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Abstract 

Neuropathic pain can arise from lesions to peripheral or central nerve fibres leading to spontaneous 

action potential generation and a lowering of the nociceptive threshold. Clinically, neuropathic pain 

can manifest in many chronic disease states such as cancer, diabetes or multiple sclerosis (MS). The 

bioactive lipid, lysophosphatidic acid (LPA), via activation of its receptors (LPARs), is thought to 

play a central role in both triggering and maintaining neuropathic pain. In particular, following an 

acute nerve injury, the excitatory neurotransmitters glutamate and substance P are released from 

primary afferent neurons leading to upregulated synthesis of lysophosphatidylcholine (LPC), the 

precursor for LPA production. LPC is converted to LPA by autotaxin (ATX), which can then 

activate macrophages/microglia and modulate neuronal functioning. A ubiquitous feature of animal 

models of neuropathic pain is demyelination of damaged nerves. It is thought that LPA contributes to 

demyelination through several different mechanisms. Firstly, high levels of LPA are produced 

following macrophage/microglial activation that triggers a self-sustaining feed-forward loop of de 

novo LPA synthesis. Secondly, macrophage/microglial activation contributes to inflammation-

mediated demyelination of axons, thus initiating neuropathic pain. Therefore, targeting LPA 

production and/or the family of LPA-activated G protein-coupled receptors (GPCRs) may prove to 

be fruitful clinical approaches to treating demyelination and the accompanying neuropathic pain. 

This review discusses our current understanding of the role of LPA/LPAR signalling in the initiation 

of neuropathic pain and suggests potential targeted strategies for its treatment. 
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1. Neuropathic pain 

According to the International Association for the Study of Pain (IASP), neuropathic pain (NP) is 

defined as the pain caused by a lesion to, or a disease of, the somatosensory nervous system. In other 

words, NP is a complex, chronic pain state resulting from damage to neural tissue such as peripheral 

afferent neurons, dorsal root ganglia (DRG) or spinal cord neurons. It can also result from direct 

damage to peripheral and central neurons, which often occur in cancer (Zhao et al., 2010), traumatic 

brain injury (TBI) (Crack et al., 2014) or multiple sclerosis (MS) (Khan and Smith, 2014). 

Characteristic symptoms of NP include unpleasant abnormal sensations (dysaesthesia), an enhanced 

perception of pain in response to noxious stimuli (hyperalgesia), as well as abnormal painful 

responses to innocuous or tactile stimuli that do not usually cause pain (allodynia) (Frisca et al., 

2012; Fujita et al., 2007). While the mechanisms underlying allodynia are still partially unknown, 

neuropathic hyperalgesia is associated with up-regulation of molecules, such as substance P and the 

excitatory neurotransmitter glutamate, which enhance the transmission of painful stimuli in DRG and 

spinal dorsal horn neurons (Fujita et al., 2007; Marchand et al., 2005; Ueda, 2006). 

 

Based on a review of studies published since 2000, it is estimated that 7% of the world’s population 

is affected by NP (Andrew et al., 2014). However, an epidemiological review of chronic pain found 

that, within a given population, there are still no accurate estimates available for the prevalence of 

NP (Smith and Torrance, 2012). Although many investigations into the underlying mechanisms of 

NP have uncovered perturbations to both peripheral nerves and to spinal cord neurons, most 

experimental therapeutics tested for their ability to correct distorted pain perception, target peripheral 

neuron damage. Various types of noxious stimuli, mechanical, chemical or thermal in nature, can 

activate nociceptors on unmyelinated C-fibres and thinly-myelinated Aδ-fibres leading to increases 

in ectopic electrical discharges and lowering of the nociceptive threshold. Localised accumulation of 

voltage-gated ion channels, in particular sodium (Na+) channels, is responsible for this 

hyperexcitability (Aurilio et al., 2008; Casals-Diaz et al., 2015). In addition, upregulation of the 

transient receptor potential cation channel subfamily V member 1 (TRPV1) can also sensitise C-

fibres to heat by lowering the nociceptive threshold to under 41oC (Ma et al., 2005). Similar damage-

induced hyperexcitability of DRG neurons can also result in NP (Aurilio et al., 2008; Baron, 2006; 

Baron et al., 2010; Chung and Chung, 2002). In the central nervous system, sensitisation of injured 

neurons can manifest from molecular perturbations such as phosphorylation of postsynaptic NMDA- 

and AMPA-type glutamate receptors (Katano et al., 2011; Wang et al., 2014) and activation of 
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signalling cascades such as extracellular signal-regulated kinase (ERK) pathways (Zhang et al., 

2014). Loss of inhibitory GABAergic interneurons and/or reduced GABA release in the spinal cord 

can also culminate in neuronal hyperexcitability (Moore et al., 2002). Finally, inflammation plays a 

significant role in sensitising peripheral and CNS neurons following nerve injury (Moalem et al., 

2005). 

 

Since NP is a multifactorial disorder affecting both the peripheral nervous system (PNS) and CNS, it 

is not surprising that the current therapies for NP are largely inadequate and that combination 

therapies, which target several distinct pathways, may be needed in future. As pain transmission is 

known to be modulated by excitatory and inhibitory neurotransmitters, as well as calcium (Ca2+) and 

Na+ channels, many of the currently available treatments target these systems. Among currently-

approved first-line treatments for NP are the antidepressants Duloxetine and Desipramine and the 

anticonvulsants Gabapentin and Pregabalin (NICE, 2015). The first two drugs are approved 

antidepressants and their analgesia-promoting effects may be directly related to their ability to 

prevent presynaptic reuptake of serotonin and noradrenaline, both of which inhibit descending pain 

pathways in the CNS (Sawynok et al., 2001). Desipramine is a tricyclic antidepressant categorized as 

a secondary amine with relatively selective inhibition of noradrenaline reuptake (Maizels and 

McCarberg, 2005). Duloxetine is a potent and selective serotonin–noradrenaline reuptake inhibitor 

(SNRI) and lacks affinity for other neurotransmitters (Bymaster et al., 2001). Interestingly, neither 

Paroxetine (serotonin reuptake inhibitor) nor Thionisoxetine (noradrenaline reuptake inhibitor) 

displayed efficacy in attenuating pain-related behaviours in mice. However, combining both drugs 

effectively alleviated pain (Iyengar et al., 2004) suggesting that the likely mechanism of action of 

antidepressants in reducing chronic pain is mediated through inhibition of both serotonin and 

noradrenaline reuptake. In contrast, the anticonvulsants Gabapentin and Pregabalin, bind to α2δ1-

containing voltage-gated calcium (Ca2+) channels (VGCC) on central terminals of primary afferent 

nociceptors, leading to decreased release of the excitatory neurotransmitters noradrenaline, glutamate 

and substance P (Baron et al., 2010; Xu et al., 2012). Second-line treatments for NP usually include 

selective serotonin reuptake inhibitors (SSRIs) or anticonvulsants in combination with opioids, 

botulinum toxin type A or lidocaine (NICE, 2015). A major disadvantage of currently-approved 

therapeutics for NP is that they usually need to be taken chronically. To date, there is no 

pharmacological therapy available which acts to reverse and cure the underlying molecular 

mechanisms that cause the pathological state that gives rise to NP.  
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1.1. Animal models of neuropathic pain 

There are more than 40 clinically-relevant animal models of neuropathic pain (Jaggi et al., 2011). 

Many of these are peripheral nerve injury models such as the neuroma model which mimics 

anaesthesia dolorosa, i.e. a constant burning or aching pain in an area which is otherwise devoid of 

sensory input (i.e. numb) (Wall et al., 1979); chronic constriction injury (CCI) which models 

hypersensitivity to non-noxious stimuli and chemical irritants (Bennett and Xie, 1988; Martucci et 

al., 2008; Sacerdote et al., 2008); the Seltzer model, also known as partial sciatic nerve ligation 

(PSNL), which induces behavioural alterations including cold allodynia, chemical hypersensitivity 

and mechanical hyperalgesia and is said to be a good model of causalgiform pain syndromes (i.e. 

severe burning pain in a limb) (Kim et al., 1997; Malmberg and Basbaum, 1998; Seltzer et al., 1990); 

and the spared nerve injury (SNI) paradigm in which the sural nerve is ‘spared’ and the tibial and 

common peroneal nerves are axotomized, thus producing thermal and mechanical hyperalgesia but, 

more importantly, facilitates the assessment of nociception in non-injured areas of skin located 

adjacent to denervated zones (Bourquin et al., 2006; Decosterd and Woolf, 2000; Shields et al., 

2003). There are also central pain models, such as the Allen’s model of contusive spinal cord injury 

(SCI) in which a weight is dropped on the exposed spinal cord leading to severe paraplegia and 

complete segmental necrosis (Allen, 1911; Greenberg et al., 1978); drug-induced neuropathy models, 

for example, the chemotherapeutic cisplatin which is known to cause peripheral axonal neuropathy 

that affects both small and large diameter sensory fibres (Cece et al., 1995; Meijer et al., 1999; 

Shimoyama et al., 2002; Tredici et al., 1999); disease-induced neuropathy models such as diabetes 

and cancer NP models (Courteix et al., 1993; Lee et al., 1990; Shimoyama et al., 2002); and various 

other in vivo models of NP (Dina et al., 2006; Imamura et al., 1997). The major limitation of current 

NP animal models is the inherent difficulty in attempting to translate improvements in animal 

behaviour to clinically-significant alleviation of human pain perception; but despite this, many of 

these models are accepted as useful tools. However, since NP can manifest in many different ways 

and has multiple aetiologies, a range of experimental animal models is needed to study the 

underlying causes of NP.  

 

Animal models of NP have facilitated the identification of disrupted cellular processes at peripheral, 

spinal and cerebral cortical levels. In the periphery, sensitisation occurs due to increased excitability 

and decreased firing thresholds for nociceptor terminals, as well as the release of inflammatory 
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mediators such as bradykinin and prostaglandin E2 (PGE2) (Basbaum et al., 2009; Bridges et al., 

2001; Xu et al., 2012). At the level of the central spinal cord, excitatory transmission at C-fibre 

synapses is often potentiated and the firing threshold of dorsal horn neurons is decreased. These 

phenomena can be caused by the upregulation of AMPA-type glutamate receptors and 

phosphorylation of several other ion channels leading to postsynaptic hyperexcitability (Ikeda et al., 

2006; Latremoliere and Woolf, 2009; Sandkühler, 2007). Other aspects of NP involve somatosensory 

processing, which occurs in cerebral cortical areas, such as the anterior cingulate cortex (ACC), 

where protein kinase M zeta (PKMζ) is activated, excitatory neurotransmission at pyramidal neurons 

is potentiated (LTP), glutamate receptors are upregulated and decreases in long-term depression 

(LTD) lead to disinhibition and reorganization of neural networks (Li et al., 2010; Vogt, 2005; Wu et 

al., 2005). NP, therefore, can be viewed as a spectrum of disorders with mechanistically-related, but 

distinct, aetiologies. A better understanding of the causative mechanisms of NP will be necessary in 

order to develop new therapeutic strategies for this illness. The following sections focus on the 

emerging role that lysophosphatidic acid (LPA) plays in triggering and perpetuating molecular and 

cellular disturbances associated with NP. 

 

2. Lysophosphatidic acid (LPA) signalling 

Several studies suggest that increased levels of LPA may contribute to injury-induced demyelination 

of neurons and can thus cause neuropathic pain. LPA (1-acyl-2-sn-glycerol-3-phosphate) is a well-

characterised glycerophospholipid with a molecular weight of approximately 430–480 Dalton (Yung 

et al., 2014). LPA activates a family of six distinct G protein-coupled receptors (GPCRs), named 

LPAR1-6 (Callaerts-Vegh et al., 2012) and these GPCRs signal through four distinct Gα protein 

subtypes (Gi, Gq, G12 and Gs) leading to multiple downstream signalling pathways and cellular 

responses (Frisca et al., 2012; Lin et al., 2010). In addition, LPA can also bind to the intracellular 

peroxisome proliferator-activated receptor γ (PPARγ) (McIntyre et al., 2003) and the TRPV1 cation 

channel (Nieto-Posadas et al., 2012), thus playing important roles in gene regulation and nociception, 

respectively.  

 

LPA is generated by a number of different enzymes such as phospholipases A1 and A2, 

monoacylglycerol kinase, glycerol-3-phosphate acyltransferase and autotaxin (ATX) (Noguchi et al., 

2009; Pebay et al., 2007) from various precursors including phosphatidic acid, glycerol-3-phosphate 
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and several glycerophospholipids. LPA can be produced by platelets (Eichholtz et al., 1993), 

fibroblasts (Fukami and Takenawa, 1992), mitotic neurons (Fukushima et al., 2000), astrocytes 

(Savaskan et al., 2007) and also cancer cells (Zhao et al., 2010). High concentrations of LPA have 

been observed in several pathological conditions such as atherosclerosis (Smyth et al., 2014), 

traumatic brain injury (Crack et al., 2014), spinal cord injury (Santos-Nogueira et al., 2015), different 

types of cancer (Eder et al., 2000; Lee and Yun, 2010; Zeng et al., 2009; Zhao et al., 2010), 

neuropsychiatric disorders (Yung et al., 2014) and neuropathic pain (Ahn et al., 2009; Fujita et al., 

2007). Production of LPA during inflammation promotes wound-healing and acts to control the pro-

inflammatory environment. Thus, LPA has pleiotropic effects on a wide range of cell and tissue 

types, including those located within both PNS and CNS and participates in normal physiological 

functions including cellular development, proliferation and migration (Frisca et al., 2012). Below, we 

discuss the role of high levels of LPA in the initiation, maintenance and pathophysiological 

underpinnings of NP and highlight potential therapeutic targets for its treatment. 

 

2.1. Initiation of neuropathic pain by LPA 

The role of LPA in the initiation of neuropathic pain is gaining acceptance, but the origin of raised 

LPA levels is less well established. Normal concentrations of LPA in most cell types are relatively 

low, but detectable levels (0.1 – 1 µM) have been measured in plasma, serum, saliva, cerebrospinal 

fluid (CSF) and inflammatory exudates (Frisca et al., 2012). Precursors for LPA include membrane 

phosphatidylcholines (PC) which can be converted to lysophosphatidylcholine (LPC) by the 

cytosolic phospholipase A2 (cPLA2) or calcium-independent PLA2 (iPLA2). Interestingly, inhibition 

of both enzymes abolishes nerve injury-induced LPA production (Ma et al., 2010). LPC, in turn, can 

be converted into LPA by the enzymatic action of ATX, a secreted enzyme present in the 

extracellular milieu (see Figure 1) (Tokumura et al., 2002). Notably, the CSF contains high 

concentrations (0.4 – 1.3 mg/L) of ATX (Nakamura et al., 2009). Leakage of serum containing LPA 

into the CNS can occur following injury and damage to the blood-spinal cord barrier and this rise in 

LPA levels in the CSF can trigger signalling events in neurons which culminate in neuropathic pain 

(Kusaka et al., 1998). Whilst full ATX-/- knockout mice die early in embryogenesis, heterozygous 

ATX mutant mice (ATX+/-) reportedly show a 50% decrease in ATX activity resulting in lower levels 

of LPA production and better recovery from NP (Inoue et al., 2008a; Inoue et al., 2008b; Inoue et al., 

2008c). Therefore, ATX activity leads to an increase of LPA levels in pathological states and this 
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contributes to the initiation of NP. As such, ATX is an interesting therapeutic target, upstream of 

LPA, for the treatment of NP (see Table 1). 

 

LPA-mediated signalling via Gα12/13 and activation of the signalling pathways involving RhoA, Rho-

kinase, ROCK and Ras appear to be involved in NP (Inoue et al., 2004; Radeff-Huang et al., 2004; 

Ueda, 2006). Inhibition of Rho signalling pathways by Clostridium botulinum C3 exoenzyme 

(BoTXC3) or the antagonist Y-27632 (see Table 1), prior to peripheral nerve injury, blocks 

hyperalgesia and nociceptive responses in mice (Ahn et al., 2009; Inoue et al., 2004; Inoue et al., 

2006). Confirmation that the RhoA pathway is activated through LPAR1 subtype was demonstrated 

utilising Lpar1-/- knock-out mice, which do not exhibit nociceptive responses or sensitivity after LPA 

injections (Inoue et al., 2006). Furthermore, several studies showed that intrathecal administration of 

LPA mimics partial sciatic nerve injury in mice (Inoue et al., 2004; Inoue et al., 2006; Ueda, 2006) 

whereas a related lipid, sphingosine 1-phosphate (S1P), does not produce such allodynia (Ishii et al., 

2004), thus highlighting the specificity of LPA. The observation that neuropathic pain can be 

attenuated by prophylactic treatments which block Rho signalling or LPAR activation (see Table 1) 

when they are administered pre- but not post-injury (Inoue et al., 2004) suggests that LPAR 

activation may trigger demyelination and initiate NP. 

 

It has recently been shown that both intrathecal injection of LPA into the healthy CNS and increases 

in endogenous LPA levels, caused by contusive spinal cord injury, trigger demyelination of central 

neurons (Santos-Nogueira et al., 2015). Similarly, LPA can induce demyelination in the PNS (DRG 

and trigeminal nerves) (Ahn et al., 2009; Fujita et al., 2007; Inoue et al., 2004; Ogawa et al., 2012; 

Xie et al., 2010). Both Schwann cells and oligodendrocytes express high levels of LPAR1 both in 

vivo and in vitro (Weiner and Chun, 1999) but express relatively low levels of other LPARs 

suggesting that LPA exerts its main effects on myelin-forming cell types exclusively via LPAR1 

activation. Decreases in myelin basic protein (MBP) and peripheral myelin protein 22 (PMP22) 

expressions after LPA injection in the dorsal root have also been reported and these effects were 

inhibited by pre-treating mice with BoTXC3 (Fujita et al., 2007; Inoue et al., 2004). Furthermore, 

blockade of LPAR1 and LPAR3 by diacylglycerol pyrophosphate (DGPP) or inhibition of Rho 

kinase-activated signalling pathways by Y-27632, prevented demyelination of the trigeminal nerve 

after intratrigeminal ganglionic injection of LPA (Ahn et al., 2009). Taken together, these studies 

suggest that demyelination observed on peripheral neurons due to nerve injury occurs through a 
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direct action of LPA on Schwann cells via LPAR1 (see Figure 2). In support of these findings, a 

recent study has shown that selective blockade of LPAR1, using the antagonist AM095, attenuates 

CNS demyelination after contusive spinal cord injury in mice and improves locomotor recovery 

(Santos-Nogueira et al., 2015). In addition to demyelination, LPAR1 mediates the upregulation of the 

α2δ1 Ca2+ channel subunit and the γ-isoform of protein kinase C (PKCγ) in spinal cord (Inoue et al., 

2004); both of which are well-established markers of NP (Luo et al., 2002; Weiner and Chun, 1999; 

Weiner et al., 2001). 

 

Further evidence implicating LPA signalling in NP include a report that thermal hyperalgesia and 

mechanical allodynia after PSNL are attenuated in Lpar1-/- knockout mice or by pre-treatment with 

antisense oligodeoxynucleotides against LPAR1; but because no significant changes in uninjured 

Lpar1-/- mice were observed, it was suggested that de novo LPA produced after the injury was 

responsible for initiating NP (Inoue et al., 2004). LPA also activates PLC via the Gαq/11 and Gαi/o 

coupled LPAR3 subtype. Notably, there is minimal LPA production in Lpar1-/- and Lpar3-/- mice and 

NP is abolished in this phenotype (Ma et al., 2013; Ma et al., 2009b), suggesting that both receptors 

mediate the amplification of LPA production, which is necessary to induce NP. Supporting these 

findings are reports that the chemotherapeutic drug, paclitaxel, triggers NP in mice by stimulating 

LPAR1- and LPAR3-mediated LPA production (Uchida et al., 2014). 

 

The LPAR5 subtype also plays a key role in triggering NP. Previously known as GPR92 (Lee et al., 

2006), LPAR5 is expressed on the cell bodies of C-fibres within the DRG. In contrast, LPAR5 is not 

found on Aβ fibres which transmit sensations induced by innocuous tactile stimuli (Kinloch and Cox, 

2005). Lpar5-/- mice subjected to the CCI model of NP display attenuated cold-induced allodynia 

using the acetone test, despite no changes in mechanical allodynia and spontaneous displays of 

discomfort using the von Frey test and balance box, respectively (Callaerts-Vegh et al., 2012). Lpar5-

/- mice also display marked protection against development of NP in the PSNL model (Lin et al., 

2012). In this study, there were no differences in sciatic nerve or DRG demyelination, or in 

expression of the NP markers, PKCγ and Ca2+ channel subunit α2δ1. In addition, the downstream 

transcriptional target of LPAR5, i.e. cAMP response element-binding protein (CREB), displayed 

lower levels of phosphorylation in Lpar5-/- mice subjected to the PSNL and CCI models of NP. 

These results suggest that LPAR5 can trigger NP by a different mechanism to LPAR1, thereby 

representing and additional drug target for the treatment of NP. 
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LPA synthesis can also be activated through other mechanisms including the pain-inducing 

neurotransmitters, glutamate and substance P, which are released from primary afferent fibres in 

response to nerve injury and activate NMDA and neurokinin-1 (NK1) receptors, respectively (Ueda 

et al., 2013). Blockade of both NMDA and NK1 receptors prior to nerve injury by their respective 

antagonists, MK-801 and CP-99994, resulted in the inhibition of LPA production at the dorsal horn 

(Ma et al., 2013). This suggests that nerve injury results in glutamate and substance P-mediated 

activation of NMDA and NK1 receptors on neurons and subsequent activation of the enzyme PLA2 

leading to LPA production and initiation of neuropathic pain (see Figure 2). 

 

2.2. Effects of LPA on non-neuronal cell types 

The induction of neuropathic pain by LPA not only relies on its actions on neurons, Schwann cells 

and oligodendrocytes, but also through its effects on other cell types such as astrocytes, 

macrophages/microglia and immune cells (Goldshmit et al., 2012; Ma et al., 2010; Smith et al., 

1999; Ueda, 2011). LPA has been shown to increase inflammation and glial cell proliferation in 

zebrafish and inhibit neural regeneration after traumatic injury (Goldshmit et al., 2012). LPA causes 

an increase in expression of brain-derived neurotrophic factor (BDNF) in primary cultures of rat 

microglia which express LPAR3 (Fujita et al., 2008). LPA activates macrophages/microglia, possibly 

through LPAR1 and LPAR3, and this initiates a self-sustaining feedforward loop of LPA production 

within macrophages/microglia, which can be inhibited with minocycline (Ma et al., 2013; Uchida et 

al., 2014). Moreover, intrathecal injection of mice with LPA increases the transcription of genes such 

as CD11b, leading to activation of microglia and morphological changes from ramified to amoeboid 

phenotypes. While early treatment with minocycline inhibits microglial activation and attenuates 

neuropathic pain, administering minocycline at later time-points has no effect (Ma et al., 2010), 

suggesting that microglia are involved to a greater extent in the initiation of NP more than in its 

maintenance. 

 

3. Recent developments in the treatment of neuropathic pain 

Because NP is a multifactorial pathological state with several distinct triggers and mechanisms 

involved in its maintenance, a personalised medicines approach to treating patients with NP will 

likely be needed to achieve optimal analgesia. There are several approaches to consider when testing 
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potential therapies for NP that target LPA/LPAR signalling. Upstream interventions may include 

targeting high levels of LPA, produced following nerve injury, by neutralising antibody-based 

therapies that act as molecular sponges (Crack et al., 2014; Goldshmit et al., 2012). In this regard, the 

humanized monoclonal antibody, anti-LPA B3, that targets LPA, is currently under investigation 

(Crack et al., 2014; Goldshmit et al., 2012). An alternative approach may be to target the enzyme 

ATX (Gierse et al., 2010; Gupte et al., 2011; Hwang et al., 2013), which contributes to LPA 

production. There are currently several ATX inhibitors in pre-clinical studies, although none are 

exclusive for NP. PF-8380 is a specific inhibitor that reduces inflammatory hyperalgesia in rats 

within 3h (Gierse et al., 2010). Other ATX inhibitors, such as 4PBPA (Gupte et al., 2011), Gintonin 

(Hwang et al., 2013) and ONO-8430506 (Benesch et al., 2014) are indicated for cancer, although 

they may also have effects on NP (see Table 1). The first oral therapy developed for MS, i.e. 

fingolimod (Kappos et al. 2006), may also act as an inhibitor of ATX (van Meeteren et al., 2008). 

 

Downstream interventions for the treatment of NP may include targeting LPARs with specific 

antagonists. There are a number of LPAR1 antagonists in early pre-clinical phase studies, such as 

AM095 (Castelino et al., 2011), Ki16425 (Liao et al., 2013; Ma et al., 2009a), BMS compounds 

(Nogueira, 2013) and VPC12249 (Okusa et al., 2003). Only the BMS compounds are specifically 

indicated for neuropathic pain (Nogueira, 2013), where, for example, BMS-986202 is in phase I and 

BMS-986020 in phase II clinical trials (Bradford, 2012). Blockade of the Rho kinase pathways is 

also a potential therapeutic strategy for NP since administration of the Rho kinase inhibitors H-1152 

or Y-27632, alleviates neuropathic pain in mice and rats (Ramer et al., 2004; Tatsumi et al., 2005). 

 

Finally, peptide-based therapeutics such as GsMTx4, a component of the Grammostola spatulata 

tarantula venom, which blocks several mechanically-activated (MA) cation channels involved in the 

transmission of pain-related signals, has shown positive results in alleviating mechanical 

hyperalgesia and NP (Park et al., 2008). Interestingly, LPA has been shown to sensitise MA channels 

in a dose-dependent manner. Epithelial and smooth muscle cells exposed to LPA display a marked 

increase in Ca2+ influx through MA channels in response to mechanical stress, but no sensitising 

effects on Ca2+ release from intracellular stores were observed in the presence of LPA (Ohata et al., 

1995; Ohata et al., 1996; Ohata et al., 1997a). This enhancement of MA channel responses by LPA 

can be attenuated by phospholipase C (PLC) inhibitors (Ohata H et al., 1997b), suggesting that it 

may be an indirect effect through activation of LPAR-mediated GPCR signalling. Therefore, 
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developing treatments for NP that block mechanically-activated ion channels on neurons and/or glial 

cell types may also inhibit the downstream sensitising effects of LPA and alleviate symptoms such as 

hyperalgesia and allodynia. 

 

4. Conclusion 

LPA is a highly bioactive molecule with a number of cellular sources and exerts its actions through a 

range of GPCRs and ion channels present on various cell types. Here, we have highlighted the role 

that LPA plays in the initiation of NP which is a diverse spectrum of disorders affecting millions of 

people worldwide for which there appears little bona fide treatment to date. There are multiple 

molecular mechanisms underlying the pathophysiology of NP thus increasing the complexity of 

developing effective targeted therapeutics. Nevertheless, it appears that LPA production and 

signalling plays a major role in the initiation of NP, exerting downstream effects on many cell types 

including neurons, Schwann cells, oligodendrocytes, macrophages, microglia, astrocytes and other 

immune cells. Therefore, targeting the production of LPA by inhibition of ATX, the enzyme 

primarily responsible for its synthesis, or blocking LPAR1 and/or LPAR5 activation and downstream 

signalling cascades could prove to be fruitful strategies to alleviate NP. Taken together, the 

LPA/LPAR signalling pathway provides multiple targets for the development of new therapeutics for 

NP and related pathologies as evidenced by recent pre-clinical, phase I and phase II studies.  
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Figure Legends 

 

Figure 1: Synthesis of lysophosphatidic acid (LPA). Precursors of LPA synthesis include 

phosphatidylcholine (PC) which is converted to lysophosphatidylcholine (LPC) by the enzymatic 

actions of cytosolic phospholipase A2 (cPLA2) and calcium-independent phospholipase A2 (iPLA2). 

LPC, in turn, is converted to LPA by autotaxin (ATX); a secreted enzyme present at relatively high 

concentrations in extracellular fluids. 

 

Figure 2: Potential mechanisms of neuropathic pain initiation by LPA. Traumatic nerve injury 

can cause the release of glutamate and substance P from peripheral neurons leading to NMDA and 

NK1 receptor activation, respectively. This can lead to influx of extracellular Ca2+ through NMDA 

receptors and activation of phospholipase A2 (cPLA2). PLA2 can also be activated in a non-calcium 

dependent manner (iPLA2) through NK1-mediated G-protein signalling. c/iPLA2 converts 

phosphatidylcholine (PC) to lysophosphatidylcholine (LPC) and this, in turn, is enzymatically 

processed into LPA via the actions of extracellular autotaxin (ATX). LPA can activate 

macrophages/microglial cell types where it signals through LPAR3 to initiate self-sustaining 

feedforward production of LPA via the enzymatic activity of c/iPLA2 and ATX. Macrophage-

derived LPA can also activate LPAR1 on myelinating Schwann cells leading to demyelination 

through various mechanisms, including down-regulation of myelin basic protein (MBP) and 

peripheral myelin protein 22 (PMP22) as well as upregulation of protein kinase C-γ (PKCγ) and the 

voltage-gated Ca2+ channel subunit α2δ1. 
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Anti-LPA B3 

 
Antibody 

LPA signalling Pre-clinical 

 

(Crack et al., 
2014) 

(Goldshmit et 
al., 2012) 

 

PF-8380 

 

 
 

ATX inhibitor Pre-clinical 

 
 

(Gierse et al., 
2010) 

 
4PBPA 

 

 
 

ATX inhibitor Pre-clinical 

 
(Gupte et al., 

2011) 

Gintonin 

 
Glycolipoprotein 

 

 
 

ATX inhibitor Pre-clinical 

 
(Hwang et al., 

2013) 

ONO-
8430506 

 

 
 

ATX inhibitor Pre-clinical 

 
(Benesch et 
al., 2014) 

BrB-LPA 

 

 
 

Dual LPAR 
antagonist/ATX 

inhibitor 
Pre-clinical 

(Xu et al., 
2009) 

 
AM095 

 

 
 

 
LPAR1 

antagonist 
Pre-clinical 

 
(Castelino et 

al., 2011) 

AM966 

 

LPAR1 
antagonist 

Pre-clinical 
 

(Swaney et al., 
2010) 
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KI-16425 

 
 

 
 

 

LPAR1 
antagonist 

 

Pre-clinical 

 

(Liao et al., 
2013) 

(Ma et al., 
2009a) 

BMS 
compound 

 

 
 

LPAR1 
antagonist 

Pre-clinical 

 
(Nogueira, 

2013) 

VPC-12249 

 

 
 

LPAR1 
antagonist 

Pre-clinical 

 
(Okusa et al., 

2003) 

 
BMS-

986202/AM15
2 

See patent WO/2012/162592 A1 
for more details 

LPAR1 
antagonists 

Phase I-Idiopathic 
Pulmonary Fibrosis 

 
(Bradford, 

2012) 
(BMS, 2011) 

 

BMS-986020 
See patent WO/2012/162592 A1 

for more details 
LPAR1 

antagonist 

 
Phase II- Idiopathic 
Pulmonary Fibrosis- 

(NCT01766817) 
 

Phase II- Systemic 
sclerosis 

(NCT02588625) 
 

 
(Bradford, 

2012) 

SAR 100842 

 
See patent WO/2012/162592 A1 

for more information 

 
LPAR1 LPAR3 

antagonist  

 
Phase II- Systemic 

sclerosis 
(NCT01651143) 

 

 
(Sanofi, 2014) 

 
H-1152 

  
Rho kinase 

inhibitor 

 
Pre-clinical 

 
(Tatsumi et 
al., 2005) 
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Y-27632 

 

 
 

Rho kinase 
inhibitor 

Pre-clinical 

 
(Ramer et al., 

2004) 

 

 

Table 1: LPA signalling and LPA receptor inhibitors with potential efficacy in neuropathic pain 

treatment. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Highlights 

� Neuropathic pain (NP) is a multifactorial pathological state with no cure. 

� Increased LPA synthesis after nerve injury can trigger demyelination, causing NP.  

� LPA/LPAR signalling contributes to maintenance of NP. 

� New therapeutics targeting LPA production and signalling may be effective in alleviating NP. 


