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Fixtures are used to fixate, position and support workpieces and represent a

crucial tool in manufacturing. Their performance determines the result of the

whole manufacturing process of a product. There is a vast amount of research

done on automatic fixture layout synthesis and optimisation and fixture de-

sign verification. Most of this work considers fixture mechanics to be static and

the fixture elements to be passive. However, a new generation of fixtures has

emerged that has actuated fixture elements for active control of the part-fixture

system during manufacturing operations to increase the end product quality.

This paper analyses the latest studies in the field of active fixture design and

its relationship with flexible and reconfigurable fixturing systems. First, a brief

introduction is given on the importance of research of fixturing systems. Sec-

ondly, the basics of workholding and fixture design are visited. After which the
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state-of-the art in active fixturing and related concepts is presented. Fourthly,

part-fixture-dynamics and design strategies which take these into account are

discussed. Fifthly, the control strategies used in active fixturing systems are

examined. Finally, some final conclusions and prospective future research di-

rections are presented.

Keywords: Active fixturing; Reconfigurable fixturing technology; Part-fixture dynamics;

Control design; Active fixture design; Fixture verification analysis

1. Introduction

Workholding devices and systems, such as fixtures, are of paramount importance within

a manufacturing environment. They exist in virtually any manufacturing context, instan-

tiated in geometries and layouts that span from a simple vice to a complicated robotic

cell. Fixtures form an important group within the workholding systems family and are

mostly used when precise an repeatable locating of the processed workpiece is required.

Fixtures can affect the performance of a manufacturing line in a number of ways.

Firstly, the flexibility of the line is largely dictated by the selected fixturing solution. A

fixturing system that demands significant effort to be adjusted to accept a new product

geometry, can annul the benefits of modern numerically-controlled (NC) machine-tools

and automated manufacturing cells. On the other hand, fixtures, due to their immediate

contact with the workpiece largely determine the outcome of the manufacturing process.

Geometrical variations in the features of the fixture reduce the locating accuracy of the

workpiece relative to the global coordinate frame of the manufacturing process. This

can result in the production of out-of-tolerance parts. Furthermore, fixtures affect the

static and dynamic rigidity of the workpiece. A poorly designed fixture may result in

over-clamping and excessive vibration. These, in turn, lead to dimensional inaccuracies,

reduced surface quality and even separation between the fixture and the workpiece,

causing the part to be released, ultimately damaging the processing station, halting the

production and even injuring personnel sometimes.

The previous clearly highlights the importance of fixtures. This is why intensive re-
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search efforts have been dedicated to the field of fixtures, especially over the last few

decades, to achieve cost reduction by means of automation and flexibilisation of the

production. This work has appeared in review papers and standard textbooks and is

generally focussed on:

(1) computer-aided fixture design, which also includes automatic design (issues) and

fixture layout optimisation, as covered by Bi and Zhang (2001), Boyle et al.

(2011), Cecil (2001), Hargrove and Kusiak (1994), Kang and Peng (2009), Nee

et al. (1995, 2004), Rong et al. (2005), Shirinzadeh (1996), Trappey and Liu

(1990) and Wang et al. (2010);

(2) hardware concepts for (automatically) reconfigurable fixtures, treated in the fol-

lowing publications: Bi and Zhang (2001), Dashchenko (2006), Hazen and Wright

(1990), Nee et al. (1995), Shirinzadeh (1995) and Shirinzadeh (1996);

(3) fixture design verification, discussions on the latter can be found in the paper

by Bi and Zhang (2001) and the textbooks by Nee et al. (1995, 2004) and Rong

et al. (2005).

Recently, a novel form of fixturing has emerged. This fixturing technology is based

on sensor-based fixture design concept combined with actuated clamping elements that

control the clamping forces in order to minimise part deformation during the manufac-

turing process. Perhaps the review paper by Leopold and Hong (2009) comes closest to

active fixturing, however in that review, there is a strong emphasis on the discussion of

the modelling and optimisation of clamping for intelligent fixturing. The present arti-

cle intends to provide a comprehensive review of the recent and relevant work in active

fixturing. Therefore, developments relevant to active fixturing systems in the following

areas, which are only marginally and dispersedly touched upon in the other review papers

and standard textbooks, are discussed: fixture design concepts, the effect of the dynamic

nature of the manufacturing forces on the part-fixture system, especially regarding active

fixtures, and active fixture control strategies. Furthermore, the paper aims to identify

future developments in the field. It should be remarked here, that the application of the

majority of the research carried out in the field of active fixturing and its closely related

areas, which are the area of interest of this paper, are machining fixtures. The notable ex-
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ceptions where other applications are explicitly mentioned are: Arzanpour et al. (2006),

Bakker et al. (2011a), Izquierdo et al. (2009), Jayaweera et al. (2011), Kong and Ceglarek

(2006), Kurz et al. (1994), Martin et al. (2011), Papastathis et al. (2010), Park and Mills

(2005), Wagner et al. (1995) and Yamaguchi et al. (2010): assembly; Li et al. (2010):

sheet welding assembly; (Zhang et al. 2009a): welding; and Lee et al. (1999) and Sah and

Gao (2008): stamping.

The paper commences by giving a brief overview of the basic theory behind fixtures and

fixturing practices in Section 2. Then, in Section 3, mechatronic applications in fixturing,

active fixture concepts and related work are reviewed. In Section 4, modelling methods,

which have been applied to capture the dynamics behind the fixture-workpiece systems,

and have been implemented to facilitate and augment the fixture-design process, are

reviewed. Section 5 looks into the control strategies that have been proposed for fixtures

with adaptive characteristics, often referred to as active fixtures. Finally, conclusions are

drawn from the literature survey and future trends in fixture research are outlined and

explained in Section 6.

2. Fixturing Principles

This section outlines the fundamentals of fixturing. This section is written with those

in mind, who have a background in different engineering disciplines, but have a general

interest in fixturing. The appreciation of the fixturing principles leads to an understand-

ing of the current developments regarding the emerging active fixturing technology, as

the main driving forces behind the development of novel fixturing technologies are the

demands for increasing performance and flexibility.

A fixture is a device designed to repeatedly and accurately locate a workpiece in a

position and orientation, relative to another workpiece or the reference frame of a machine

tool or measurement machine. This process is often referred to as locating. Secondly,

fixtures must be able to securely hold the workpiece in the desired location throughout

the duration of a manufacturing process without damaging the product. Thirdly, a fixture

has to provide ample support of the workpiece during the manufacturing process in order

to minimise the deflection due to clamping and machining forces. Furthermore, the fixture
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has to be designed such that the workpiece is accessible and requires a minimum level of

maintenance during its lifetime.

Fixtures can be used in assembly, machining, measurement and welding operations.

They belong to the greater family of work-holding devices. They can be identified and

differentiated from other workholding family members through their comprising elements

and their functionalities. More detailed information can be found in Hargrove and Ku-

siak (1994) and Nee et al. (1995). Although simple in concept and role, the design of a

fixture requires extensive experience and expertise but also imagination and intuition.

For this reason, some engineers might state that the design of a fixture is a combination

of engineering science and art. Nevertheless, there are some generic guidelines and prin-

ciples (Nee et al. 1995) that the designer can use as the springboard for their work. In

general, a fixture comprises three fundamental elements:

Locators: Statically positioned elements with no actuation ability, used to locate the

workpiece in a desired position and orientation. A typical fixture has at least 6 locators.

Clamps: Statically positioned elements with actuation ability, used to exert the forces

that securely hold the workpiece in its position. A typical fixture has at least 2 clamps.

Supports: Statically positioned elements with no actuation ability, used to locally

reduce the elastic deformations experienced by the workpiece due to the loads applied by

the manufacturing process. They can also improve the stability of the fixture-workpiece

system. There is no limitation to the number of supporting elements used in fixtures.

Contrary to clamps and locators, the existence of supports is not compulsory.

Generally speaking, the fixture design process can be divided into four phases: setup

planning, fixture planning, fixture configuration design and fixture design verifica-

tion (Nee et al. 1995, Rong et al. 2005).

The optimisation of the fixture layout has attracted much research attention. The

reason is that for an optimal placement of the locators, the reaction forces are minimised,

and as a results the local part deformation is minimised. Furthermore, the fixture can

be optimised to minimise the effect of locating errors (Chaipradabgiat et al. 2009, Tian

et al. 2009, Vishnupriyan et al. 2011). Or, the fixture layout can be designed such that

the part orientation in the fixture is fool-proof. The fixture layout optimisation and

evaluation process has been extensively analysed in Wang (2004). Other methods are used
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to optimise the fixture layout such as genetic algorithms (Padmanaban and Prabhaharan

2008, Siva Kumar and Paulraj 2011a,b, Yeung 2010). More information on fixture design

optimisation and computer-aided fixture design in general can be found in the following

review papers and textbooks: Bi and Zhang (2001), Boyle et al. (2011), Cecil (2001),

Hargrove and Kusiak (1994), Kang and Peng (2009), Nee et al. (1995, 2004), Rong et al.

(2005), Trappey and Liu (1990) and Wang et al. (2010).

Fixture design verification or evaluation is traditionally the stage at which the fixture

performance is analysed (Leopold and Hong 2009, Nee et al. 1995, Rong et al. 2005). The

fixture performance is of course determined by the resulting end product quality, after

all the manufacturing processes planned for that specific part-fixture setup are carried

out.

The verification of the fixture design is an important step in the design cycle; Rong

et al. (2005) and Nee et al. (1995) devote the second half of their books on this issue.

Leopold and Hong (2009) stress its importance quite early in the introduction of their

review paper. Fixture design verification usually consists of a tolerance sensitivity, an

accessibility and stability and deformation analysis. This can be done a posteriori. For

example Li (2008) made a virtual reality model of a part-fixture system to perform an

accessibility analysis. However, the increase in computational power of desktop PCs and

the availability and integration of computer automated fixture design tools allows the

designer to verify the design already during the fixture layout synthesis. Moreover, the

model-based control designs, reviewed in Section 5 rely of course on the mechanical model

of the part-fixture system established during the verification.

The previous constitutes a brief introduction to the fundamental of fixturing. Of course,

each workpiece, each manufacturing process and each manufacturing environment have

their own unique fixturing requirements. This explains the immense research and develop-

ment efforts that have gone into developing new fixturing concepts and technologies. The

most prominent fixturing strategies are generally categorised as follows: dedicated fix-

tures, modular fixtures, flexible pallet systems, sensor-based fixture design, phase-change

based concepts, base plate concepts, pin-type array fixtures, automatically reconfigurable

fixtures (Kleinwinkel et al. 2006, Nee et al. 1995, Shirinzadeh 1995). As mentioned before

a poor fixture design can result in excessive clamping forces, strong vibrations, or worse,
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unstable workholding. For this reason it is important to optimise both fixture design and

clamping forces. More recently, a new fixturing paradigm emerged, called active fixturing.

These fixturing systems can adapt the clamping forces online. Of the former strategies,

sensor-based fixture design and automatically reconfigurable fixtures (bar the modular

fixtures build by robotic systems) are closely related to the newly emerged active fix-

turing paradigm. For this reason these concepts are discussed together with the active

fixturing concept in the following section.

3. Sensing and Actuated Fixturing Concepts

3.1. Sensor-Based Fixture Design

Sensor-based fixture design is a fixturing strategy where vision and sensor systems are

utilised to ensure that the part is located correctly in the fixture (foolproofing). This

is an important step towards the automatic loading into fixtures (Benhabib et al. 1991,

Rong et al. 2005) and also the design of a generation of adaptive fixtures. They do

not strictly constitute a separate category of fixture concepts as they take the form

of any of the previously mentioned fixtures. The difference is that they bear sensing

elements integrated into their structure. In the vast majority of cases, these elements

are used to record clamping, reaction and external forces for the purpose of machining

condition monitoring. However, position sensors have also been used to record workpiece

displacement from its desired location.

The first attempt to integrate sensing capabilities into a work-holding device was made

by Gupta et al. (1988). This work describes the fabrication of a simple vice comprising

two V-blocks, one fixed and one movable. A piezoelectric dynamometer was placed on

the fixed V-block to measure clamping forces. Another dynamometer, measuring thrust

forces and torque from the drilling tool, was placed below the base of the two V-blocks.

The recorded data was used to identify the safe and unsafe clamping force regions in

relation to spindle speed and feed rate.

Hameed et al. (2004) investigated the performance of a fixture with uniaxial-force-

sensor-integrated elements for accurate monitoring of the cutting forces from milling

operations. The goal was to alleviate the need for a multi-axis dynamometers.
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de Meter and Hockenberger (1997) instrumented a fixture with eddy current displace-

ment sensors to record workpiece displacement from its desired position due to the clamp-

ing process. This information was used to compensate the tool path of a milling cutter.

Denkena et al. (2009) designed and built a fixture with integrated MEMS temperature

and acceleration sensors and strain gauges-based displacement transducers. The sensors

and strain gauges have been optimally placed in the design by means of model-based

optimisation.

Sah and Gao (2008) made a fixture-die-binder system that can measure the contact

forces that can be used to produce a real-time estimate of the contact pressure during

the stamping operation for the purspose of process monitoring.

Shirinzadeh (1995) proposed the application of sensors and vision systems to establish

the location and orientation of a part and to use this information to control the tooling

operations in an assembly fixture, as e.g. used in aerospace industry. Currently this

tooling concept is being developed at Linköping University under the name of Affordable

Reconfigurable Tooling (ART) (Jonsson and Ossbahr 2010, Jonsson et al. 2008).

3.2. Automatically Reconfigurable Fixtures

In this section fixtures with automatically self-reconfigurable capabilities are discussed.

To the best of the authors’ knowledge, the first NC fixtures were conceptualised and

presented by Tuffentsammer (1981). In this work two NC fixturing principles were pre-

sented: the double revolver and the translational movement. The first one can achieve

differentiation in the fixture element position by using independently actuated revolvers,

called the primary and the secondary. The primary revolvers take the form of disks, on

which a variable number of secondary revolvers is assembled. Each revolver is able to

rotate independently. The secondary revolvers bear cylindrical-pin formations, which are

positioned eccentrically to the revolvers axis of rotation and are able to extend and re-

tract. By combining the movement of the primary and the secondary revolvers, different

fixture set-ups are achieved for a variety of processes. Hydraulic linear actuators, which

are positioned above the workpiece, are used to apply the required clamping forces.

The translational-movement-based system uses linear motion to achieve the necessary

readjustment of the position of the elements. Just as in the double-revolver concept, this
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fixture deploys cylindrical-pin formation that can extend and retract to conform to the

workpiece geometry. Contrary to the previous concept, however, the clamping elements

of this NC fixture are situated at the side of the workpiece and are positioned on slides

with vertical orientation.

The two previously mentioned principles are presented schematically in Figure 1. These

principles have also been used by Du and Lin (1998) and Du et al. (1999) in their

proposals of NC fixturing concepts. A short discussion on the working of the concept is

given in Section 3.3.

(a) (b)

Figure 1. Two NC fixturing concept utilising the (a) double revolver and (b) translational move-

ment principles (Tuffentsammer 1981, Picture 23 and 24).

When making a taxonomy of the fixturing techniques, the first of these concepts are

the actuated pin-type array fixtures as described above. Secondly, concepts based on

grippers that grasp objects are discussed by Nee et al. (1995). Often these designs are

used in micro-machining and are also known as “micro-manipulator” or “tweezers”. The

positional accuracy and load bearing capacity of dexterous grippers for larger object is

generally lower than that of fixtures. For this reason, other gripping strategies have been

proposed, e.g. the designs presented by Sudsang et al. (2000) and Chan and Lin (1996)

where a part can be grasped, positioned and orientated. Both concepts are respectively

shown in Figures 2 and 3.

The remaining two main fixturing concepts are robots in the form of parallel kinematic
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mechanisms (PMKs) and Cartesian coordinate robots. Currently, PKMs are mainly ap-

plied in assembly fixtures (Kong and Ceglarek 2006). See e.g. Kurz et al. (1994), Arzan-

pour et al. (2006), and Wagner et al. (1995), for early applications of PKMs in fixturing,

while more recent approaches can be found in papers by Bi et al. (2008), Dashchenko

(2006), Jonsson and Ossbahr (2010) and Li et al. (2010). Molfino et al. (2009) propose

the use of many PKMs (a swarm) to be able to relocate support points during the ma-

chining process. An illustration of this concept is shown in Figure 4(a), where a group of

PKM-based fixture elements provides extra support at the tool location. PKMs can be

Figure 2. Setup for the multifinger modules as a CNC controlled modular fixture developed by

Chan and Lin (1996, Fig. 11).

Figure 3. Reconfigurable gripper designed and build by Sudsang et al. (2000, Fig. 1): (a) con-

ceptual design and (b) actual prototype.
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positioned more accurately than Cartesian robots and have a proven capability to pro-

vide large stiffness; they are often applied in modern machining centres (Bi et al. 2008,

Fleischer et al. 2006). Cartesian robots, however, are easier to control and more compact

than PKM-based robots. Other principles have been conceived for the design of auto-

matically reconfigurable fixtures. Lee et al. (1999) and Izquierdo et al. (2009) discuss the

fixture layout synthesis for respectively stamping fixtures and assembly fixtures based

on SCARA (selective compliant articulated robot arm) with prismatic revolute revolute

(PRR) joints. Tol (2003) proposed a design which extends the vise-based modular fixture

concept by Wallack and Canny (1994).

At The University of Nottingham, UK, a more advanced version of the multifinger

modules presented in Chan and Lin (1996) has been designed and is described in Pa-

pastathis et al. (2007), Ryll et al. (2008) and Papastathis (2010); their concept is shown

in Figure 4(b). Additionally, Ryll (2010) developed a methodology to build a software

framework. Papastathis et al. (2010) designed a system, shown in Figure 5(a), that has

the capability to automatically reconfigure for a family of different high-pressure com-

pressors in aero-engine rotors. Furthermore, a rig was developed by Bakker et al. (2011a)

for initial tooling evaluation of the application of a fully automated Stewart platform and

manual Cartesian adjusters for the assembly of composite wings. This rig is shown in

Figure 5(b). Martin et al. (2011) provide a detailed discussion on the interface between

the metrology and the actuation of the Stewart platform. More advanced 3D concepts of

Cartesian robot based fixtures have been developed for the highly automated assembly

lines in the automotive industry, e.g. (Anonymous 2006).

3.3. Active Fixtures

Active fixtures, sometimes also referred to as adaptive fixtures, are perhaps the most

recent development in fixturing technology. The family of adaptive fixtures includes fix-

turing systems with elements that can apply variable clamping forces, responding to

external stimuli. These fixtures usually deploy clamping elements that incorporate actu-

ation and sensing capabilities, rendering them able to operate in a closed-loop manner.

In this sense, they are a logical evolution from both sensor-based and automatically

reconfigurable fixtures.
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(a) “Conceptual schematic of self recon-

figurable swarm fixture: (1) part; (2)

manufacturing equipment; (3) bench; (4)

agent; (5) support head; (6) position-

ing mechanism; (7) mobile bases; (8)

concentration of agents in the manufac-

turing region.” Source: Molfino et al.

(2009), Fig. 2.

(b) The hardware instantiation of the fully-active fixture pro-

totype, showing the two transport components and the passive

locating elements that comprise the fixture. Source: Papastathis

(2010), Fig. 3.5.

Figure 4. Design concepts for self-reconfigurable fixtures with the ability to reconfigure during

machining process.

(a) Reconfigurable fixture for the as-

sembly of high pressure aero-engine

compressors. Source: Papastathis et al.

(2010), Fig. 2.

(b) Wing assembly fixture developed at The

University of Nottingham, taken from: Martin

et al. (2011), Figure 2.

Figure 5. Reconfigurable fixtures for different aerospace assembly operations.

Three approaches, regarding the active control of part-fixture deformation, can be

identified in the literature. Firstly, direct compensation for part displacement (position

control), secondly, controlling the reaction forces at the locators, and, thirdly, suppressing

machine chatter. These approaches will be discussed in the following sections.
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Two comprehensive approaches to active fixtures can be found in literature. The el-

dest is the ‘Intelligent Fixturing System’ (IFS) developed at the National University of

Singapore by Nee and coworkers (Nee et al. 2000, 2004). The schematic design is shown

in Figure 6(a). The design of the IFS starts after determining the optimal placement and

clamping order (Tao et al. 1999b) and the optimal clamping forces (Tao et al. 1999a).

Wang et al. (1999) propose to calculate the optimal clamping forces for the IFS off-line,

i.e. aforehand, and then use these calculated forces in the real world. Additionally, a

proposal for a simple model-based online control of the clamping forces was made (Wang

et al. 1997). The clamping force in the Singapore IFS is generated by a ball screw driven

by a permanent magnet DC motor (Mannan and Sollie 1997). For extra accuracy the

ball screw is controlled by a cascaded controller that compares the clamping force with

the actuator displacement multiplied by a constant stiffness gain. Not explicitly drawn

in Figure 6(a), the clamping force is monitored by force sensors and position control is

used to obtain extra accuracy in the position of the tip of the clamp as force and static

displacement are proportional to the effective stiffness of the part-fixture system. Nee

et al. (2004) apply system identification to establish models for the dynamic control of

the IFS, contrary to the proposals by Wang et al. (1997, 1999). In Figure 6(b) it can be

observed that the approach by Nee et al. shows a promising increase of surface quality af-

ter machining, this increase has also been observed in the experimental results presented

in Papastathis (2010).

The second approach is formed by the concepts developed at The University of Not-

tingham. Firstly, the design by Papastathis et al. (2007), Ryll et al. (2008), shown in

Figure 4(b), is also used for control of the reaction forces. In Papastathis (2010) and

Papastathis et al. (2007) a further description of the concept of an intelligent fixturing

system, that incorporates active fixture elements and possesses the additional ability

to automatically reconfigure, is given. This fixture utilises position and force feedback

sources to actively adapt the clamping forces it applies and to autonomously change its

set-up, according to the geometry of the workpiece. This approach provides the added

capability to change the position of the fixturing elements throughout the manufacturing

process. This strategy leads to increased local stiffness of the workpiece around the area

where the machining process takes place (Papastathis 2010). The model-based control
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design of fixture is reviewed in Sections 4.2.2 and 5.

Finally, Papastathis et al. developed an active fixture for the assembly of the high

pressure (HP) compressor of the Trent family of Rolls-Royce aero-engines (Papastathis

et al. 2010). The fixture deploys a series of DC-motor and stepper motor-based linear and

rotary actuators in a radial formation. The developed fixture uses quadratic encoders as

position feedback sources and strain gauges to monitor and control the clamping forces

applied by the fixture. Apart from applying varying clamping forces and controlling them

to reject external disturbances, the fixture has the ability to autonomously reconfigure.

As a result, the same fixture can be used for the assembly of the HP compressor rotor

of five different aero-engine types.

(a) Schematic architecture active fixture developed by

Nee et al., taken from: Nee et al. (2004), Fig. 6.14.

(b) Measured machined surface pro-

files, under (a) passive clamping and

(b) active clamping. Source: Nee et al.

(2000), Fig 7.

Figure 6. Concepts of force-controlled fixtures.

Another famous example of adaptive fixturing was developed by Chakraborty et al.

(2001a,b). This fixture uses a Coordinate Measurement Machine (CMM) to probe im-

portant features on automotive engine blocks. This information is employed to identify

the exact position and orientation of the surfaces to be machined. A micro-positioning

base is adopted to reposition the workpiece to its ideal location.

Bukowski et al. (2008) developed a concept that utilises stepper motor actuators play-

ing the role of the active fixture clamps, as shown in Figure 7. Laser and inductive sensors

are used to detect large and small workpiece displacements, respectively. Furthermore,
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the proposed active fixture bears force sensors to monitor the applied clamping forces

and vision sensors that allow for establishing the position of the workpiece relative to

the reference frame of the fixture.

Figure 7. Active fixture designed and build by Bukowski et al. (2008). Source: Grochowski et al.

(2010), Figure 10(b).

Yamaguchi et al. (2010) describe an active assembly fixture consisting of 4 two-segment

arms of which the first segment is actuated along its axis. The fixture can position parts

onto a certain location, making use of vision, force sensors and inverse kinematics. Zhang

et al. (2009a) proposed a device to be applied in a modular welding fixture that can com-

pensate for variation in part dimensions. Furthermore, Park and Mills (2005) developed

a robot arm with an active gripper able to damp-out vibrations and to compensate for

static deformation due to gravitational forces in metal sheet assemblies.

Wiens et al. (2010) developed a concept for a force-controlled fixture for meso-scale

manufacturing, which is shown in Figure 8(a). Similar to the concept by Yamaguchi et al.

(2010), the fixture consists of four fixels that can be used to position and orientate the

workpiece. The fixel consists of a monolithic four-bar PKM mechanism utilised for active

force control and part manipulation.

Veĺı̌sek et al. (2008) developed an intelligent pneumatic clamping device that is aware

of both the presence of a part (loaded condition) and the clamp location. The clamps
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work simultaneously and in opposite directions, an external cassette is needed to load

and hold the part.

Du and Lin (1998) developed a prototype of an automatically reconfigurable fixture

for planar objects, consisting of three pins that can be repositioned. One pin can be

repositioned with a Cartesian coordinate based mechanism and the two other pins can

be repositioned with a rotary table based mechanism, as shown in Figure 8(b). The pin

on the moveable module, see Figure 8(b), is used to clamp the part onto the two locators.

Du et al. (1999) applied an online measurement of the workpiece stiffness in the fixture

during machining to control the clamping forces.

(a) Adaptive fixture concept devel-

oped by Wiens et al.. Source: Wiens

et al. (2010), Fig. 1.

(b) Three fingered reconfigurable fixturing system pre-

sented in Du and Lin (1998), Fig 1.

Figure 8. Concepts of force-controlled fixtures.

The concept described by Tol (2003) is based on that of Wallack and Canny (1994)

and Du and Lin (1998), and uses 4 pins and the Cartesian robot concept instead of two

rotating disc elements.

Mc Keown (2009) developed and tested reactive programmable bed of pins fixture for

aerospace tooling, where a suction cup mounted on top of each pin is used to pull the

metal sheet assembly on the fixture during a stir welding operation.

Adaptive fixtures present numerous advantages. They offer a better understanding of

the effect that fixtures have on the manufacturing process outcome and the possibility

to adapt the fixture parameters to optimise the results. In essence, adaptive fixtures

aim at eliminating the errors caused by the fixturing process and affect the quality of

the end-result. In some cases, reconfigurability has been combined with adaptiveness to
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produce a flexible and highly-performing solution. The drawback of adaptive fixtures is

the increased cost associated with the sensory and actuation equipment necessary.

3.3.1. Related Work

3.3.1.1. Baseplate-Based Concepts.

Vibrations originating from workpiece-machine interaction have an adverse effect on the

machining quality. One of the strategies taken to improve tool-life and surface finish is

to suppress one or more of the dominant modes of vibration by following the vibrations

of the tool. An early approach is made by Tansel et al. (1995), who designed a fixture for

micro-manufacturing, for improved tool-life by suppressing chatter. Rashid and Nicolescu

built a grinding table, sometimes referred to as a chuck or pallet, to cancel vibrations

in milling (Rashid and Nicolescu 2006). Recently, this approach has started to receive

attention in Germany: (Abele et al. 2008, Brecher et al. 2010). A similar approach is

found in the designs for fixtures that are developed for vibration-assisted grinding in

micro-manufacturing, see e.g. Zhong and Yang (2004). Contrary to the concepts discussed

above, Daniali and Vossoughi (2009) present a concept where the itself fixture is moved

on a the baseplate instead of both baseplate and fixture.

Related to the chatter suppression fixture designs are the micro-positioning tables for

grinding that can compensate for workpiece deformation due to machining forces (Gao

et al. 2001, Zhang et al. 2006). Another approach has been taken by Culpepper et al.

(2005), who developed an eccentric ball-shaft-based positioning-table fixture concept,

where the balls are actuated by ball-screw actuators to increase the accuracy of part

positioning. In another paper Varadarajan and Culpepper (2007), improved the design

by now positioning the balls by means of piezoelectric actuation and flexure bearings.

3.3.1.2. Structural Control-Based Approaches.

This strategy is different from the baseplate-based concepts discussed above in Sec-

tion 3.3.1.1 in the sense that chatter is not suppressed by means of fixture elements,

but by external (extraneous) elements that are directly attached onto the workpiece as

is done in modern control of structures. Rashid and Nicolescu (2008) developed a con-

cept with passive damping elements, called tuned viscoelastic dampers (TVDs). The
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viscoelastic properties of the damper govern the stiffness of the element: it also depends

on the local velocity of material. Zhang and Sims (2005) attached a piezoelectric element

to the workpiece for active vibration damping.

4. Dynamics of Part-Fixture Systems

Fixturing devices are in direct contact with the processed workpiece, greatly affecting

its dynamic response. Designing better performing and more efficient fixturing systems

requires an in depth understanding of the effects they have on the workpiece behaviour

and, therefore, the process outcome. As a result, the interaction between fixture and

workpiece has received significant attention.

4.1. Friction and its Effect on the Workpiece-Fixture System

Dynamics

One of the aspects of fixturing that has received considerable research attention is the

friction at the contact points between the fixture and the workpiece. Friction affects

the dynamic behaviour of the system and is dynamically affected by the response of the

fixture-workpiece system to external dynamic loads. The presence of friction increases the

stability of the system and also helps dampen the vibrations experienced by the fixture

and the workpiece during dynamic loading conditions. Hurtado and Melkote (1999) aimed

at experimentally establishing the coefficient of static friction between a cast aluminium

workpiece and oxide-coated steel fixture elements, when excited by dynamic loading.

A series of factors and their effects were investigated. These included the normal pre-

load forces (clamping forces), the frequency of excitation in both normal and tangential

directions, and the vibration amplitude in the normal and tangential directions.

Fang et al. (2002) examined the damping effect of friction on the stability of the fixture-

workpiece system under machining conditions. More specifically, they formulated a model

that included the vibration of the workpiece and the fixturing elements, which was solved

using the finite elements method. It was observed that at specific levels of clamping forces,

a “locking” effect is starting to emerge, significantly reducing the relative motion between

the workpiece surface and the fixturing element. It should be noted that, in the case of
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multiple contact interfaces, this locking effect does not emerge simultaneously on all

contacting points, but it appears sequentially.

Motlagh et al. (2004) utilised the Armstrong non-linear friction model to improve the

model developed by Fang et al. (2002). The addition of the Armstrong friction model

renders the overall model able to converge to a solution even for high clamping forces.

This is not possible with the model in (Fang et al. 2002). The proposed approach enables

the study of pre-sliding and micro-sliding at the fixture-workpiece contact points.

4.2. Modelling of Fixture and Workpiece Considering their

Dynamic Interaction

Another area that has significantly attracted the attention of the research community is

that of the modelling of fixture-workpiece systems and their dynamic behaviour. Models

for both passive and active fixture systems have been presented.

4.2.1. Passive Fixture Systems

Mittal et al. (1991) created a model for the dynamic analysis of the fixture-workpiece

system. Their approach is based on the finite element method and the Dynamic Analysis

and Design System (DADS) computer code. In this approach the workpiece is treated as

rigid. The machining forces and torques are treated as having constant or linearly-varying

magnitude. The fixturing elements are simulated as lumped, translational spring-damper-

actuator (TSDA) elements. In this way, the local flexibility at the contact points between

the fixture and the workpiece is captured. The stiffness in the TSDA elements is treated

as linear and the actuator part of the TSDA element is approached as a constant clamping

force. This model allows for the separation between workpiece and fixture. The model

was used to evaluate the system stability and the effects of clamping sequence and locator

arrangement on the machining accuracy of the workpiece. It was shown that the relative

placement of locators and clamps has a greater impact than the absolute placement of

the locators alone. The sequence of application of the clamps was also observed to have a

significant impact on the end result. The authors of this work also pointed out the utility

of obtaining the vibration characteristics of the system, as this could help to design a

fixture that can reduce surface finish variations.
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Yeh and Liou (1999) treated the fixture-workpiece system solely through the stiffness

at the contact points. For this they proposed the use of virtual springs to simulate the

interaction between the workpiece and the fixture. The mass of the virtual springs and

the damping are considered negligible. A modified version of the Hertz contact theory

was used to establish the stiffness of the virtual springs. Spring constants that stemmed

from the above two models are incorporated in a FE model, which is used to calculate the

natural frequencies and the frequency response of the simulated system. Experimental

modal analysis results proved the validity of the proposed modelling approach.

Behzadi and Arezoo (2002) followed a similar approach to model the dynamic be-

haviour of a fixture-workpiece system. The workpiece is considered perfectly rigid and

the rigidity of the fixturing elements is represented through spring-damper elements.

The entire system is regarded to be linear. The developed model was implemented to

investigate the effect of support elements on the flatness and roughness of a machined

surface.

Deiab and Elbestawi (2004) proposed a more comprehensive model of the fixture and

workpiece system. This model treats both the workpiece and the fixture elements as

flexible. The interaction at the contact points is modelled through spring elements en-

hanced with a modified version of Coulomb’s law of friction. This aims at reflecting the

effects of friction. The model also integrates a three-dimensional model of the workpiece,

the geometry of the cutting edge of the tool, and modal characteristics of the machine

tool. In this way, the dynamics induced by the cutting forces can be accounted for in the

model, allowing for a more accurate calculation of the workpiece and the fixture dynamic

deformations. The model was used to evaluate the effects of friction, location of fixture

elements and contact stiffness on the machining process outcome.

Liao and Hu (2001) developed a Finite Element Analysis-based model of the fixture-

workpiece system, which treats the workpiece, the fixture elements and the fixture base

as flexible. The dynamic compliance of the workpiece and the contact stiffness character-

istics are also reflected in the model. The approach can take into account the deflection

experienced by the fixture and the workpiece due to the static clamping loads, instan-

taneous machining forces and the forced vibrations caused by the dynamically changing

amplitude of the machining forces. The model is used to predict the surface flatness of
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fixtured parts under dynamic machining conditions.

Phuah (2005) and Ratchev et al. (2005, 2007) also used the finite element approach

to describe the dynamic behaviour of fixture-workpiece systems undergoing a grinding

process. In this work the workpiece is treated as a deformable solid and simulated in

commercial FE software. The fixturing elements are introduced into the model as spring

and damper elements. The stiffness profile of these elements was determined experimen-

tally. The changing point of application of the dynamic machining loads is captured in

the work, however, this is achieved in a pseudo-static manner.

Deng (2006) worked on incorporating the effects of material removal due to a ma-

chining process on the dynamic behaviour of a workpiece. As in some of the previously

described cases, this work treats the fixturing elements and the workpiece as deformable

solids. The fixture base, however, is considered to be rigid. The mass removal effects

were incorporated by considering both the mass characteristics of the workpiece and the

rate of change of its inertia. The former was obtained through the geometric model of

the workpiece in various phases of the machining process using the 3D modelling engine

ACIS. The mass reduction rate was calculated through the forward finite differences

method. The stiffness characteristics of the workpiece are obtained using the FEA soft-

ware Ansys. The damping characteristics of the workpiece and fixture elements are not

taken into account. Finally, the fixture-workpiece interaction is represented through a set

of spring constants acting in all three translational Cartesian directions. This represen-

tation accounts for the stiffness of the fixture elements and the stiffness of the contact.

The model was used to investigate the dynamic stability of the system throughout the

manufacturing process. It was also used to optimise the design of the fixturing process,

and more specifically the applied clamping loads.

A simplified model of the above, one that treats the workpiece and the fixturing ele-

ments as rigid, was also established by Deng and Melkote (2005). This model includes

the material removal effects and accounts for the dynamic nature of the machining loads.

The model was developed using analytical expressions and the authors investigated the

dynamic stability of the system and the effects of clamping forces. Most authors, see e.g.

Govender (2001), Kaya and Öztürk (2003), Nikov (2004) and Rai and Xirouchakis (2008),

propose the use of special elements in the finite element environment to take care of the
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material removal. In addition, Deng (2006) studies the influence of material removal on

fixturing stability and proposes to optimise the clamping by taking into account the ma-

terial removal. Zhang et al. (2009b) propose to apply matrix perturbation techniques to

update the mass and stiffness matrices to accommodate for material removal.

4.2.2. Active Fixture Systems

In all above cases, the fixturing elements are treated as passive components. Locat-

ing elements are at best regarded as deformable bodies that present a reaction force

when external loads are applied on the workpiece. Clamping elements present the same

behaviour, but they are also granted the ability to apply constant forces on the work-

piece. However, with the advent of active fixtures this approach is no longer adequate.

The fixture elements can actively react to external forces, automatically adapting their

position, reaction and clamping forces. The dynamic response of the fixturing elements

of active fixtures should therefore be taken into consideration when modelling such fix-

turing systems. Bakker et al. (2008b) were perhaps the first to integrate the dynamic

behaviour of active fixture elements to the model of a fixture-workpiece. In this work the

active fixture elements take the form of hydraulic actuators, whose response is reflected

by a first-principle-based analytic model. The workpiece is approached as a concentrated

mass object. The compliance of the fixturing element and the workpiece are modelled as

spring and damper pairs. The forces that are exerted on the system present time-varying

amplitude. The developed model was used to theoretically investigate the performance

of position-feedback and force-feedback control strategies, with various controller de-

signs. Bakker et al. used the same modelling approach to investigate the performance of

control strategies and controller designs for a fixture-workpiece system with piezoelec-

tric actuators (Bakker et al. 2008a). The workpiece is again treated as a concentrated

mass-spring-damper system, connected to the active fixturing element through a lever

mechanism.

Expanding the previous models, Bakker et al. (2009a) proposed a methodology through

which the dynamic behaviour of an active fixture-workpiece system can be extracted.

The active fixture elements in this work are based on hydraulic actuation with closed-

loop operation. The workpiece is described through a reduced finite elements model.
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The behaviour of the modelled system under various control strategies was investigated.

The above methodology was also applied to establish the fixture-workpiece system of

a thin-walled, box-shaped workpiece fixated by an active fixture with electromechani-

cal actuators as clamps (Bakker et al. 2009b). Permanent magnet synchronous motor

(PMSM) actuators were assumed. These were modelled using the first-principle equa-

tions that apply for DC motors. Step forces were used as the source of excitation of the

system. Different control strategies were investigated for their performance in minimising

the workpiece displacement.

Moreover, in Bakker et al. (2011b) and Bakker (2010), the aforementioned methodology

was implemented to simulate the behaviour of a Nozzle Guide Vain (NGV) workpiece

being processed by grinding. A reduced model of the workpiece was coupled with an

analytical model of piezoelectric active clamps, operating in closed loop. The dynamic

amplitude and moving nature of the forces exerted on the workpiece by the grinding

process were also included.

Papastathis (2010) and Papastathis et al. (2012) expanded the study on moving loads

in combination with an experimental validation of the in-depth modelling of active elec-

tromechanical fixturing elements coupled with FEA models of thin-walled components.

Additionally, Papastathis (2010) investigated an optimisation strategy for the dynamic

replacement of the fixturing elements, which allows a fixture structure to be modelled au-

tomatically reconfigurable during the machining process. To the authors’ best knowledge

this is the first time this paradigm has been analysed in an extensive manner.

Nee et al. (2004) presented another approach to modelling the active fixture-workpiece

system. This approach is based on system identification principles and the establishment

of a parametric Autoregressive-Moving Average (ARMA) model. The least squares tech-

nique was proposed as the means of calculating the unknown parameters of the ARMA

model. As this model is extracted from experimental data, it reflects all the parameters

that contribute to the response of the system.

Finally, a special mention should be given to the following research activities, despite

the fact that both treat the fixture workpiece system as quasi-static. Grochowski et al.

(2010) use commercial FEA software to model the workpiece. The active elements of

the fixture, which are composed of stepper-motor actuators, are modelled using first
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principles. Their closed-loop operation, controlled by a PID regulator, is reflected in the

developed model. The latter is introduced to the FEA model of the workpiece through

subroutines implemented in the Fortran77 programming language. The model was used

to evaluate the performance of a system in controlling the position of a point on a beam

workpiece that experiences deflection due to externally applied forces. The point whose

position is controlled does not coincide with the contact point between the fixture and

the workpiece.

Nee et al. (2004) do not reflect the dynamic behaviour of the active elements of their

system in their FE model of the workpiece. The fixture elements are represented as spring

elements. For every time step for which the FE model is solved, the clamps can apply

forces with different amplitude and different point of application. This way, the model

reflects the ability of the fixture to dynamically adjust the position of the clamps and the

clamping forces it exerts. This is the first and only instance where the effects of clamps

that constantly change their positions during the manufacturing process are mentioned.

4.3. Fixture Design Methods Accounting for System Dynamics

In many cases, dynamic models of the fixture-workpiece systems have been used to assist

the design of the fixture. Daimon et al. (1985) formulated a fixture design method, based

on the dynamic behaviour of a fixated workpiece. They used finite element simulation

and/or experimental modal analysis data to evaluate the dynamic compliance of the

workpiece under a certain fixture layout. The proposed method can be employed to

evaluate the positions where additional supports would reduce the dynamic compliance

of the workpiece to acceptable levels. Similar is the work by Mittal et al. (1991), in

this approach the fixture elements were simulated as sets of springs and dampers. The

latter were treated as having constant stiffness and damping coefficients, respectively.

The method was trialled on thin-walled cast iron and steel box-like workpieces.

Padmanaban and Prabhaharan (2008) proposed another design method, also based on

the dynamic behaviour of a fixture-workpiece. It uses Ant Colony and Genetic Algorithms

to minimise the dynamic elastic deformations experienced by a workpiece, excited by

harmonic forces. In this work the workpiece is treated as deformable, but the fixture itself

is rigid. The objective function of the problem, generated by formulating the problem
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through finite element principles, is solved using the modal superposition method. The

workpieces for which the method was tested are two-dimensional and are excited by

purely harmonic forces acting in the plane of the workpiece.

Deiab (2006) used the finite element analysis to investigate the effect that the posi-

tion of supporting elements has on the dynamic response of a workpiece undergoing an

end-milling operation. This model includes factors like cutting edge geometry, process

parameters, fixture layout, and others. Both the workpiece and the fixture elements are

considered flexible. The model was used to identify the fixture layout that increases the

stability of the system and reduces the maximum vibration amplitude experienced by

the workpiece under dynamic excitation. This study concentrates only on the positioning

of passive support elements.

Li and Melkote (2001) used a lumped mass and stiffness model to describe the dynamic

response of the fixture-workpiece system. The fixturing elements are represented as a set

of springs, two in the tangential and one in the normal direction to the surface of the

workpiece at the point of contact. Damping and slippage at the contact points were not

taken into account. The same holds true for the moving nature of the point of application

of machining forces. An iterative algorithm was used to establish the fixture layout and

clamping forces that resulted in the lowest positional/location error of workpiece.

Deng (2006) and Deng and Melkote (2006) implemented the model already discussed

in Section 4.2.1, to optimise the clamping forces that are applied by the fixture per

tool pass during the machining process. As already mentioned, the model behind this

fixture design method considers the dynamic response of the fixture-workpiece system,

whilst also incorporating the effects of the material removal to the dynamic response of

the system. The optimisation problem is solved using the Particle Swarm Optimisation

technique.

As already expounded in Section 4.2.2, Papastathis (2010) proposed an optimistation

strategy for the dynamic replacement of fixture elements in the design phase of active

and in-process reconfigurable fixtures.
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5. Control Strategies for Active Fixtures

Another research area that is of great importance in this field is that of the control

strategies that have been proposed for the regulation of the operation of active fixtures.

Mannan and Sollie (1997) proposed the cascaded position/force control algorithm for the

operation of active clamping elements. This method utilises two feedback sources, namely

a force sensor and a position sensor. The control loop implements two controllers: one

implemented by means of a motion control card, and the other implemented by means of

software. The former is a PID (proportional-integral-derivative) controller and the latter

is a simple proportional controller. The controlled variable in this work was the force

applied by the clamping elements of a prototype active fixture.

Nee et al. (2004) used the same approach with a slight variation in their application.

More exactly, the proportional controller in the force-feedback loop (external loop) that

was utilised by Mannan and Sollie was replaced by a simplified version of the Generalised

Minimum Variance (GMV) self-tuning controller.

Du et al. (1999) described the utilisation of two separate control strategies to regu-

late the positioning and force application tasks of a prototype three-fingered intelligent

fixture. The direct position feedback was used to control the positioning actions of the

fixture. The feedback source for this loop was an optical encoder mounted on the axis of

a DC motor. The direct force feedback approach was used to control the forces exerted

by the fixture on a thin-walled cylindrical workpiece. Strain gauges were utilised as the

feedback source for this loop. A digital controller was in charge of regulating the response

of the fixture. No further detail were given on the characteristics of this controller.

Bakker et al. (2008a,b, 2009a,b) examined the effect of different control schemes on the

response of the fixture-workpiece systemt. In detail, both force- and position-feedback

with various controller designs were examined. The goal was to investigate which of the

above schemes leads to a system that reacts to external loads in such a way that the

workpiece displacement is minimised. The direct force-feedback and the direct position

feedback algorithms were used. This work showed that position feedback leads to a system

that minimises the unwanted behaviour of the workpiece.
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Papastathis (2010) investigated experimentally the performance of two different con-

trol strategies for active fixturing elements based on PMAC actuators. The first one is

the cascaded position/force control strategy, and the second is the direct-force control

strategy. Results showed that the latter strategy presents faster response to command

inputs, although high overshooting was a drawback of this method.

Grochowski et al. (2010) applied a simple position-feedback loop architecture to control

the displacement of a cantilever beam workpiece by using stepper motors as active fixture

elements. A PID regulator was used to control the response of the system.

Most of the previously described approaches have the objective to minimise workpiece

displacement and deformation under clamping either by controlling the applied clamping

forces or by controlling the position of the tip of the active clamping elements. Look-

ing into a possible capability of active fixturing systems, Rashid and Nicolescu (2006)

investigated the ability to actively control the vibration experienced by a workpiece un-

dergoing end-milling processing. To achieve this, their palletised active fixture deploys

three-component force sensors and piezoelectric actuators housed in the baseplate of the

palletised fixture. The authors of this worked implemented the filtered input least-mean

squares (FXLMS) algorithm to control the output of the actuators.

6. Conclusions and Future Developments

6.1. Conclusions

A review of the developed fixturing technologies, as presented in this paper, reveals

that performance and flexibility are the driver behind the different fixturing concepts

that have been proposed. Flexibility is the point of focus in many cases. Conformable

fixtures, modular fixtures and phase-change fixtures are examples of highly flexible fixtur-

ing solutions. In most recent years, however, fixturing concepts have been developed with

performance in mind. This is reflected in the increased attention that active fixtures have

received during the past fifteen years. Fixture concepts behind which the combination of

increased performance and flexibility is the driver have yet to be proposed.

Furthermore, the active fixture solutions thus far concentrate on the application of

dynamically-adjusted clamping forces. Fully-active fixtures, which can vary the ampli-
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tude and point of application of clamping forces throughout the manufacturing process

have mostly been suggested and discussed on a hypothetical basis. Apart from the work

by Papastathis (2010), hardware implementation of the concept of fully-active fixtures

has not been encountered. This fixturing technology not only promises enhanced perfor-

mance, but could also combine it with high levels of flexibility.

Apart from fixture concepts, another subject within the field of fixturing that has

received considerable amount of attention is the investigation and modelling of the effects

of fixtures on the behaviour of the workpiece. This of course directly relates to increased

performance of fixturing solutions. Understanding how the fixture affects the outcome of

a process is the key to design better performing fixtures. Friction and contact stiffness

at the fixture and workpiece interface points, and how these affect the response of the

workpiece to external stimuli, have been the focal point for many researchers. A series

of modelling approaches, each with its own assumptions, simplifications and limitations,

has attempted to enhance understanding of the fixture-workpiece system. The accurate

simulation of the static and dynamic response of the fixture and workpiece system to the

clamping forces and the externally applied forces has been the main goal of the proposed

models. These models can be used for verifying the performance of a fixture in terms of its

stability and the workpiece deformations, bypassing the need for building cost-intensive

prototypes.

Additionally, the developed models have been used as means of designing better per-

forming fixtures. The careful placement of locating, supporting and clamping elements

around the workpiece could amplify stability and reduce deformations and vibrations, ex-

perienced by the workpiece. Also, a fixture that performs as intended, with the minimum

number of fixturing elements around the workpiece, helps improve accessibility.

6.2. Prospective Future Trends

Integration with General Fixture Design

An integration is needed of the design methodology for active fixturing systems with

more general Computer Aided Fixture Design and Fixture and Production Planning.

The model-based design methodology for the controllers presented in Bakker (2010),
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Bakker et al. (2009a, 2011b) and Papastathis (2010) enables the control design engineer

to work almost in phase with the hardware design, but to date there is no unified design

methodology for intelligent fixturing systems.

Such a design methodology will rely heavily on the mechatronic design approach which

has been successfully applied for the design of high-tech precision machinery. Mechatron-

ics is a multidisciplinary and multiphysics approach by nature, as it joins the design and

analysis of mechanical, control, electronic and software systems. This mechatronic de-

sign approach will involve the utilisation of established tools developed in the area of

structural mechanics for the mechanical analysis of the part-fixture system. Especially,

for the fixtures designed for compliant parts, e.g. aerospace components, it is paramount

that the flexibility of the workpiece is taken into account during the fixture-design pro-

cess. Currently, in many of the approaches found in the literature, the workpiece is often

assumed to be rigid. Another aspect where the multidisciplinary mechatronic design ap-

proach can bear its fruits is when model updating techniques developed in the area of

structural mechanics are applied in a real-time model to deal with the material removal

during the machining process.

Labouring further on the mechatronic design approach, the control systems developed

within the area of modern control theory, such as H∞, H2 and µ-synthesis, predictive

control, adaptive and robust control should be used in the design of controllers for ac-

tive fixtures. Especially since fixture designs for real industrial parts typically consist of

multiple clamps, which should be controlled simultaneously.

Integration with High-Level Shop Floor Control

For industrial application, the design of active fixture hardware and controllers will

have to be integrated with the high-level control that manages the automated production

systems in the workshop. The low-level control of active fixturing systems will have to

deal with the automatic loading of a workpiece into the fixture. Furthermore, between

different jobs, or even during the job, an intelligent fixture can be reconfigured, requiring

new low-level control settings for the clamping forces.
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Extension of Active Fixturing into Other Fields

Much of the fixturing research is carried out in the field of machining fixtures. This is

reflected in the field of active fixturing research. However, the application of active fixtur-

ing systems can be wider than machining fixtures only. The predicted growing demand for

air travel will result in an increase in demand for new air planes. Meanwhile, the skilled

labour force needed for the aircraft build is shrinking, forcing aerospace manufacturers

into automation. If that trend persists, significant research and development activities

are needed to develop assembly fixtures that meet the stringent tolerance demands in

aerospace, and are e.g. suitable for use with composites at the same time, or capable of

working with families of aero-engine compononents. Some initial work in these areas has

been carried out by Bakker et al. (2011a), Jayaweera et al. (2011) and Papastathis et al.

(2010).

Furthermore, given the increasing importance of nano/meso/micro-manufacturing for

the industry sector in the developed world, it would be interesting to see the methodology

established here, expanding to micro-scale and smaller. Already, some work has been

undertaken to develop active fixtures for this scale, e.g. by Wiens et al. (2010). Other

fields for the extension of general fixturing research mentioned by Nee et al. (1995) and

Wang et al. (2010) are welding and heat treatment fixtures.
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