Skip to main content

Research Repository

Advanced Search

All Outputs (42)

High-Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing (2018)
Journal Article
Styliari, I. D., Conte, C., Pearce, A. K., Hüsler, A., Cavanagh, R. J., Limo, M. J., …Taresco, V. (2018). High-Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing. Macromolecular Materials and Engineering, 303(8), 1-9. https://doi.org/10.1002/mame.201800146

The self‐assembly of specific polymers into well‐defined nanoparticles (NPs) is of great interest to the pharmaceutical industry as the resultant materials can act as drug delivery vehicles. In this work, a high‐throughput method to screen the abilit... Read More about High-Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing.

Prediction of Broad-Spectrum Pathogen Attachment to Coating Materials for Biomedical Devices (2018)
Journal Article
Dundas, A. A., Mikulskis, P., Hook, A., Dundas, A., Irvine, D., Sanni, O., …Winkler, D. A. (2018). Prediction of Broad-Spectrum Pathogen Attachment to Coating Materials for Biomedical Devices. ACS Applied Materials and Interfaces, 10(1), 139-149. https://doi.org/10.1021/acsami.7b14197

© 2017 American Chemical Society. Bacterial infections in healthcare settings are a frequent accompaniment to both routine procedures such as catheterization and surgical site interventions. Their impact is becoming even more marked as the numbers of... Read More about Prediction of Broad-Spectrum Pathogen Attachment to Coating Materials for Biomedical Devices.

Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating (2017)
Journal Article
Tyler, B. J., Hook, A. L., Pelster, A., Williams, P., Alexander, M. R., & Arlinghaus, H. F. (2017). Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating. Biointerphases, 12(2), Article 02C412. https://doi.org/10.1116/1.4984011

Catheter associated urinary tract infections (CA-UTIs) are the most common health related infections world wide, contributing significantly to patient morbidity and mortality and increased health care costs. To reduce the incidence of these infection... Read More about Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating.

Making Silicone Rubber Highly Resistant to Bacterial Attachment Using Thiol-ene Grafting (2016)
Journal Article
Magennis, E. P., Hook, A. L., Williams, P., & Alexander, M. R. (2016). Making Silicone Rubber Highly Resistant to Bacterial Attachment Using Thiol-ene Grafting. ACS Applied Materials and Interfaces, 8(45), 30780-30787. https://doi.org/10.1021/acsami.6b10986

Biomedical devices are indispensable in modern medicine yet offer surfaces that promote bacterial attachment and biofilm formation, resulting in acute and chronic healthcare-associated infections. We have developed a simple method to graft acrylates... Read More about Making Silicone Rubber Highly Resistant to Bacterial Attachment Using Thiol-ene Grafting.

Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers (2016)
Journal Article
Adlington, K., Nguyen, N. T., Eaves, E., Yang, J., Chang, C. Y., Li, J., …Irvine, D. J. (2016). Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers. Biomacromolecules, 17(9), 2830-2838. https://doi.org/10.1021/acs.biomac.6b00615

© 2016 American Chemical Society. Developing medical devices that resist bacterial attachment and subsequent biofilm formation is highly desirable. In this paper, we report the optimization of the molecular structure and thus material properties of a... Read More about Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers.

Development, printability and post-curing studies of formulations of materials resistant to microbial attachment for use in inkjet based 3D printing (2016)
Journal Article
Begines, B., Hook, A. L., Alexander, M. R., Tuck, C. J., & Wildman, R. D. (2016). Development, printability and post-curing studies of formulations of materials resistant to microbial attachment for use in inkjet based 3D printing. Rapid Prototyping Journal, 22(5), 835-841. https://doi.org/10.1108/RPJ-11-2015-0175

Purpose: This paper aims to print 3D structures from polymers that resist bacterial attachment by reactive jetting of acrylate monomers. Design/methodology/approach: The first step towards printing was ink development. Inks were characterised to car... Read More about Development, printability and post-curing studies of formulations of materials resistant to microbial attachment for use in inkjet based 3D printing.

The impact of surface chemistry modification on macrophage polarisation (2016)
Journal Article
Rostam, H., Singh, S., Salazar, F., Magennis, P., Hook, A. L., Singh, T., …Ghaemmaghami, A. M. (2016). The impact of surface chemistry modification on macrophage polarisation. Immunobiology, 221(11), 1237-1246. https://doi.org/10.1016/j.imbio.2016.06.010

Macrophages are innate immune cells that have a central role in combating infection and maintaining tissue homeostasis. They exhibit remarkable plasticity in response to environmental cues. At either end of a broad activation spectrum are pro-inflamm... Read More about The impact of surface chemistry modification on macrophage polarisation.

Engineering serendipity: High-throughput discovery of materials that resist bacterial attachment (2015)
Journal Article
Magennis, E., Hook, A., Davies, M., Alexander, C., Williams, P., & Alexander, M. R. (2016). Engineering serendipity: High-throughput discovery of materials that resist bacterial attachment. Acta Biomaterialia, 34, 84-92. https://doi.org/10.1016/j.actbio.2015.11.008

Controlling the colonisation of materials by microorganisms is important in a wide range of industries and clinical settings. To date, the underlying mechanisms that govern the interactions of bacteria with material surfaces remain poorly understood,... Read More about Engineering serendipity: High-throughput discovery of materials that resist bacterial attachment.

Discovery of a Novel Polymer for Human Pluripotent Stem Cell Expansion and Multilineage Differentiation (2015)
Journal Article
Smith, J. G. W., Celiz, A. D., Smith, J. G., Patel, A. K., Hook, A. L., Rajamohan, D., …Alexander, M. R. (2015). Discovery of a Novel Polymer for Human Pluripotent Stem Cell Expansion and Multilineage Differentiation. Advanced Materials, 27(27), 4006-4012. https://doi.org/10.1002/adma.201501351

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. A scalable and cost-effective synthetic polymer substrate that supports robust expansion and subsequent multilineage differentiation of human pluripotent stem cells (hPSCs) with defined commercial... Read More about Discovery of a Novel Polymer for Human Pluripotent Stem Cell Expansion and Multilineage Differentiation.

Multivariate ToF-SIMS image analysis of polymer microarrays and protein adsorption (2015)
Journal Article
Hook, A. L., Williams, P. M., Alexander, M. R., & Scurr, D. J. (2015). Multivariate ToF-SIMS image analysis of polymer microarrays and protein adsorption. Biointerphases, 10, Article 019005. https://doi.org/10.1116/1.4906484

The complexity of hyperspectral time of flight secondary ion mass spectrometry (ToF-SIMS) datasets makes their subsequent analysis and interpretation challenging, and is often an impasse to the identification of trends and differences within large sa... Read More about Multivariate ToF-SIMS image analysis of polymer microarrays and protein adsorption.

Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity (2015)
Journal Article
Fisher, L. E., Hook, A. L., Ashraf, W., Yousef, A., Barrett, D. A., Scurr, D. J., …Bayston, R. (2015). Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity. Journal of Controlled Release, 202, 57-64. https://doi.org/10.1016/j.jconrel.2015.01.037

© 2015 Published by Elsevier B.V. Catheter-associated urinary tract infection (CAUTI) is the commonest hospital-acquired infection, accounting for over 100,000 hospital admissions within the USA annually. Biomaterials and processes intended to reduce... Read More about Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity.

Materiomics: a toolkit for developing new biomaterials (2015)
Book Chapter
Hook, A., Morgan, A., & Winkler, D. A. (2015). Materiomics: a toolkit for developing new biomaterials. In Tissue engineering. Second edition. Elsevier

Learning Objectives • To understand the what materiomics is and why it is required • To become familiar with the various approaches used to design materiomic experiments • To learn what a polymer microarray is, what it is used for and how it is pr... Read More about Materiomics: a toolkit for developing new biomaterials.

Bacterial Attachment to Polymeric Materials Correlates with Molecular Flexibility and Hydrophilicity (2014)
Journal Article
Sanni, O., Chang, C., Anderson, D. G., Langer, R., Davies, M. C., Williams, P. M., …Hook, A. L. (2015). Bacterial Attachment to Polymeric Materials Correlates with Molecular Flexibility and Hydrophilicity. Advanced Healthcare Materials, 4(5), 695-701. https://doi.org/10.1002/adhm.201400648

A new class of material resistant to bacterial attachment has been discovered that is formed from polyacrylates with hydrocarbon pendant groups. In this study, the relationship between the nature of the hydrocarbon moiety and resistance to bacteria i... Read More about Bacterial Attachment to Polymeric Materials Correlates with Molecular Flexibility and Hydrophilicity.

High throughput screening for biomaterials discovery (2014)
Journal Article
Algahtani, M. S., Alexander, M., Scurr, D. J., Hook, A. L., Anderson, D. G., Langer, R. S., …Davies, M. C. (2014). High throughput screening for biomaterials discovery. Journal of Controlled Release, 190, 115-126. https://doi.org/10.1016/j.jconrel.2014.06.045

Using microarray technologies thousands of biomedical materials can be screened in a rapid, parallel and cost effective fashion to identify the optimum candidate that fulfils a specific biomedical application. High throughput surface characterization... Read More about High throughput screening for biomaterials discovery.

Thermally Switchable Polymers Achieve Controlled Escherichia coli Detachment (2014)
Journal Article
Hook, A. L., Chang, C., Scurr, D. J., Langer, R., Anderson, D. G., Williams, P., …Alexander, M. R. (2014). Thermally Switchable Polymers Achieve Controlled Escherichia coli Detachment. Advanced Healthcare Materials, 3(7), 1020-1025. https://doi.org/10.1002/adhm.201300518

The thermally triggered release of up to 96% of attached uropathogenic E. coli is achieved on two polymers with opposite changes in surface wettability upon reduction in temperature. This demonstrates that the bacterial attachment to a surface cannot... Read More about Thermally Switchable Polymers Achieve Controlled Escherichia coli Detachment.

Modelling and Prediction of Bacterial Attachment to Polymers (2013)
Journal Article
Epa, V., Hook, A. L., Chang, C., Yang, J., Langer, R., Anderson, D. G., …Winkler, D. A. (2014). Modelling and Prediction of Bacterial Attachment to Polymers. Advanced Functional Materials, 24(14), 2085-2093. https://doi.org/10.1002/adfm.201302877

Infection by pathogenic bacteria on implanted and indwelling medical devices during surgery causes large morbidity and mortality worldwide. Attempts to ameliorate this important medical issue have included development of antimicrobial surfaces on mat... Read More about Modelling and Prediction of Bacterial Attachment to Polymers.

Discovery of novel materials with broad resistance to bacterial attachment using combinatorial polymer microarrays (2013)
Journal Article
Hook, A. L., Chang, C., Yang, J., Atkinson, S., Langer, R., Anderson, D. G., …Alexander, M. R. (2013). Discovery of novel materials with broad resistance to bacterial attachment using combinatorial polymer microarrays. Advanced Materials, 25(18), https://doi.org/10.1002/adma.201204936

A new class of bacteria-attachment-resistant materials is discovered using a multi-generation polymer microarray methodology that reduces bacterial attachment by up to 99.3% compared with a leading commercially available silver hydrogel anti-bacteria... Read More about Discovery of novel materials with broad resistance to bacterial attachment using combinatorial polymer microarrays.

High throughput discovery of thermo-responsive materials using water contact angle measurements and time-of-flight secondary ion mass spectrometry (2013)
Journal Article
Hook, A. L., Scurr, D. J., Anderson, D. G., Langer, R., Williams, P., Davies, M. C., & Alexander, M. R. (2013). High throughput discovery of thermo-responsive materials using water contact angle measurements and time-of-flight secondary ion mass spectrometry. Surface and Interface Analysis, 45(1), https://doi.org/10.1002/sia.4910

Switchable materials that alter their chemical or physical properties in response to external stimuli allow for temporal control of material-biological interactions, thus, are of interest for many biomaterial applications. Our interest is the discove... Read More about High throughput discovery of thermo-responsive materials using water contact angle measurements and time-of-flight secondary ion mass spectrometry.

Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces (2012)
Journal Article
Epa, V., Yang, J., Mei, Y., Hook, A. L., Langer, R., Anderson, D. G., …Winkler, D. A. (2012). Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces. Journal of Materials Chemistry, 39(22), https://doi.org/10.1039/C2JM34782B

Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing materials with appropriate biological compatibility or active control of cells and tissues is being increasingly... Read More about Modelling human embryoid body cell adhesion to a combinatorial library of polymer surfaces.

Combinatorial discovery of polymers resistant to bacterial attachment (2012)
Journal Article
Hook, A. L., Chang, C., Yang, J., Luckett, J., Cockayne, A., Atkinson, S., …Alexander, M. R. (2012). Combinatorial discovery of polymers resistant to bacterial attachment. Nature Biotechnology, 30(9), 868-875. https://doi.org/10.1038/nbt.2316

Bacterial attachment and subsequent biofilm formation pose key challenges to the optimal performance of medical devices. In this study, we determined the attachment of selected bacterial species to hundreds of polymeric materials in a high-throughput... Read More about Combinatorial discovery of polymers resistant to bacterial attachment.