  and machine learning techniques. 
In particular, AISs may offer  advantages over  traditional 
approaches in problem domains such as  dynamic clustering and  
classification, where data are  continu- ously  gathered and 
incorporated into existing clusters or  classes, which  themselves  
change  over   time [33].  AISs  may also   offer  advantages over  
traditional algorithms in the classification of large static  datasets.  
Many standard classification techniques  are   not  amenable to  
parallelisation, whereas  distributed  immune-based classification 
algorithms have been developed [37],  allowing large amounts of 
data to be efficiently processed in parallel. 

In [17], Hart and Timmis assess the current state of AIS research. 
They  point to  the solid base of  research which now exists 
using AISs to  model the  biological immune  system, solve 
artificial or benchmark problems, and produce solutions to real-
world applica- tions. At the same time they  highlight the 
somewhat scattergun approach which has  been taken in the field to 
date, with naive met- aphors often applied to  problems that 
other  approaches have al- ready tackled with some  success. 
However, less  research exists that  addresses what the 
necessary components and  organisation of AISs might be from a 
more general systems perspective. The ap-  proach to date has 
generally been one  of applying novel algorithms to existing 
problems. 

We  believe that the current state of AIS is understandable when 
one  considers the biological  basis on  which much of it  has  
been based: the mechanisms of the adaptive immune system. The 
focus of AIS research on the adaptive immune system has  been in 
some ways similar to  Artificial Intelligence’s early concentration 
on  the human mind and symbolic information processing. Only 
more re- cently has  the scope of AI been widened by the 
acknowledgement of intelligence in the wider sense of adaptive 
behaviour of organ- isms other than humans. 

Second generation AISs represent a new approach in AIS. They 
show that considering the biological immune system as composed 
of interacting innate and adaptive subsystems can  be  a profitable 
model of reality for AISs. A number of general design principles, de-  
tailed in [34],  can  be applied to build second generation AISs. Such 
AISs employ multi-level information sources as input data for pop- 
ulations of  artificial cells  or  agents, which process and  integrate 
this information. Such  AISs can   be  used  as  recognition, control 
and monitoring systems [14,15,35,36]. 

Of  particular interest  to   the  information fusion  community 
could be the mechanisms that are employed by the biological im-  
mune system to  combine information from a  variety of 
different sources. Essentially, the  innate  and  adaptive  immune  
systems sense different aspects of  the  state  of  an  organism, and 
interact to combine this information to provide a robust and 
accurate mon- itoring and control system. Our  research has 
developed a number of  biologically-inspired  algorithms, one  of  
which is  described in this paper, which combine information 
from a number of different sources. 

The  advantage of our  second generation AIS algorithms is that 
they are  able  to  correlate data  from multiple noisy sensors, 
even in the presence of unknown time delays. For example, in 
both bio- logical systems and computer systems there is often a 
time delay between an  event (such as  infection  by  a  biological 
or  computer virus, respectively) and the consequences of this 

event (malfunctioning of the biological or computer system). A 
priori we  do  not  know how long  this delay may be. If we knew 
this we  could prob- ably  use  an  existing static  machine learning 
algorithm. However, because such  information is  unavailable, we  
need a  new type of algorithm. 

Furthermore, noise is an  inherent factor in both biological sen- 
sors  and the sensors employed in our algorithms. If a single infor- 
mation source could be used to deduce accurate predictions, then 
there  would be  little point in  using other information  sources. 
However, no single indicator of system state has  been found to ex- 
ist in many biological and artificial systems. Instead, the data from 
each information source provides a noisy and partial picture of the 
overall state of the system, and information from a number of dif- 
ferent information sources needs to be combined to determine an 
accurate picture of the system. Our approach offers a way  of com- 
bining information from a  large  number of  noisy and inaccurate 
sensors. As sensing  is  population-based and distributed across a 
large  number of simple sensors, our  approach should  also  be  ro- 
bust against damage to individual sensors. 

 
 
3.  The  human immune system 

 
Biological  systems have provided the inspiration for a number 

of  novel biologically-inspired  computational approaches such as 
genetic algorithms and neural networks. The first step in building 
effective biologically-inspired systems is  an  understanding of the 
biological system from which  inspiration is  drawn. This  under- 
standing of how  biology solves the problems which nature poses 
can  then be  mapped to  artificial systems. In  this  section  current 
understanding of the human immune system, which forms the ba-  
sis and justification for the algorithms described in the remainder 
of this paper, is briefly reviewed. 

The  human body is an amazingly complex organism which can 
be viewed at a number of levels. Cells are  the basic structural and 
functional units of biological organisms. All together, humans have 

around 1014   cells.  Cells are  able  to interact with their 
environment and communicate and coordinate their behaviour 
with other cells  by synthesising and responding to a range of 
molecules. Molecules 
in   the immediate environment of  a  cell  are   sensed  by  receptor 
proteins which are  bound to  the outer  surface of  the cell.  These 
receptors can  be  thought of as locks,  which are  activated when a 
specific molecule, called the ligand  (or  key),  binds to the receptor. 
Activation of  the receptor initiates  changes in  the  metabolism 
and function of the cell. 

As well  as receiving signals via  receptors, cells also synthesise 
molecules that are  ligands for receptors on  other cells.  These sig- 
nalling molecules  can  either be  membrane-bound, in  which case 
direct (cognate) contact between cells  is  necessary  for  receptor 
activation, or they can  be released into the environment of the cell. 
Secreted molecules which mediate and regulate cell behaviour are  
called cytokines, and molecules which stimulate cell movement are  
called chemokines. Cells  within the body aggregate to  form tissue, 
such as  muscle or  connective tissue. Tissues themselves combine 
to form organs, such as the heart, brain, or thymus. Groups of these 
organs work together tightly to form systems, such as the cardio- 
vascular system or immune system [2,25]. 

Structurally, the immune system is  a  collection  of  cells,  mole- 
cules, tissue, organs and circulatory systems [20].  Immune system 
cells  are  produced  and  mature in  specialised areas of  the 
body called primary lymphoid organs such as the thymus or bone 
mar- row.  They are transported via the cardiovascular and 
lymphatic cir- culatory systems  to  peripheral tissues or  
specialised secondary lymphoid organs such as the lymph nodes or 
spleen. The body it- self  exists in  a  world which is  full  of  
microorganisms.  Many of these microorganisms  find  the body 
a  rich   resource of  energy 
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and material, and,  if left  unchecked, would consume  so  much 
of these  resources and  cause such  damage to   the body that  
its destruction and death would occur. Damage to  the body is 
called pathology,  and the damaging agent, such as  a  bacteria or  
virus,  a pathogen. Functionally, the human immune system is able  
to locate and remove many of these pathogens from the body and 
maintain the body in a healthy state for many years. 

This  view of the immune system we  have just described, one  of 
a multi-level dynamic system of cells, molecules, tissue, organs and 
circulatory systems, is important for AISs. It provides the basis for a 
representation of  second generation AISs as  systems of  autono- 
mous agents which exist within a distributed and compartmenta- 
lised environment. These agents interact with each other and their 
environment through models of receptors, ligands and intercellular 
signalling. This mechanism of interaction is key to the dynamics of 
the   biological   system  and  relies  on    multi-level   sources   
of information. 

 
3.1. Innate and adaptive immunity 

 
The  immune system is often divided into two distinct yet  inter- 

related subsystems: the innate  immune system and  adaptive im- 
mune  system.   The   innate  immune  system  is   characterised  as 
having  three roles: host defence in  the early  stages  of  
infection through non-specific recognition  of  a  pathogen, 
induction of  the adaptive immune response, and determination of 
the type of adap- tive response [18].  The main characteristics of 
adaptive immunity are specific recognition of  pathogen  leading to  
the generation of pathogen-specific long-term memory [20]. 

Differences between the innate and adaptive immune systems 
can  be seen on a number of levels and are  summarised in Table  1. 
The adaptive  immune system is  organised around two classes of 
cells: T cells and B cells, while the classes of cells of the innate immune 
system are much more numerous, including natural killer (NK) cells, 
dendritic cells (DCs), and macrophages. Cells within these classes are 
further subdivided into different types, such as naive or helper T cell, 
or immature, semimature or mature DC. 

The receptors of  innate system cells  are  entirely  germline-en- 
coded, in other words their structure is determined by the genome 
of  the cell   and has   a  fixed, genetically-determined  specificity. 
Adaptive immune system cells possess somatically generated vari- 
able-region receptors such as T and B cell receptors with varying 
specificities,  created by  a  complex process of gene segment rear- 
rangement  within the cell.  On  a  population level,  this leads to  a 
non-clonal distribution of receptors on innate immune system cells, 
meaning that all cells  of the same type have receptors with identi- 
cal specificities. Receptors on adaptive immune system cells,  how- 
ever,  are  distributed clonally  in that there are  subpopulations of a 
specific cell type (clones) which all possess receptors with identical 
specificities, but that generally, cells  of the same type have recep- 
tors with different specificities [18–20,28,29]. 

 
 
 

Table 1 

Differences between innate and adaptive immunity. 
 

Property Innate immune system Adaptive immune system 
 

Cells DC, NK, macrophage T cell, B cell 

Receptors Germline-encoded Encoded in gene segments 

No  somatic rearrangement Somatic rearrangement necessary 

Non-clonal distribution  Clonal distribution 

Recognition       Conserved molecular patterns Details of molecular structure 

The  variable-region receptors of the adaptive  immune 
system respond to features of pathogen structure, with B cell 
receptors di- rectly recognising peptide sequences on  pathogens, 
such as com- ponents  of   bacterial  cell    membranes,   and  T   
cell   receptors recognising peptide sequences.  These receptors 
are   selected for over   the lifetime of  the organism by  processes 
such as  clonal expansion, deletion or  anergy and are  under  
adaptive not  evolu- tionary pressure. The immune system utilises 
adaptation of vari- able-region  receptors to  keep pace with 
evolutionary more  rapid pathogens. This  involves processes of cell 
selection such as clonal expansion, deletion and anergy, which 
take several days [19,29]. 

Conversely, innate immune system receptors recognise a genet- 
ically-determined set of ligands under evolutionary pressure. One 
key group of innate receptors is the pattern recognition receptor 
superfamily which recognises evolutionary-conserved pathogen- 
associate molecular patterns. Pattern recognition receptors do not 
recognise a  specific  feature of a  specific pathogen as  variable-re- 
gion receptors do, but instead recognise common features or prod- 
ucts of an  entire class  of pathogens. Thus, innate immune system 
receptors are termed non-specific, while adaptive immune system 
receptors are termed specific. The Toll-like receptor  (TLR)  family of 
pattern recognition receptors is the best characterised, and most 
mammals have around 10 to 15 different TLRs. For example, TLR4 
is activated by lipopolysaccharide (LPS), a major component in the 
cell membrane of all gram-negative bacteria, TLR5 is activated by 
flagellin, a protein that forms the flagellum used by many classes 
of bacteria for locomotion, and TLR9 by unmethylated DNA found 
in DNA viruses [31]. 

Dendritic cells (DCs)  of  the innate immune system  lie  at the 
heart of  the generation of  peripheral  tolerance. Tolerance is  the 
ability of the immune system to react in a non-biodestructive man- 
ner to stimuli and has  long  been associated with adaptive immu- 
nity.  Tolerance is   usually  discussed  in   terms  of   apoptosis  or 
anergy of  self-reactive T and  B cells,  and was   initially proposed 
to  occur  centrally in  a  relatively short perinatal period, as  epito- 
mised in the clonal selection theory of Burnet [4]. While recent re- 
search  shows  the  continuing   importance  of   central  tolerance 
mechanism  [11,22],  it  is  now accepted that peripheral tolerance 
mechanisms  which operate to censor cells  throughout the lifetime 
of the host are  of equal importance. 

 
3.2. Discussion 

As outlined in the previous section, the biological immune sys-  
tem can be seen to carry out  information fusion in a particular man- 
ner.   The   cells   of  the   immune  system, through  their  different 
repertoires of receptors, sense different levels of information relat- 
ing to the state of the tissues of the body. Variable-region receptors 
on adaptive immune system cells sense structural features, i.e. the 
protein composition of cells in the tissue. Variable-region receptors 
can be produced to recognise any possible protein sequence, and the 
particular set  of proteins sequences that the immune system can 
recognise at any  one  time is determined by on-line learning mech- 
anisms over  the lifetime of the individual. On-line learning mecha- 
nisms are still an under-researched area in multi-sensor data fusion 
[38], and the biological immune system could provide an important 
source of inspiration for the development of such mechanisms. 

In  contrast, the germline-encoded receptors of innate immune 
system cells  respond to  behavioural as well  as structural features 
of  the cells  which  make  up  and inhabit the tissues of  the  
body. By  behavioural features of  cells  we  mean what the  cell  is  
doing 

Selected over evolutionary  Selected over lifetime  i.e. what proteins it is producing, as opposed to the proteins which 
the cell is composed of. Having access to behavioural features pro- 
vides immune system cells  with a  different level  of  information 
concerning the tissues of the body. Also, as detailed above, certain 
innate immune system  receptors respond to  protein sequences 
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that are  common to entire classes of pathogens. Thus, adaptive and 
innate immune system cells  together can be seen to sense informa- 
tion at several different levels: the proteins that structure individ- 
ual   cells;  the proteins that  structure classes of  cells; and  the 
proteins that are  produced by cell. 

What is more, the biological immune system combines this mul- 
ti-level information in  a  decentralised  and distributed  manner, 
fusing the information from individual immune system cells. There 
is   no   centralised  controller  in   the   biological   immune  system. 
Decentralised and distributed data fusion has  a number of advanta- 
ges  over   centralised  fusion: robustness,  scalability,  survivability 
and modularity [10,24]. The biological immune system could pro- 
vide a rich source of inspiration in the development of 
decentralised and distributed information fusion systems. Multi-
agent informa- tion fusion systems such as [13,26] are currently 
an  active area of research. As well  as  the  different levels of 
information sensed by the immune system, its  overall 
organisation and the mechanisms of control and communication 
that exist could be used to develop more sophisticated multi-
agent information fusion systems. 

 
 

4. System overview 

 
The  aim  of this section is to summarise the implementation of 

libtissue, a prototype software system for building second gener- 
ation AISs and applying them to real-world problems. The libtis- 
sue software allows researchers to implement AISs as multi-agent 
systems and analyse the behaviour  of  these systems when 
they are applied to real-world problems. In particular, libtissue 
is de- signed to allow researchers to implement second generation 
AISs. 

The  libtissue system has  a client/server architecture as pic-  
tured in Fig. 1. An AIS is implemented as part of a libtissue ser- 
ver,  and  libtissue clients provide input data to  the  
algorithm and response mechanisms which change  the state of  
the moni- tored system. This client/server architecture separates 
data collec- tion   by   the  libtissue clients  from  data  
processing   by   the libtissue servers and  allows for  
relatively easy extensibility and testing of  algorithms on  new 
data sources. The  libtissue system is coded in C as a Linux  
shared library with client and ser- ver  APIs,  allowing new 
antigen and  signal sources to  be  easily added to libtissue 
servers through the use  of callbacks provided by  these  APIs. 
Because libtissue is  implemented as  a  library, algorithms can  
be  compiled and run on  other researchers’ ma- chines with no  
modification.  Clients and servers can  potentially run on  
separate  machines, for  example a  signal or  antigen client may in 
fact  be a remote network monitor. 

AISs  are   implemented within a  libtissue  server  as  multi- 
agent  populations of  cells.   Cells  exist within  an   environment, 
called  a   tissue   compartment, along  with  other  cells,   antigen 
and   signals.  The   problem  to   which  the  algorithm   is   being 

applied  is  represented by  libtissue as  antigen  and  external 
signals. Clients in libtissue collect antigen and external signals 
and  pass them  to   the  libtissue server, which makes them 
available  to  the AISs. Cells  express various repertories  of  
recep- tors and producers which allow them to  interact with 
antigen and control other cells through signalling networks. 
Additionally, libtissue allows data on  implemented  
algorithms to  be  col- lected  and  logged, allowing   for   
experimental  analysis  of   the system. 

Building an  AIS using libtissue essentially involves creating 
a  tissue  compartment  or   compartments  and  populating these 
compartments with populations of different types of cell. Pseudo- 
code for  skeleton algorithm implemented in  libtissue is  given 
in  Algorithm 1.  First,  a  file  containing all  the parameters for  the 
algorithm is  read in.  Next,  the compartments and the maximum 
number of cells,  antigen and signals the  compartments can  store 
are created (initialise  tissue subroutine).  Different types of 
cells   are  then  initialised (create  cells subroutine).  They  are 
initialised with different sets of  producers and  receptors, which 
determine their input and output  capabilities, and the other cell 
types they can  interact  with. These cells   are   placed into tissue 
compartments as  they are  initialised. Usually, a  function to  log 
data periodically as  the AIS is  running, called a  probe, is  
started by  the user  (initialise  tissue probe  subroutine). 
The  probe is  started after the compartments have been  
initialised and pop- ulated with cells.  Finally, the  libtissue 
scheduler (step  tis- sue   subroutine)   is   called  periodically  
to   update  the  tissue compartments and the cells  they contain. 

 
Algorithm 1. Pseudocode for a typical libtissue algorithm. 
 

read parameter file 
call initialise tissue 
call  create cells 
call  initialise tissue probe 
for  ever do 

call  step tissue 
sleep for cell_update_rate 

end for 
subroutine initialise tissue do 

# max_cells, max_antigen, max_cytokines 
create tissue compartment to store cells,  antigen and signals 
start tissue client thread 

end subroutine 
subroutine create cells  do 

# create num_cells cells 
for  each cell  do 

create cell  according to cell-specific parameters 
set cell  cycle  callback # cell_cycle_callback 
place cell  at a random location in tissue compartment 

end for 
end subroutine 

monitored hosts libtissue clients libtissue server 

compartment 
subroutine initialise tissue probe do 

set tissue probe callback for tissue probe # probe_callback 
processes 

 
 

operating 
system 

 
 

networking 
 
 

data source 

antigen 

response 

signal 

 

data representation 

antigen store 

cells 

signal store 

 
 
AIS algorithm 

set time interval for tissue probe # probe_rate 
start tissue probe thread 

end subroutine 
subroutine cell  cycle  callback # cell_cycle_callback do 

process input from receptors and set  producers accordingly 
end subroutine 
subroutine tissue probe callback # probe_callback do 

# algorithm-specific data logging routine 
write  algorithm-specific data to log file 

Fig.   1.  The  architecture of  libtissue.  Clients in  libtissue monitor a host 

and provide input  data to a libtissue server and AIS algorithm.  Clients also 

allow algorithms to change the state of the monitored host. 

end subroutine  
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5.  Process anomaly detection 

 
We  have used libtissue to implement several second gener- 

ation AISs that are  used for  dynamic  anomaly detection. One  
of these AISs will  be  described shortly, but first, in  this section, 
we discuss the nature of the specific problem domain, intrusion 
detec- tion, on  which we  have tested our AISs. 

Intrusion detection systems are  designed to  identify  and 
pre- vent the misuse of individual computers and networks of 
comput- ers  [21].  Such  systems can  be  classified, based upon 
the analysis approach they  employ, as  either misuse detection  
or  anomaly detection systems [9].  Misuse  detection  examines 
network and system activity for known misuses, usually through 
some form of pattern-matching algorithm. In  contrast, anomaly  
detection sys-  tems base their decisions on a profile of normal 
network or system behaviour, often constructed using statistical or 
machine learning techniques. 

Each   of  these  two approaches offers its  own  strengths  and 
weaknesses.  Misuse-based  systems   generally  have  quite  low  
false  positive rates but are  unable to  identify novel or obfuscated 
attacks,  leading to  high false  negative rates. Anomaly-based  sys-  
tems, on  the other hand, are  able  to  detect novel attacks but cur- 
rently produce a  large  number of  false  positives [3].  This  
stems from the  inability of  current anomaly-based techniques 
to  cope adequately with the fact   that in  the real  world 
normal, legiti- mate computer network and  system  usage 
changes over   time, meaning that  any profile of  normal 
behaviour also  needs to  be dynamic. 

Our   work is  aimed at  developing an  anomaly-based intru- 
sion   detection  system  which   is   able    to   cope  with  
changing patterns  of  normal  behaviour. An  open problem with 
such  sys- tems is  the reduction of  false   positive rates  while 
maintaining a high true positive rate [3].  Biological immune  
systems, which have  to   adapt  to  changing  conditions over   the  
lifetime of  an organism,   are     an     important    source   of    
inspiration   when attempting to  building artificial  systems with 
the same proper- ties.   Such   systems   are   able   to   identify 
effectively anomalous events  even though the normal state of  
the organism  changes considerably   as    a    result   of    
environmental   conditions   and ageing. 

A   number  of   intrusion  detection  systems  have   been  
built around monitoring running processes to detect intrusions, 
termed process anomaly  detection.  In  general, these collect 
information about a running process from a variety of sources, 
including from log files  created by the process, or from other 
information gathered from the operating system. The idea is that 
by observing what the process is currently doing, for  example by  
looking  at its  log  files, we  can  tell  whether the process is 
behaving normally or has  been subverted by an  attack. 

While log files  are  an  obvious starting point for  such systems, 
and are  still   an  important  component  in  a  holistic security ap-  
proach,  attacks  may not  cause any  logging to  take place,  and 
so evade  detection.  Because of  this, there  has  been a  
substantial amount of  research into other  data sources, usually 
collected by the operating  system. Of these, system calls  
(syscalls) have been the most favoured approach. Syscalls are  a  
low-level  mechanism by  which applications request system 
services such as peripheral I/O or memory allocation from an  
operating system. As a process runs it cannot usually directly 
access memory or hardware devices. Instead, the operating 
system  manages these resources and pro- vides a  set  of  
functions, called syscalls, which processes can  call to access 
these resources. 

Furthermore,  recent  research  [12,39] suggests   that   
syscalls can  be  combined with other sources  of  information to  
increase 

Table 2 

Statistics  for  the six  rpc.statd datasets gathered.  For each monitored session, 

the table lists the total duration of the session (in  seconds), the total number of 

antigen (i.e.  syscalls) collected, the  maximum number of  antigen observed per  

second, the number of signals monitored, and the total number of signals collected. 
 
Session Total time Total antigen Max rate Num signals Total signals

success1 55 1739 1102 2 474
success2 36 1743 790 2 316

failure1 54 518 405 2 461

failure2 68 495 405 2 590

normal1 38 434 405 2 334

normal2 104 450 405 2 908

 
 
 
the detection capabilities of syscall-based anomaly detection sys- 
tems. In  this respect, there is  a  convergence between intrusion 
detection and  multi-sensor data fusion research. Our  work is  fo- 
cussed  on   developing   immune-inspired algorithms   which  use  
syscalls  combined  with  resource   usage   statistics  to   decrease 
the false   positive rate  of  anomaly  detection  systems.  Resource 
usage  statistics are   indicators of  process behaviour  gathered at 
runtime, such as  CPU, memory or  file  usage indicators. One  of 
the important properties  of  second generation AISs is  their use  
of multiple input data sources which reflect behaviour at a num- 
ber  of levels. Our  idea is  that resource usage  statistics and 
other information provided by  the  operating system can  be  
combined with  syscall  information  to   provide these multiple 
input data sources for  second generation AISs. In  such AISs,  
syscalls and re- source usage statistics form the  antigen  and  
external  signals, respectively. 

Data   were collected on  the behaviour of  a  number  of  
servers under a  range of normal and  attack usage. In  this paper 
we  em- ploy  a  dataset  generated by  monitoring an  RPC 
(Remote Proce- dure Call)  statd  server. Such   a  server is  used  
by  network file systems to  determine when a  computer has  
rebooted. The  server was monitored  under normal and attack 
conditions, and syscalls and two resource usage statistics (CPU 
and  memory  usage) were gathered  to   provide  sources   of   
antigen  and  external  signals, respectively.  Statistics for  the six  
rpc.statd sessions are  given in Table  2. The dataset is available 
online [23]  and more informa- tion is  given in  [34]. 

 
6. The twocell algorithm 

 
In   this section a  second generation AIS,  twocell,  that was  

implemented using libtissue is described. This algorithm utilis- es 
several important properties of second generation AISs, such as 
multiple cell  types, multi-level input signals and  internal signals, 
and   shows   how   these    properties    can    be    implemented   in 
libtissue. 

The  twocell algorithm is a second generation AIS, implement- 
ing aspects of biological innate and adaptive immunity. In particu- 
lar,  twocell models innate immune system dendritic cells  
(DCs) and adaptive immune system T cells.  The cells  in twocell, 
shown schematically in Fig. 2, are of two types, labelled Type 1 and 
Type 2, and each type has  different receptor and producer 
repertories. Pseudocode for twocell is given in Algorithm 2. 
Receptors allow cells to sense information from different sources. 
Antigen receptors allow structural information about the problem 
to  be  sensed and cytokine receptors allow behavioural 
information  to  be  sensed. Each cell type has  a different cell cycle 
callback which determines how the information received through 
its  receptors is  integrated. This  information in  turn determines 
the function of  the  cell  and the signals it produces. 
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Algorithm 2. Pseudocode for the twocell algorithm. 
 

subroutine dc cell cycle  callback # type 1 cell 
if signal level  in tissue compartment has  increased then 

for  all antigen producers # num_antigen_producers_1 do  
set action time of antigen producer to 

antigen_producer_action_time 
end for 

end if 
ifsignal level  in tissue compartment has  decreased bf then 

for  all antigen producers bf do 
set action time of antigen producer to 50% of current action 

time 
end for 

end if 
end subroutine 
subroutine tc cell  cycle  callback # type 2 cell  bf do 

if cell  iterations >¼ cell_lifespan_2 bf then 
replace cell  with a new tc 
return 

end if 
for  all vr receptors # num_vr_receptors_2 bf do 

if vr receptor activated then 
write matched antigen to log file 

end if 
end for 

end subroutine 
 
 

Type  1 cells  are  designed to  emulate two key functions of bio- 
logical DCs: antigen and signal processing. For antigen processing, 
each Type  1  cell  is equipped with a number of antigen 
receptors and  producers. Antigen is  collected by  Type  1  cells  
using antigen receptors and presented to  Type  2  cells  using 
antigen producers. This  allows Type  1  cells  to  aggregate antigen 
into temporally-re- lated groups.  A cytokine receptor allows 
Type  1  cells  to  respond to the value of a signal in the tissue 
compartment. 

Type  2 cells  emulate three of the functions of biological T cells: 
cellular  binding, antigen  matching  and antigen response. Each 
Type 2 cell has a number of cell receptors specific for Type  1 cells, 
VR receptors to  match antigen, and a response producer which is 
triggered when antigen is  matched. Type  2  cells   also   
maintain one  internal cytokine, an integer which is incremented 
every time a match between an  antigen producer and VR  
receptor occurs. If the value of  this cytokine is  still  zero,   that is  
no  match has  oc- curred, after a  certain number of cycles then 
the values of all  of the VR receptor locks  on  the cell  are  
randomised. 

A tissue compartment is created and populated with a number 
of Type  1 and 2 cells.  Antigen and signals in the compartment are 

Table 3 

The  libtissue parameter settings used for  twocell. 

max_antigen 1000 

max_cytokines  0 

max_cells 100 

cell_update_rate (ls) 100,000 
antigen_multiplier  10 

num_cells  1 50 

num_antigen 1 100 

num_antigen_receptors 1  10 

num_antigen_producers 1  10 

antigen_producer_action_time  10 

num_cells  2 50 

cell_lifespan 2 100 

num_cell_receptors 2 2 

num_vr_receptors 2  20 

num_response_producers 2 1 

probe_rate (ls) 1,000,000 

 
 
set  by libtissue clients based on the syscalls a process is making 
and its CPU usage. Type 1 cells ingest antigen through their antigen 
receptors and present it on their antigen producers. The period for 
which the antigen is presented is determined by a signal read by a 
cytokine receptor on  these cells,  and  so  can  be  made dependant 
upon CPU usage. 

 
 
 
Table 4 

The  naive syscall policy and the average twocell policy generated from the normal1 

and normal2  datasets. The  first column lists the names and  numbers (in  brackets) 

of syscalls that are permitted in the naive policy. The  second column gives the 

number of  times each syscall appears  in  both datasets. The  third column gives 

the  mean number  of  times a  syscall appears in  a  twocell policy over 20  runs. 

The  fourth column gives the standard deviations of these means, and the fifth 

column gives the coefficient of variation. 

Syscall Frequency  Mean  sd  cv 

chdir(12)  2   0.07   0.26 371 

execve(11) 2  0.07 0.26 371 

personality(136) 2  0.07 0.34 485 

setsid(66) 2 0.07 0.34 485 

fork(2) 2  0.10 0.37 370 

write(4)  2 0.10 0.37 370 

send(309) 2 0.15 0.56 373 

time(13) 2 0.15 0.40 266 

fstat64(197) 2 0.17 0.52 305 

lseek(19) 2 0.17 0.42 247 

fsync(118) 2 0.25 0.80 365 

getrlimit(191) 2 0.28 0.67 320 

listen(304) 2 0.28 0.63 239 

select(142) 3 0.57 1.48 225 

gettimeofday(78) 4  0.50 0.85 276 

getsockname(306) 4 0.53 1.47 170 

_exit(1) 4  0.55 1.38 277 

uname(122) 4  0.75 1.91 250 

stat(106)  4  0.80 2.58 259 

connect(303) 5  1.60 2.48 254 

getdents(141)  8  0.20 0.73 322 
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mprotect(125)  8  0.47 1.30 185 

poll(168) 8  0.90 1.67 224 

sendto(311) 9  0.95 2.13 225 

recvfrom(312) 9  2.45 3.68 233 

rt_sigaction(174) 10 0.97 2.19 155 

getpid(20) 10 1.60 2.28 142 

fcntl(55) 12 1.18 2.76 268 

bind(302) 12 1.68 4.51 200 

munmap(91)  15  1.88 3.77 225 
producer receptor 

brk(45) 16  2.25 3.78 168 

fstat(108) 23  2.33 4.45 229 
Fig.    2.  The  two different cell types implemented  in twocell.  Type 1 cells 
ingest 
antigen through antigen receptors and display antigen on their surface via  antigen 

producers.  They also respond to an external signal  through  a cytokine 

receptor, which determines  the amount of  time antigen is  presented  for.  Type 2 

cells bind with Type 1 cells via  cell  receptors and then match antigen presented 

on  Type 1 cells with VR receptors. If a match occurs Type 2 cells produce an alert 

through their response producers. 

ioctl(54) 24   2.73   4.67 190 

socket(301) 25   3.10   4.97 150 

old_mmap(90) 27  1.90   4.29 171 

read(3) 27  2.25   5.17 160 

open(5) 30  5.95   7.75 130 

close(6) 557 19.43 27.03 139 
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Type   2  cells  attempt to  bind with Type  1  cells  via  their 

cell receptors. If bound, VR receptors on these cells  interact with 
anti- gen  producers on the bound Type 1 cell. If an exact match 
between a VR receptor lock  and antigen producer key  occurs, the 
response producer on Type 2 cells  produces a response, in this case  a 
log en-  try containing the value of  the  matched receptor and 
indicating that the syscall is permitted. 

 
7.  twocell experiments 

 
The   behaviour of  twocell was   examined in  an  number of 

experiments using the rpc.statd dataset, described in Section 5 
above. The  first  experiment looks at a  number of twocell  
runs, while the second takes one   run and examines it  more  
closely. 

The  third evaluates the performance of a syscall policy generated 
by  twocell.  During these  experiments, to  more clearly under- 
stand the dynamics of twocell, the cytokine receptor on  Type 1 
cells  is  disabled, thus making twocell  unresponsive to  the 
CPU usage external signal. The final experiment returns to the 
question of signals  and compares the effect the addition of the 
signal,  i.e. CPU usage, has  on the dynamics of twocell. The 
parameters given in Table 3 were used for all experiments, which 
were carried out  on a 2 GHz AMD64 Turion laptop running Debian 
Linux. Runs used on average around 1%, and never more than 3%, 
of the available CPU resources. 

In experiments it is important to have a baseline with which to 
compare algorithmic performance. In terms of syscall policies such 
a baseline can be generated, and is here termed a naive policy. A na- 
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Fig.  3.  The  frequencies of the syscalls seen in the normal1 and normal2 datasets (a),  and the frequencies of the syscalls produced over the 40 runs of twocell (b)  on the 

same datasets. 
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ive  syscall policy is generated for a process, such as rpc.statd, by 
recording the syscalls it makes under normal usage, as in the nor- 
mal1 and normal2  datasets. A permit policy statement is then cre-  
ated  for  all  syscalls seen. This  baseline whitelist  approach is  not  
too  unrealistic when compared to  how current systems such as 
systrace  automatically generate a  policy. The  first column  of 
Table   4  shows the permitted  syscalls (syscall  number  given in 
brackets) in  such a  naive policy  generated from the normal1  
and normal2   datasets.   The   frequency with  which  each  syscall 
was observed, combined over  the two datasets, is given in the 
second column, as  this will  be  useful for  further analysis. Fig. 
3a  shows the syscall number plotted against its  frequency. 

Similarly to  a naive policy, one  way  in which twocell can  be 
used to generate a syscall policy is by running it with normal usage 
data during a training phase. During this phase, responses made by 
Type 2 cells  are  recorded. At the end of the training phase, a syscall 
policy is created by allowing only those syscalls responded to, and 
denying all others. Since  interactions in libtissue are  stochastic, 
looking at the average results over  a number of runs is necessary to 
understand  the  behaviour of  implemented  algorithms. A script 
starts the twocell server and then after 10 s starts the tcreplay 
client and replays a dataset in realtime. The twocell server con- 
tinues running for a further minute after replay had finished. This 
process is repeated 20 times for both the normal1 and normal2 data- 
sets, yielding 40 individual syscall policies. A single twocell pol-  
icy is then generated by allowing all syscalls which are  permitted 
in any  of the 40 individual policies. 

The  null  hypothesis ðH0 Þ  for this experiment is that there is no 
difference in  the response of twocell  for syscalls with 
different 

 
 
 

Table 5 

The    syscall policy generated  by  twocell  and the  frequency of  response for  

each syscall for  the normal2  dataset. 

Syscall Frequency 

gettimeofday(78) 1 

listen(304) 1 

send(309) 1 

select(142) 2 

poll(168) 3 

recvfrom(312) 8 

fcntl(55) 9 

fstat(108) 9 

open(5) 22 

close(6) 34 

 

 
 

400 

frequencies. The alternative hypothesis ðH1 Þ  is  that  twocell re- 
sponds differently depending on  the frequency of the syscall. The 
second column of Table 4 and Fig. 3b show the frequency of each 
syscall. The third column of Table  4 and Fig. 3b show the mean fre- 
quency with which each syscall appears in a twocell policy. We 
found that all of the 38  syscalls  that occur are  also  permitted in 
the  twocell policy. The Spearman rank correlation coefficient 
was  calculated in  the standard way  for  the distributions in  these 
two columns, and was  found to be q ¼ 0:9285, which is larger than 
the critical value for q at p < 0:001. Therefore, the null hypothesis 
ðH0 Þ   is  false,   and twocell  responses are  correlated  to  the fre-  
quency of the syscalls. Standard deviations, given in the fourth col- 
umn of Table 4, appear at first to  show an  increasing amount  of 
noise for  high-frequency  syscalls. However,  examination of  the 
coefficient of  variation for  each  syscall, given in  the last  column 
of Table 4, shows that there is in fact more variation in the frequen- 
cies of response to the lower frequency syscalls. 

The   previous experiment shows that the twocell algorithm 
has  the property of  responding  in  a  selective way   to  input 
data based on the frequency at which an  input data item occurs. 
In or- der to examine more closely how twocell responds, a 
single run of  the twocell  algorithm is  now analysed. 
Following the same general procedure as the previous 
experiment, twocell is run once with the normal2 dataset. The  
resulting  policy is  shown in Table  5, along with the frequencies 
with which the permitted sys-  calls  are responded to. During the 
run, the time at which a Type 2 cell produces a response to a 
particular syscall is also recorded, and the rate at which these 
responses occur is plotted in Fig. 4. The rate of incoming syscalls 
is also   plotted for comparison.  This figure clearly shows a 
correlation between the rate of incoming syscalls and the rate of 
responses produced by Type 2 cells.  Cells initially do not produce 
any response until syscalls occur, and then produce a burst of  
responses for  a  relatively short  period before settling down to  an  
unresponsive state once again. This is to be expected, as antigens 
enter and are   passed through twocell until their eventual 
destruction after being presented on Type 1 cell  antigen producers. 

For the same run, the individual receptors expressed by Type 2 
cells  can  also  be examined. Fig. 5 shows the repertoire of VR recep- 
tors expressed by all 50 Type 2 cells during the run. A libtissue 
probe periodically recorded the syscall values expressed by the VR 
receptors on all of the Type 2 cells.  A point is plotted in Fig. 5 if the 
syscall was being expressed during that period. Points for the ten 
syscalls that twocell responded to  (see  Table  5) are  highlighted. 
As expected, due to the limited lifespan of unmatched Type 2 cells, 
set   by  the  cell_lifespan parameter, and after which the cell’s  VR 
receptor is randomised, many bursts of around 10 s of expression 
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of VR receptors specific for  a  given syscall are  seen.  Once  a  VR 
receptor matches, and a  response  and permit policy is  therefore 
produced for that syscall, the cell  stops randomising its  receptors. 
This can be observed from the continuous horizontal lines in Fig. 5 
for the 10 highlighted syscalls. 

An example is now given of how the classification accuracy and 
error of a libtissue algorithm can be evaluated. In terms of sys-  
call  policies, a  particular  policy can  be  considered successful in 
relation to  the number of  normal syscalls it  permits versus  the 
number of attack syscalls it  denies.The  naive policy and average 
twocell policy generated from  datasets normal1  and normal2  in 
the first experiment above are  evaluated in such a way. 

The  number of syscalls both policies permit and deny when ap-  
plied to  the four  datasets in  the  attack and failed groups is  re- 
corded.  For   each   dataset, Table   6   shows the  percentages  of 
syscalls permitted by the naive and twocell policies. From  the re- 

Fig.      4.  The    rate  of   incoming antigen  and   corresponding cell response 
rates 

produced  by  twocell for  the  normal2 dataset. The  amount of incoming antigen 

is shown in orange (light grey), and the number of responses generated by Type 2 

cells in green (dark grey). 

sults, the tendency of the naive policy is to permit the vast majority 
of syscalls, whether attack related or not.  The twocell generated 
policy behaves much more selectively, denying a  slightly larger 



  without signal
with signal 

Dataset naive   twocell  
 Permitted (%) Denied (%)  Permitted (%) Denied (%)

success1 91 9 48 52

success2 91 9 48 52

failure1 100 0 70 30

failure2 100 0  69 31
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Fig.  6.  The  mean response rates produced by Type 2 cells of the twocell algorithm 

with and without a signal for  20 runs  on the  success2 dataset. 

 
proportion of syscalls in the success1 and success2 datasets than it 
permits. For the failure1 and failure2 datasets the converse is true. 

The  previous experiments have all used the twocell algorithm 
with the cytokine receptors of Type 1 cells  disabled. This was  nec- 
essary to  gain  an  initial understanding of  the dynamics of  two- 
cell. This  final experiment now examines how the addition of a 
context signal changes the dynamics of the algorithm. The hypoth- 
esis  for this experiment is that the addition of a context signal to 
twocell  does not  change the response in  terms of  Type  2  cells 
(the null   hypothesis H0 ).  The  alternative  hypothesis ðH1 Þ   is  
that the addition of a context signals changes the response of 
twocell in terms of Type  2 cells. 

When enabled, the cytokine receptor on  a Type  1 cell  controls 
the action_time  parameter of antigen producers on these cells as fol- 
lows. The  action_time  parameter is  initialised to  a value of 100.  
If 
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Fig.  5.  The  VR receptor repertoire expressed by Type 2 cells generated by  twocell 

for  the normal2 dataset. An orange (light grey) point is plotted for the 

corresponding syscall whenever a Type 2 cell with a VR receptor specific for  the 

syscall is present. Green (dark grey) points indicate that the Type 2 cell also 

produced a response to the syscall. 

 
 
 
 

Table 6 

Performance  of  a  naive policy and a  twocell policy  generated from the normal2 

dataset. The  naive  policy permits the majority of  syscalls in  all  four  datasets, 

and denies only a  small number  of  syscalls. For  both of  the success datasets,  

twocell 

 
twocell permits around two thirds of syscalls, and denies one third. 

there is no change in the signal, CPU usage in this case, then the ac- 
tion time stays the same. If CPU usage  has  decreased, the 
action time is reduced by 50%, and if it has  increased, the action 
time is reset to 100. The twocell algorithm with its cytokine 
receptor en-  abled is run 20  times on  the success2 dataset and the 
responses it produces are  recorded. For a fair comparison, the mean 
action time observed  on  antigen producers over  all  of the runs, 
28.57 in  this case,  is  calculated and the twocell algorithm  
without signals is run 20 times on the same dataset with the 
action time of its  anti- gen  producers set  to 29. 

Fig. 6 shows bspline curves fitted to the mean response rates of 
twocell with and without a signal over  the 20  runs. The  results 
show that the  response  time of  twocell  with a  signal is  much 
more tightly controlled, with responses starting and dropping off 
more rapidly and lasting for a shorter duration in total. The Spear- 
man rank correlation  coefficient was   calculated in  the standard 
way  for  the distributions of the response rates with and  
without 
a signal. A value of q ¼ 0:9076 was  obtained, which is larger than 

 
therefore false  and there is a significant change in Type 2 cell  re- 
sponses when a context signal is added to twocell. This can be ex- 
plained in  light of  the incoming data, and from the action of 
the cytokine receptor, which causes a sudden rise  and quick 
decreases in the action time of the antigen producers on Type 1 cells 
based on 
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8.  Conclusions 

 
This  paper has  shown how multi-level data fusion mechanisms 

seen in  the biological immune system  can  be  used to  build 
AISs. These AISs are represented as populations of autonomous 
agents. This  representation works well  in  that it  is  fairly  
straightforward to transfer biological experimental models of the 
immune system into AISs. The use  of multi-level information 
sources in these AISs shows how a real-world problem can  be 
framed to reflect the envi- ronment of the biological immune 
system seen as a combination of both the innate and the  adaptive 
immune systems. This  problem representation proved to be a good  
source of multi-level input data for  second generation AISs.  The  
provision of  signal and antigen receptors  by  libtissue was   
shown to  be  useful in  providing agents with access to  the 
sources of multi-level input data avail- able  from this problem 
representation. 

The  immune system provides a good  example of a parallel and 
distributed biological information fusion processes. Second gener- 
ation AISs modelling some  of these processes have been used to 
build anomaly detectors with low  false  positive rates [34].  Central 
to second generation AISs is the idea of a multi-level representa- 
tion of the problem as  the  environment of the AIS. Coupled with 
this  multi-level  problem representation is  the  representation of 
the AIS as  composed  of  populations of  agents of  multiple types. 
These  agents interact with each other and the  environment to 
establish a  homeostatic  balance of  cell  populations. The  
mecha- nisms of biological information fusion modelled by 
second gener- ation  AIS might also   prove useful in  multi-
sensor  information fusion. 
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