Skip to main content

Research Repository

Advanced Search

All Outputs (107)

Using total specific cost indices to compare the cost performance of additive manufacturing for the medical devices domain (2018)
Journal Article
Baumers, M., Wildman, R., Wallace, M., Yoo, J., Blackwell, B., Farr, P., & Roberts, C. J. (2018). Using total specific cost indices to compare the cost performance of additive manufacturing for the medical devices domain. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1-15. https://doi.org/10.1177/0954405418774591

The label additive manufacturing, also known as three-dimensional printing, serves as an umbrella term for a number of technologies designed to deposit product geometries directly from build materials and digital design information. However, as a rel... Read More about Using total specific cost indices to compare the cost performance of additive manufacturing for the medical devices domain.

Optimisation of substrate angles for multi-material and multi-functional inkjet printing (2018)
Journal Article
Vaithilingam, J., Saleh, E., Wildman, R. D., Hague, R. J., & Tuck, C. (2018). Optimisation of substrate angles for multi-material and multi-functional inkjet printing. Scientific Reports, 8, Article 9030. https://doi.org/10.1038/s41598-018-27311-6

Three dimensional inkjet printing of multiple materials for electronics applications are challenging due to the limited material availability, inconsistencies in layer thickness between dissimilar materials and the need to expose the printed tracks o... Read More about Optimisation of substrate angles for multi-material and multi-functional inkjet printing.

Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading (2018)
Journal Article
Maskery, I., Aremu, A., Parry, L., Wildman, R., Tuck, C., & Ashcroft, I. (2018). Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading. Materials and Design, 155, 220-232. https://doi.org/10.1016/j.matdes.2018.05.058

In this paper we present a numerical investigation into surface-based lattice structures with the aim of facilitating their design for additive manufacturing. We give the surface equations for these structures and show how they can be used to tailor... Read More about Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading.

3D-printed components for quantum devices (2018)
Journal Article
Saint, R., Evans, W., Zhou, Y., Barrett, T. J., Fromhold, T., Saleh, E., …Krüger, P. (2018). 3D-printed components for quantum devices. Scientific Reports, 8, https://doi.org/10.1038/s41598-018-26455-9

Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. The full potential o... Read More about 3D-printed components for quantum devices.

Effect of surfactant on Pseudomonas aeruginosa colonization of polymer microparticles and flat films (2018)
Journal Article
Hüsler, A., Haas, S., Parry, L., Romero, M., Nisisako, T., Williams, P., …Alexander, M. R. (2018). Effect of surfactant on Pseudomonas aeruginosa colonization of polymer microparticles and flat films. RSC Advances, 8(28), https://doi.org/10.1039/c8ra01491d

Micro- and nanoparticles are of great interest because of their potential for trafficking into the body for applications such as low-fouling coatings on medical devices, drug delivery in pharmaceutics and cell carriers in regenerative medicine strate... Read More about Effect of surfactant on Pseudomonas aeruginosa colonization of polymer microparticles and flat films.

Author Correction: Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction (2018)
Journal Article
Hu, Q., Sun, X., Parmenter, C. D. J., Fay, M. W., Smith, E. F., Rance, G. A., …Wildman, R. (2018). Author Correction: Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction. Scientific Reports, 8(1), Article 3512. https://doi.org/10.1038/s41598-018-21513-8

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

Tuneable ionic control of polymeric films for inkjet based 3D printing (2018)
Journal Article
Karjalainen, E., Wales, D. J., Gunasekera, D. H., Dupont, J., Licence, P., Wildman, R. D., & Sans, V. (in press). Tuneable ionic control of polymeric films for inkjet based 3D printing. ACS Sustainable Chemistry and Engineering, https://doi.org/10.1021/acssuschemeng.7b04279

Inkjet printing is a powerful additive manufacturing (AM) technique to generate advanced and complex geometries. However, requirements of low viscosity and surface tension are limiting the range of functional inks available, thus hindering the develo... Read More about Tuneable ionic control of polymeric films for inkjet based 3D printing.

Topology optimization of geometrically nonlinear structures using an evolutionary optimization method (2018)
Journal Article
Abdi, M., Ashcroft, I., & Wildman, R. (in press). Topology optimization of geometrically nonlinear structures using an evolutionary optimization method. Engineering Optimization, https://doi.org/10.1080/0305215X.2017.1418864

Iso-XFEM method is an evolutionary optimization method developed in our previous studies to enable the generation of high resolution topology optimised designs suitable for additive manufacture. Conventional approaches for topology optimization requi... Read More about Topology optimization of geometrically nonlinear structures using an evolutionary optimization method.

3D extrusion printing of high drug loading immediate release paracetamol tablets (2018)
Journal Article
Khaled, S. A., Alexander, M. R., Wildman, R. D., Wallace, M. J., Sharpe, S., Yoo, J., & Roberts, C. J. (2018). 3D extrusion printing of high drug loading immediate release paracetamol tablets. International Journal of Pharmaceutics, 538(1-2), 223-230. https://doi.org/10.1016/j.ijpharm.2018.01.024

The manufacture of immediate release high drug loading paracetamol oral tablets was achieved using an extrusion based 3D printer from a premixed water based paste formulation. The 3D printed tablets demonstrate that a very high drug (paracetamol) loa... Read More about 3D extrusion printing of high drug loading immediate release paracetamol tablets.

Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery (2018)
Journal Article
Louzao, I., Koch, B., Taresco, V., Ruiz Cantu, L., Irvine, D. J., Roberts, C. J., …Alexander, M. R. (in press). Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery. ACS Applied Materials and Interfaces, 10(8), https://doi.org/10.1021/acsami.7b15677

A robust discovery methodology is presented to identify novel biomaterials suitable for 3D printing. Currently the application of Additive Manufacturing is limited by the availability of functional inks, especially in the area of biomaterials-this me... Read More about Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery.

Design optimization for an additively manufactured automotive component (2018)
Journal Article
Abdi, M., Ashcroft, I., & Wildman, R. D. (2018). Design optimization for an additively manufactured automotive component. International Journal of Powertrains, 7(1-3), https://doi.org/10.1504/IJPT.2018.090371

The aim of this paper is to investigate the design optimization and additive manufacture of automotive components. A Titanium brake pedal processed through Selective Laser Melting (SLM) is considered as a test case. Different design optimisation tech... Read More about Design optimization for an additively manufactured automotive component.

Insights into the mechanical properties of several triplyperiodic minimal surface lattice structures made by polymeradditive manufacturing (2017)
Journal Article
Maskery, I., Sturm, L., Aremu, A., Panesar, A., Williams, C., Tuck, C., …Hague, R. J. (2018). Insights into the mechanical properties of several triplyperiodic minimal surface lattice structures made by polymeradditive manufacturing. Polymer, 152, 62-71. https://doi.org/10.1016/j.polymer.2017.11.049

Three-dimensional lattices have applications across a range of fields including structural lightweighting, impact absorption and biomedicine. In this work, lattices based on triply periodic minimal surfaces were produced by polymer additive manufactu... Read More about Insights into the mechanical properties of several triplyperiodic minimal surface lattice structures made by polymeradditive manufacturing.

Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction (2017)
Journal Article
Parmenter, C. D. J., Hu, Q., Sun, X. Z., Parmenter, C. D., Fay, M. W., Smith, E. F., …Wildman, R. (2017). Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction. Scientific Reports, 7(1), Article 17150. https://doi.org/10.1038/s41598-017-17391-1

© 2017 The Author(s). The fabrication of complex three-dimensional gold-containing nanocomposite structures by simultaneous two-photon polymerisation and photoreduction is demonstrated. Increased salt delivers reduced feature sizes down to line width... Read More about Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction.

3-dimensional inkjet printing of macro structures from silver nanoparticles (2017)
Journal Article
Vaithilingam, J., Saleh, E., Körner, L., Wildman, R. D., Hague, R. J., Leach, R. K., & Tuck, C. J. (2018). 3-dimensional inkjet printing of macro structures from silver nanoparticles. Materials and Design, 139, https://doi.org/10.1016/j.matdes.2017.10.070

The adoption of additive manufacturing technology is gaining interest for processing precious metals. In this study, the capability of inkjet printing was explored to fabricate macroscopic parts from commercial silver nanoparticle ink (AgNPs). A besp... Read More about 3-dimensional inkjet printing of macro structures from silver nanoparticles.

3D reactive inkjet printing of polydimethylsiloxane (2017)
Journal Article
Sturgess, C., Tuck, C. J., Ashcroft, I. A., & Wildman, R. D. (2017). 3D reactive inkjet printing of polydimethylsiloxane. Journal of Materials Chemistry C, 5(37), 9733-9745. https://doi.org/10.1039/c7tc02412f

© 2017 The Royal Society of Chemistry. Material jetting is a process whereby liquid material can be deposited onto a substrate to solidify. Through a process of progressive additional layers, this deposition can then be used to produce 3D structures.... Read More about 3D reactive inkjet printing of polydimethylsiloxane.

3D inkjet printing of electronics using UV conversion (2017)
Journal Article
Saleh, E., Zhang, F., He, Y., Vaithilingam, J., Fernandez, J. L., Wildman, R. D., …Tuck, C. (2017). 3D inkjet printing of electronics using UV conversion. Advanced Materials Technologies, 2(10), Article 1700134. https://doi.org/10.1002/admt.201700134

The production of electronic circuits and devices is limited by current manufacturing methods that limit both the form and potentially the performance of these systems. Additive Manufacturing (AM) is a technology that has been shown to provide cross... Read More about 3D inkjet printing of electronics using UV conversion.

3D printing of tablets using inkjet with UV photoinitiation (2017)
Journal Article
Clark, E. A., Alexander, M. R., Irvine, D. J., Roberts, C. J., Wallace, M. J., Sharpe, S., …Wildman, R. D. (2017). 3D printing of tablets using inkjet with UV photoinitiation. International Journal of Pharmaceutics, 529(1-2), 523-530. https://doi.org/10.1016/j.ijpharm.2017.06.085

Additive manufacturing (AM) offers significant potential benefits in the field of drug delivery and pharmaceutical/medical device manufacture. Of AM processes, 3D inkjet printing enables precise deposition of a formulation, whilst offering the potent... Read More about 3D printing of tablets using inkjet with UV photoinitiation.

3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release (2017)
Journal Article
Kyobula, M., Adedeji, A., Alexander, M. R., Saleh, E., Wildman, R. D., Ashcroft, I., …Roberts, C. J. (2017). 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. Journal of Controlled Release, 261, 207-215. https://doi.org/10.1016/j.jconrel.2017.06.025

A hot melt 3D inkjet printing method with the potential to manufacture formulations in complex and adaptable geometries for the controlled loading and release of medicines is presented. This first use of a precisely controlled solvent free inkjet pri... Read More about 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release.

Multi-branched benzylidene ketone based photoinitiators for multiphoton fabrication (2017)
Journal Article
Zhang, F., Hu, Q., Castanon, A., He, Y., Liu, Y., Paul, B., …Wildman, R. D. (2017). Multi-branched benzylidene ketone based photoinitiators for multiphoton fabrication. Additive Manufacturing, 16, 206-212. https://doi.org/10.1016/j.addma.2017.06.008

In this article, we report the synthesis of a series of multi-branched benzylidene (BI) ketone-based photo-initiators for two-photon polymerisation based 3D printing/additive manufacturing. Resins prepared by the addition of 1 wt.% of these initiator... Read More about Multi-branched benzylidene ketone based photoinitiators for multiphoton fabrication.

A Tripropylene Glycol Diacrylate-based Polymeric Support Ink for Material Jetting (2017)
Journal Article
Aboulkhair, N., He, Y., Zhang, F., Saleh, E., Vaithilingam, J., Aboulkhair, N. T., …Wildman, R. D. (2017). A Tripropylene Glycol Diacrylate-based Polymeric Support Ink for Material Jetting. Additive Manufacturing, 16, 153-161. https://doi.org/10.1016/j.addma.2017.06.001

© 2017 Support structures and materials are indispensable components in many Additive Manufacturing (AM) systems in order to fabricate complex 3D structures. For inkjet-based AM techniques (known as Material Jetting), there is a paucity of studies o... Read More about A Tripropylene Glycol Diacrylate-based Polymeric Support Ink for Material Jetting.