Skip to main content

Research Repository

Advanced Search

All Outputs (48)

Optical Excitation of Propagating Magnetostatic Waves in an Epitaxial Galfenol Film by Ultrafast Magnetic Anisotropy Change (2019)
Journal Article
Khokhlov, N. E., Gerevenkov, P. I., Shelukhin, L. A., Azovtsev, A. V., Pertsev, N. A., Wang, M., …Kalashnikova, A. M. (2019). Optical Excitation of Propagating Magnetostatic Waves in an Epitaxial Galfenol Film by Ultrafast Magnetic Anisotropy Change. Physical Review Applied, 12(4), Article 044044. https://doi.org/10.1103/PhysRevApplied.12.044044

© 2019 American Physical Society. Using a time-resolved optically pumped scanning-optical-microscopy technique, we demonstrate the laser-driven excitation and propagation of spin waves in a 20-nm film of a ferromagnetic metallic alloy Galfenol epitax... Read More about Optical Excitation of Propagating Magnetostatic Waves in an Epitaxial Galfenol Film by Ultrafast Magnetic Anisotropy Change.

Optical excitation of single- and multi-mode magnetization precession in Fe-Ga nanolayers (2019)
Journal Article
Scherbakov, A., Danilov, A., Godejohann, F., Linnik, T., Glavin, B., Shelukhin, L. A., …Bayer, M. (2019). Optical excitation of single- and multi-mode magnetization precession in Fe-Ga nanolayers. Physical Review Applied, 11(3), Article 031003. https://doi.org/10.1103/PhysRevApplied.11.031003

We demonstrate a variety of precessional responses of the magnetization to ultrafast optical excitation in nanolayers of Galfenol (Fe,Ga), which is a ferromagnetic material with large saturation magnetization and enhanced magnetostriction. The partic... Read More about Optical excitation of single- and multi-mode magnetization precession in Fe-Ga nanolayers.

Optical excitation of single-and multi-mode magnetization precession in Fe-Ga nanolayers (2019)
Journal Article
Scherbakov, A., Danilov, A., Godejohann, F., Linnik, T., Glavin, B., Shelukhin, L., …Bayer, M. (2019). Optical excitation of single-and multi-mode magnetization precession in Fe-Ga nanolayers. Physical Review Applied, 11(3), Article 031003. https://doi.org/10.1103/PhysRevApplied.11.031003

We demonstrate a variety of precessional responses of the magnetization to ultrafast optical excitation in nanolayers of Galfenol (Fe,Ga), which is a ferromagnetic material with large saturation magnetization and enhanced magnetostriction. The partic... Read More about Optical excitation of single-and multi-mode magnetization precession in Fe-Ga nanolayers.

Tuning a binary ferromagnet into a multi-state synapse with spin-orbit-torque-induced plasticity (2019)
Journal Article
Cao, Y., Rushforth, A., Sheng, Y., Zheng, H., & Wang, K. (2019). Tuning a binary ferromagnet into a multi-state synapse with spin-orbit-torque-induced plasticity. Advanced Functional Materials, 29(25), https://doi.org/10.1002/adfm.201808104

Ferromagnets with binary states are limited for applications as artificial synapses for neuromorphic computing. Here, it is shown how synaptic plasticity of a perpendicular ferromagnetic layer (FM1) can be obtained when it is interlayer exchange‐coup... Read More about Tuning a binary ferromagnet into a multi-state synapse with spin-orbit-torque-induced plasticity.

Multilevel information storage using magnetoelastic layer stacks (2019)
Journal Article
Pattnaik, D., Beardsley, R., Love, C., Cavill, S., Edmonds, K., & Rushforth, A. (2019). Multilevel information storage using magnetoelastic layer stacks. Scientific Reports, 9, Article 3156. https://doi.org/10.1038/s41598-019-39775-1

The use of voltages to control magnetisation via the inverse magnetostriction effect in piezoelectric/ferromagnet heterostructures holds promise for ultra-low energy information storage technologies. Epitaxial galfenol, an alloy of iron and gallium,... Read More about Multilevel information storage using magnetoelastic layer stacks.

Optically excited spin pumping mediating collective magnetization dynamicsin a spin valve structure (2018)
Journal Article
Danilov, A., Scherbakov, A., Glavin, B., Linnik, T., Kalashnikova, A., Shelukhin, L., …Bayer, M. (2018). Optically excited spin pumping mediating collective magnetization dynamicsin a spin valve structure. Physical Review B, 98(6), Article 060406. https://doi.org/10.1103/PhysRevB.98.060406

We demonstrate spin pumping, i.e. the generation of a pure spin current by precessing magnetization, without application of microwave radiation commonly used in spin pumping experiments. We use femtosecond laser pulses to simultaneously launch the ma... Read More about Optically excited spin pumping mediating collective magnetization dynamicsin a spin valve structure.

Switching the uniaxial magnetic anisotropy by ion irradiation induced compensation (2018)
Journal Article
Yuan, Y., Amarouche, T., Xu, C., Rushforth, A., Böttger, R., Edmonds, K., …Zhou, S. (2018). Switching the uniaxial magnetic anisotropy by ion irradiation induced compensation. Journal of Physics D: Applied Physics, 51(14), https://doi.org/10.1088/1361-6463/aab1db

© 2018 IOP Publishing Ltd. In the present work, the uniaxial magnetic anisotropy of GaMnAsP is modified by helium ion irradiation. According to the micro-magnetic parameters, e.g. resonance fields and anisotropy constants deduced from ferromagnetic r... Read More about Switching the uniaxial magnetic anisotropy by ion irradiation induced compensation.

Generation of a localised microwave magnetic field by coherent phonons in a ferromagnetic grating (2018)
Journal Article
Salasyuk, A., Rudkovskaya, A., Danilov, A., Glavin, B., Kukhtaruk, S., Wang, M., …Scherbakov, A. (2018). Generation of a localised microwave magnetic field by coherent phonons in a ferromagnetic grating. Physical Review B, 97(6), Article 060404. https://doi.org/10.1103/PhysRevB.97.060404

A high-amplitude microwave magnetic field localized at the nanoscale is a desirable tool for various applications within the rapidly developing field of nanomagnetism. Here, we drive magnetization precession by coherent phonons in a metal ferromagnet... Read More about Generation of a localised microwave magnetic field by coherent phonons in a ferromagnetic grating.

Deterministic control of magnetic vortex wall chirality by electric field (2017)
Journal Article
Beardsley, R., Bowe, S., Parkes, D., Reardon, C., Edmonds, K., Gallagher, B., …Rushforth, A. (2017). Deterministic control of magnetic vortex wall chirality by electric field. Scientific Reports, 7, Article 7613. https://doi.org/10.1038/s41598-017-07944-9

Concepts for information storage and logical processing based on magnetic domain walls have great potential for implementation in future information and communications technologies. To date, the need to apply power hungry magnetic fields or heat diss... Read More about Deterministic control of magnetic vortex wall chirality by electric field.

The effect of dynamical compressive and shear strain on magnetic anisotropy in a low symmetry ferromagnetic film (2017)
Journal Article
Linnik, T., Kats, V., Jäger, J., Salasyuk, A., Yakovlev, D., Rushforth, A., …Scherbakov, A. (2017). The effect of dynamical compressive and shear strain on magnetic anisotropy in a low symmetry ferromagnetic film. Physica Scripta, 92(5), Article 054006. https://doi.org/10.1088/1402-4896/aa6943

Dynamical strain generated upon excitation of a metallic film by a femtosecond laser pulse may become a versatile tool enabling control of magnetic state of thin _lms and nanostructures via inverse magnetostriction on a picosecond time scale. Here we... Read More about The effect of dynamical compressive and shear strain on magnetic anisotropy in a low symmetry ferromagnetic film.

Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19 (2017)
Journal Article
Beardsley, R. P., Parkes, D. E., Zemen, J., Bowe, S., Edmonds, K. W., Reardon, C., …Rushforth, A. W. (2017). Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19. Scientific Reports, 7(1), Article 42107. https://doi.org/10.1038/srep42107

We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic aniso... Read More about Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19.

Precise tuning of the Curie temperature of (Ga,Mn)As-based magnetic semiconductors by hole compensation: Support for valence-band ferromagnetism (2016)
Journal Article
Zhou, S., Li, L., Yuan, Y., Rushforth, A., Chen, L., Wang, Y., …Helm, M. (2016). Precise tuning of the Curie temperature of (Ga,Mn)As-based magnetic semiconductors by hole compensation: Support for valence-band ferromagnetism. Physical Review B, 94(7), https://doi.org/10.1103/PhysRevB.94.075205

For the prototype diluted ferromagnetic semiconductor (Ga,Mn)As, there is a fundamental concern about the electronic states near the Fermi level, i.e., whether the Fermi level resides in a well-separated impurity band derived from Mn doping (impurity... Read More about Precise tuning of the Curie temperature of (Ga,Mn)As-based magnetic semiconductors by hole compensation: Support for valence-band ferromagnetism.

Contributions from coherent and incoherent lattice excitations to ultrafast optical control of magnetic anisotropy of metallic films (2016)
Journal Article
Kats, V. N., Linnik, T. L., Salasyuk, A. S., Rushforth, A. W., Wang, M., Wadley, P., …Scherbakov, A. V. (2016). Contributions from coherent and incoherent lattice excitations to ultrafast optical control of magnetic anisotropy of metallic films. Proceedings of SPIE, 9835(98351Q), https://doi.org/10.1117/12.2238020

Spin-lattice coupling is one of the most prominent interactions mediating response of spin ensemble to ultrafast optical excitation. Here we exploit optically generated coherent and incoherent phonons to drive coherent spin dynamics, i.e. precession,... Read More about Contributions from coherent and incoherent lattice excitations to ultrafast optical control of magnetic anisotropy of metallic films.

Ultrafast changes of magnetic anisotropy driven by laser-generated coherent and noncoherent phonons in metallic films (2016)
Journal Article
Kats, V., Linnik, T., Salasyuk, A., Rushforth, A., Wang, M., Wadley, P., …Scherbakov, A. (2016). Ultrafast changes of magnetic anisotropy driven by laser-generated coherent and noncoherent phonons in metallic films. Physical Review B, 93(21), Article 214422. https://doi.org/10.1103/PhysRevB.93.214422

Ultrafast optical excitation of a metal ferromagnetic film results in a modification of the magnetocrystalline anisotropy and induces the magnetization precession. We consider two main contributions to these processes: an effect of noncoherent phonon... Read More about Ultrafast changes of magnetic anisotropy driven by laser-generated coherent and noncoherent phonons in metallic films.

The UK National Quantum Technologies Hub in sensors and metrology (Keynote Paper) (2016)
Journal Article
Bongs, K., Boyer, V., Cruise, M., Freise, A., Holynski, M., Hughes, J., …John, P. (2016). The UK National Quantum Technologies Hub in sensors and metrology (Keynote Paper). Proceedings of SPIE, 9900, Article 990009. https://doi.org/10.1117/12.2232143

The UK National Quantum Technology Hub in Sensors and Metrology is one of four flagship initiatives in the UK National of Quantum Technology Program. As part of a 20-year vision it translates laboratory demonstrations to deployable practical devices,... Read More about The UK National Quantum Technologies Hub in sensors and metrology (Keynote Paper).

Three-dimensional Heisenberg critical behavior in the highly disordered dilute ferromagnetic semiconductor (Ga,Mn)As (2016)
Journal Article
Wang, M., Marshall, R. A., Edmonds, K. W., Rushforth, A., Campion, R., & Gallagher, B. (2016). Three-dimensional Heisenberg critical behavior in the highly disordered dilute ferromagnetic semiconductor (Ga,Mn)As. Physical Review B, 93(18), Article 184417. https://doi.org/10.1103/PhysRevB.93.184417

We present detailed studies of critical behavior in the strongly site-disordered dilute ferromagnetic semiconductor (Ga,Mn)As. (Ga,Mn)As has a low saturation magnetization and relatively strong magnetocrystalline anisotropy. This combination of prop... Read More about Three-dimensional Heisenberg critical behavior in the highly disordered dilute ferromagnetic semiconductor (Ga,Mn)As.

Electrical switching of an antiferromagnet (2016)
Journal Article
Wadley, P., Howells, B., Železný, J., Andrews, C., Hills, V., Campion, R. P., …Jungwirth, T. (2016). Electrical switching of an antiferromagnet. Science, 351(6273), 587-590. https://doi.org/10.1126/science.aab1031

Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating cur... Read More about Electrical switching of an antiferromagnet.

Interfacial contribution to thickness dependent in-plane anisotropic magnetoresistance (2015)
Journal Article
Tokaç, M., Wang, M., Jaiswal, S., Rushforth, A. W., Gallagher, B. L., Atkinson, D., & Hindmarch, A. T. (2015). Interfacial contribution to thickness dependent in-plane anisotropic magnetoresistance. AIP Advances, 5(12), 127108. https://doi.org/10.1063/1.4937556

We have studied in-plane anisotropic magnetoresistance (AMR) in cobalt films with overlayers having designed electrically interface transparency. With an electrically opaque cobalt/overlayer interface, the AMR ratio is shown to vary in inverse propor... Read More about Interfacial contribution to thickness dependent in-plane anisotropic magnetoresistance.

Antiferromagnetic structure in tetragonal CuMnAs thin films (2015)
Journal Article
Wadley, P., Hills, V. A., Shahedkhah, M. R., Edmonds, K. W., Campion, R. P., Novák, V., …Jungwirth, T. (2015). Antiferromagnetic structure in tetragonal CuMnAs thin films. Scientific Reports, 5(1), Article 17079. https://doi.org/10.1038/srep17079

Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetrag... Read More about Antiferromagnetic structure in tetragonal CuMnAs thin films.

Strain Induced Vortex Core Switching in Planar Magnetostrictive Nanostructures (2015)
Journal Article
Ostler, T. A., Cuadrado, R., Chantrell, R. W., Rushforth, A. W., & Cavill, S. A. (2015). Strain Induced Vortex Core Switching in Planar Magnetostrictive Nanostructures. Physical Review Letters, 115(6), Article 067202. https://doi.org/10.1103/PhysRevLett.115.067202

© 2015 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "http://creativecommons.org/licenses/by/3.0/" Creative Commons Attribution 3.0 License. Further distribution of this work mu... Read More about Strain Induced Vortex Core Switching in Planar Magnetostrictive Nanostructures.