Skip to main content

Research Repository

Advanced Search

All Outputs (43)

Thickness measurement of polymer thin films with high frequency ultrasonic transducers (2019)
Journal Article
Smith, R. J., Cavera, S. L., Pérez-Cota, F., Marques, L., & Clark, M. (2019). Thickness measurement of polymer thin films with high frequency ultrasonic transducers. AIP Conference Proceedings, 2102(1), 040015-1–040015-6. https://doi.org/10.1063/1.5099765

© 2019 Author(s). In this paper we present a method for characterizing the thickness, and more interestingly, the variation of thickness in polymer thin films (

New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy (2019)
Journal Article
Pérez-Cota, F., Smith, R. J., Elsheikha, H. M., & Clark, M. (2019). New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy. Biomedical Optics Express, 10(5), 2399-2408. https://doi.org/10.1364/BOE.10.002399

The single cell eukaryotic protozoan Acanthamoeba castellanii exhibits a remarkable ability to switch from a vegetative trophozoite stage to a cystic form, in response to stressors. This phenotypic switch involves changes in gene expression and synth... Read More about New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy.

Spatially Resolved Acoustic Spectroscopy Towards Online Inspection of Additive Manufacturing (2019)
Journal Article
Pieris, D., Patel, R., Dryburgh, P., Hirsch, M., Li, W., Sharples, S., …Clark, M. (2019). Spatially Resolved Acoustic Spectroscopy Towards Online Inspection of Additive Manufacturing. Insight - Non-Destructive Testing & Condition Monitoring, 61(3), 132-137. https://doi.org/10.1784/insi.2019.61.3.132

High-integrity engineering applications such as aerospace will not permit the incorporation of components containing any structural defects. The current generation of additive manufacturing (AM) platforms yield components with relatively high level... Read More about Spatially Resolved Acoustic Spectroscopy Towards Online Inspection of Additive Manufacturing.

Super-resolution imaging using nano-bells (2018)
Journal Article
Fuentes-Dominguez, R., Pérez-Cota, F., Naznin, S., Smith, R. J., & Clark, M. (2018). Super-resolution imaging using nano-bells. Scientific Reports, 8, 1-9. https://doi.org/10.1038/s41598-018-34744-6

In this paper we demonstrate a new scheme for optical super-resolution, inspired, in-part, by PALM and STORM. In this scheme each object in the field of view is tagged with a signal that allows them to be detected separately. By doing this we can ide... Read More about Super-resolution imaging using nano-bells.

Imaging material texture of as-deposited selective laser melted parts using spatially resolved acoustic spectroscopy (2018)
Journal Article
Patel, R., Hirsch, M., Dryburgh, P., Pieris, D., Achamfuo-Yeboah, S., Smith, R., …Clark, M. (2018). Imaging material texture of as-deposited selective laser melted parts using spatially resolved acoustic spectroscopy. Applied Sciences, 8(10), Article 1991. https://doi.org/10.3390/app8101991

Additive manufacturing (AM) is a production technology where material is accumulated to create a structure, often through added shaped layers. The major advantage of additive manufacturing is in creating unique and complex parts for use in areas wher... Read More about Imaging material texture of as-deposited selective laser melted parts using spatially resolved acoustic spectroscopy.

Targeted rework of powder bed fusion additive manufacturing (2018)
Conference Proceeding
Dryburgh, P., Patel, R., Catchpole-Smith, S., Hirsch, M., Parry, L., Smith, R. J., …Clare, A. T. (2018). Targeted rework of powder bed fusion additive manufacturing. In Proceedings of LPM2018 - the 19th International Symposium on Laser Precision Microfabrication (#18/030)

There is a clear industrial pull to fabricate high value components using premium high temperature aerospace materials by additive manufacturing. Inconveniently, the same materials’ properties which allow them to perform well in service render them... Read More about Targeted rework of powder bed fusion additive manufacturing.

Non destructive evaluation of biological cells (2018)
Journal Article
Pérez-Cota, F., Smith, R. J., Moradi, E., Webb, K. F., & Clark, M. (2019). Non destructive evaluation of biological cells. AIP Conference Proceedings, 2102, https://doi.org/10.1063/1.5099737

© 2019 Author(s). Regenerative medicine promises to be the next revolution in health care. This technology, which will be the first systematic manufacturing of biological parts for human consumption, requires non destructive evaluatioin (NDE) thechni... Read More about Non destructive evaluation of biological cells.

Sensitive detection of voltage transients using differential intensity surface plasmon resonance system (2017)
Journal Article
Abayzeed, S. A., Smith, R. J., Webb, K. F., Somekh, M. G., & See, C. W. (in press). Sensitive detection of voltage transients using differential intensity surface plasmon resonance system. Optics Express, 25(25), https://doi.org/10.1364/OE.25.031552

This paper describes theoretical and experimental study of the fundamentals of using surface plasmon resonance (SPR) for label-free detection of voltage. Plasmonic voltage sensing relies on the capacitive properties of metal-electrolyte interface tha... Read More about Sensitive detection of voltage transients using differential intensity surface plasmon resonance system.

Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging (2017)
Journal Article
Perez-Cota, F., Smith, R. J., Moradi, E., Leija, A. L., Velickovic, K., Marques, L., …Clark, M. (2017). Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging

The mechanical properties of cells play an important role in cell function and behavior. This paper presents recent developments that have enabled the use of laser-generated phonons (ultrasound) with sub-optical wavelengths to look inside living cell... Read More about Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging.

Size characterisation method and detection enhancement of plasmonic nanoparticles in a pump–probe system (2017)
Journal Article
Fuentes-Domínguez, R., Smith, R. J., Pérez-Cota, F., Marques, L., Peña-Rodríguez, O., & Clark, M. (2017). Size characterisation method and detection enhancement of plasmonic nanoparticles in a pump–probe system. Applied Sciences, 7(8), Article 819. https://doi.org/10.3390/app7080819

The optical resonance of metal nanoparticles can be used to enhance the generation and detection of their main vibrational mode. In this work, we show that this method allows the accurate characterisation of the particle’s size because the vibrationa... Read More about Size characterisation method and detection enhancement of plasmonic nanoparticles in a pump–probe system.

Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces (2017)
Journal Article
Colombi, A., Ageeva, V., Smith, R. J., Clare, A. T., Patel, R., Clark, M., …Craster, R. V. (2017). Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces. Scientific Reports, 7(1), Article 6750. https://doi.org/10.1038/s41598-017-07151-6

Recent years have heralded the introduction of metasurfaces that advantageously combine the vision of sub-wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. An important topic within met... Read More about Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces.

Orientation imaging of macro-sized polysilicon grains on wafers using spatially resolved acoustic spectroscopy (2017)
Journal Article
Patel, R., Li, W., Smith, R. J., Sharples, S. D., & Clark, M. (2017). Orientation imaging of macro-sized polysilicon grains on wafers using spatially resolved acoustic spectroscopy. Scripta Materialia, 140, 67-70. https://doi.org/10.1016/j.scriptamat.2017.07.003

Due to its economical production process polysilicon, or multicrystalline silicon, is widely used to produce solar cell wafers. However, the conversion efficiencies are often lower than equivalent monocrystalline or thin film cells, with the structur... Read More about Orientation imaging of macro-sized polysilicon grains on wafers using spatially resolved acoustic spectroscopy.

High resolution 3D imaging of living cells with sub-optical wavelength phonons (2016)
Journal Article
Perez-Cota, F., Smith, R. J., Moradi, E., Marques, L., Webb, K. F., & Clark, M. (2016). High resolution 3D imaging of living cells with sub-optical wavelength phonons. Scientific Reports, 6, Article 39326. https://doi.org/10.1038/srep39326

Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Supe... Read More about High resolution 3D imaging of living cells with sub-optical wavelength phonons.

Responsivity of the differential-intensity surface plasmon resonance instrument (2016)
Journal Article
Abayzeed, S. A., Smith, R. J., Webb, K. F., Somekh, M. G., & See, C. W. (2016). Responsivity of the differential-intensity surface plasmon resonance instrument. Sensors and Actuators B: Chemical, 235, 627-635. https://doi.org/10.1016/j.snb.2016.05.117

Surface plasmon resonance is used for the sensitive measurement of minute concentrations of bio-analytes and probing of electrochemical processes. Typical refractive index sensitivity, for the intensity approach, is around 10−6 refractive index units... Read More about Responsivity of the differential-intensity surface plasmon resonance instrument.

Spatially resolved acoustic spectroscopy for selective laser melting (2016)
Journal Article
Smith, R. J., Hirsch, M., Patel, R., Li, W., Clare, A. T., & Sharples, S. D. (2016). Spatially resolved acoustic spectroscopy for selective laser melting. Journal of Materials Processing Technology, 236, 93-102. https://doi.org/10.1016/j.jmatprotec.2016.05.005

Additive manufacturing (AM) is a manufacturing technique that typically builds parts layer by layer, for example, in the case of selective laser melted (SLM) material by fusing layers of metal powder. This allows the construction of complex geometry... Read More about Spatially resolved acoustic spectroscopy for selective laser melting.

Thin-film transducers for the detection and imaging of Brillouin oscillations in transmission on cultured cells (2015)
Journal Article
Perez-Cota, F., Smith, R. J., Moradi, E., Webb, K. F., & Clark, M. (in press). Thin-film transducers for the detection and imaging of Brillouin oscillations in transmission on cultured cells. Journal of Physics: Conference Series, 684(1), https://doi.org/10.1088/1742-6596/684/1/012003

Mechanical imaging and characterisation of biological cells has been a subject of interest for the last twenty years. Ultrasonic imaging based on the scanning acoustic microscope (SAM) and mechanical probing have been extensively reported. Large acou... Read More about Thin-film transducers for the detection and imaging of Brillouin oscillations in transmission on cultured cells.

Thin-film optoacoustic transducers for the subcellular Brillouin oscillation imaging of individual biological cells (2015)
Journal Article
Perez-Cota, F., Smith, R. J., Moradi, E., Marques, L., Webb, K. F., & Clark, M. (2015). Thin-film optoacoustic transducers for the subcellular Brillouin oscillation imaging of individual biological cells. Applied Optics, 54(28), https://doi.org/10.1364/AO.54.008388

Mechanical characterisation and imaging of biological tissue has piqued interest in the applicability to cell and tissue biology. One method, based on detection of Brillouin oscillations, has already lead to demonstrations on biological cells using u... Read More about Thin-film optoacoustic transducers for the subcellular Brillouin oscillation imaging of individual biological cells.

Rapid wide-field heterodyne interferometry with custom 2D CMOS camera (2015)
Journal Article
Zhang, J., See, C. W., Smith, R. J., Johnston, N. S., Pitter, M. C., Somekh, M. G., & Light, R. A. (2015). Rapid wide-field heterodyne interferometry with custom 2D CMOS camera. Electronics Letters, 51(6), 479-480. https://doi.org/10.1049/el.2015.0268

© The Institution of Engineering and Technology 2015. A wide-field pseudo-heterodyne interference contrast microscope is described, which employs a complementary metal-oxide semiconductor (CMOS) phase-sensitive camera. The use of multiple wells in th... Read More about Rapid wide-field heterodyne interferometry with custom 2D CMOS camera.

Optically excited nanoscale ultrasonic transducers (2015)
Journal Article
Smith, R. J., Cota, F. P., Marques, L., Chen, X., Arca, A., Webb, K., …Clark, M. (2015). Optically excited nanoscale ultrasonic transducers. Journal of the Acoustical Society of America, 137(1), 219-227. https://doi.org/10.1121/1.4904487

© 2015 Acoustical Society of America. In order to work at higher ultrasonic frequencies, for instance, to increase the resolution, it is necessary to fabricate smaller and higher frequency transducers. This paper presents an ultrasonic transducer cap... Read More about Optically excited nanoscale ultrasonic transducers.

Highly sensitive multipoint real-time kinetic detection of Surface Plasmon bioanalytes with custom CMOS cameras (2014)
Journal Article
Wang, J., Smith, R. J., Light, R. A., Richens, J. L., Zhang, J., O'Shea, P., …Somekh, M. G. (2014). Highly sensitive multipoint real-time kinetic detection of Surface Plasmon bioanalytes with custom CMOS cameras. Biosensors and Bioelectronics, 58, 157-164. https://doi.org/10.1016/j.bios.2014.02.042

Phase sensitive Surface Plasmon Resonance (SPR) techniques are a popular means of characterizing biomolecular interactions. However, limitations due to the narrow dynamic range and difficulty in adapting the method for multi-point sensing have restri... Read More about Highly sensitive multipoint real-time kinetic detection of Surface Plasmon bioanalytes with custom CMOS cameras.