Skip to main content

Research Repository

Advanced Search

All Outputs (76)

Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals (2021)
Journal Article
Cottam, N. D., Zhang, C., Wildman, J. L., Patanè, A., Turyanska, L., & Makarovsky, O. (2021). Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals. Advanced Optical Materials, 9(13), https://doi.org/10.1002/adom.202100104

Inorganic perovskite nanocrystals (NCs) have demonstrated a number of unique optical and electronic properties for optoelectronic applications. However, the physical properties of these nanostructures, such as the dynamics of charge carriers on diffe... Read More about Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals.

Universal mobility characteristics of graphene originating from charge scattering by ionised impurities (2021)
Journal Article
Gosling, J. H., Makarovsky, O., Wang, F., Cottam, N. D., Greenaway, M. T., Patanè, A., …Fromhold, T. M. (2021). Universal mobility characteristics of graphene originating from charge scattering by ionised impurities. Communications Physics, 4(1), Article 30. https://doi.org/10.1038/s42005-021-00518-2

Pristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrie... Read More about Universal mobility characteristics of graphene originating from charge scattering by ionised impurities.

Resonance and antiresonance in Raman scattering in GaSe and InSe crystals (2021)
Journal Article
Osiekowicz, M., Staszczuk, D., Olkowska-Pucko, K., Kipczak, Ł., Grzeszczyk, M., Zinkiewicz, M., …Molas, M. R. (2021). Resonance and antiresonance in Raman scattering in GaSe and InSe crystals. Scientific Reports, 11(1), Article 924. https://doi.org/10.1038/s41598-020-79411-x

The temperature effect on the Raman scattering efficiency is investigated in ?-GaSe and ?-InSe crystals. We found that varying the temperature over a broad range from 5 to 350 K permits to achieve both the resonant conditions and the antiresonance be... Read More about Resonance and antiresonance in Raman scattering in GaSe and InSe crystals.

Anomalous Low Thermal Conductivity of Atomically Thin InSe Probed by Scanning Thermal Microscopy (2021)
Journal Article
Buckley, D., Kudrynskyi, Z. R., Balakrishnan, N., Vincent, T., Mazumder, D., Castanon, E., …Patanè, A. (2021). Anomalous Low Thermal Conductivity of Atomically Thin InSe Probed by Scanning Thermal Microscopy. Advanced Functional Materials, 31(11), Article 2008967. https://doi.org/10.1002/adfm.202008967

The ability of a material to conduct heat influences many physical phenomena, ranging from thermal management in nanoscale devices to thermoelectrics. Van der Waals two dimensional (2D) materials offer a versatile platform to tailor heat transfer due... Read More about Anomalous Low Thermal Conductivity of Atomically Thin InSe Probed by Scanning Thermal Microscopy.

Enhanced Optical Emission from 2D InSe Bent onto Si?Pillars (2020)
Journal Article
Mazumder, D., Xie, J., Kudrynskyi, Z. R., Wang, X., Makarovsky, O., Bhuiyan, M. A., …Patanè, A. (2020). Enhanced Optical Emission from 2D InSe Bent onto Si‐Pillars. Advanced Optical Materials, 8(18), Article 2000828. https://doi.org/10.1002/adom.202000828

Controlling the propagation and intensity of an optical signal is central to several technologies ranging from quantum communication to signal processing. These require a versatile class of functional materials with tailored electronic and optical pr... Read More about Enhanced Optical Emission from 2D InSe Bent onto Si?Pillars.

New Polymorphs of 2D Indium Selenide with Enhanced Electronic Properties (2020)
Journal Article
Sun, Y., Li, Y., Li, T., Biswas, K., Patanè, A., & Zhang, L. (2020). New Polymorphs of 2D Indium Selenide with Enhanced Electronic Properties. Advanced Functional Materials, 30(31), Article 2001920. https://doi.org/10.1002/adfm.202001920

The two-dimensional (2D) semiconductor indium selenide (InSe) has attracted significant interest due its unique electronic band structure, high electron mobility and wide tunability of its band gap energy achieved by varying the layer thickness. All... Read More about New Polymorphs of 2D Indium Selenide with Enhanced Electronic Properties.

The Interaction of Hydrogen with the van der Waals Crystal ?-InSe (2020)
Journal Article
Felton, J., Blundo, E., Ling, S., Glover, J., Kudrynskyi, Z. R., Makarovsky, O., …Patané, A. (2020). The Interaction of Hydrogen with the van der Waals Crystal γ-InSe. Molecules, 25(11), Article 2526. https://doi.org/10.3390/molecules25112526

The emergence of the hydrogen economy requires development in the storage, generation and sensing of hydrogen. The indium selenide (?-InSe) van der Waals (vdW) crystal shows promise for technologies in all three of these areas. For these applications... Read More about The Interaction of Hydrogen with the van der Waals Crystal ?-InSe.

Imaging shape and strain in nanoscale engineered semiconductors for photonics by coherent x-ray diffraction (2020)
Journal Article
Berenguer, F., Pettinari, G., Felici, M., Balakrishnan, N., Clark, J. N., Ravy, S., …Ciatto, G. (2020). Imaging shape and strain in nanoscale engineered semiconductors for photonics by coherent x-ray diffraction. Communications Materials, 1, Article 19. https://doi.org/10.1038/s43246-020-0021-6

Coherent x-ray diffractive imaging is a nondestructive technique that extracts three-dimensional electron density and strain maps from materials with nanometer resolution. It has been utilized for materials in a range of applications, and has signifi... Read More about Imaging shape and strain in nanoscale engineered semiconductors for photonics by coherent x-ray diffraction.

Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunneling diode (2020)
Journal Article
Di Paola, D. M., Lu, Q., Repiso, E., Kesaria, M., Makarovsky, O., Krier, A., & Patanè, A. (2020). Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunneling diode. Applied Physics Letters, 116(14), Article 142108. https://doi.org/10.1063/5.0002407

Light emitting diodes (LEDs) in the mid-infrared (MIR) spectral range require material systems with tailored optical absorption and emission at wavelengths ? > 2??m. Here, we report on MIR LEDs based on In(AsN)/(InAl)As resonant tunneling diodes (RTD... Read More about Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunneling diode.

Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunnelling diode (2020)
Journal Article
Di Paola, D. M., Lu, Q., Repiso, E., Kesaria, M., Makarovsky, O., Krier, A., & Patanè, A. (2020). Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunnelling diode. Applied Physics Letters, 116(14), Article 142108. https://doi.org/10.1063/5.0002407

Light emitting diodes (LEDs) in the mid-infrared (MIR) spectral range require material systems with tailored optical absorption and emission at wavelengths ? > 2??m. Here, we report on MIR LEDs based on In(AsN)/(InAl)As resonant tunneling diodes (RTD... Read More about Room temperature upconversion electroluminescence from a mid-infrared In(AsN) tunnelling diode.

Photoluminescence dynamics in few-layer InSe (2020)
Journal Article
Venanzi, T., Arora, H., Winnerl, S., Pashkin, A., Chava, P., Patane, A., …Schneider, H. (2020). Photoluminescence dynamics in few-layer InSe. Physical Review Materials, 4(4), Article 044001. https://doi.org/10.1103/PhysRevMaterials.4.044001

We study the optical properties of thin flakes of InSe encapsulated in hBN. More specifically, we investigate the photoluminescence (PL) emission and its dependence on sample thickness and temperature. Through the analysis of the PL lineshape, we dis... Read More about Photoluminescence dynamics in few-layer InSe.

High Responsivity and Wavelength Selectivity of GaN?Based Resonant Cavity Photodiodes (2020)
Journal Article
Li, J., Yang, C., Liu, L., Cao, H., Lin, S., Xi, X., …Zhao, L. (2020). High Responsivity and Wavelength Selectivity of GaN‐Based Resonant Cavity Photodiodes. Advanced Optical Materials, 8(7), Article 1901276. https://doi.org/10.1002/adom.201901276

The implementation of blue-light photodiodes based on InGaN in emerging technologies, such as free-space visible light communication (VLC), requires transformative approaches towards enhanced performance, miniaturization, and integration beyond curre... Read More about High Responsivity and Wavelength Selectivity of GaN?Based Resonant Cavity Photodiodes.

Interlayer Band-to-Band Tunneling and Negative Differential Resistance in van der Waals BP/InSe Field-Effect Transistors (2020)
Journal Article
Lv, Q., Yan, F., Mori, N., Zhu, W., Hu, C., Kudrynskyi, Z. R., …Wang, K. (2020). Interlayer Band-to-Band Tunneling and Negative Differential Resistance in van der Waals BP/InSe Field-Effect Transistors. Advanced Functional Materials, 30(15), Article 1910713. https://doi.org/10.1002/adfm.201910713

© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Atomically thin layers of van der Waals (vdW) crystals offer an ideal material platform to realize tunnel field-effect transistors (TFETs) that exploit the tunneling of charge carriers across the fo... Read More about Interlayer Band-to-Band Tunneling and Negative Differential Resistance in van der Waals BP/InSe Field-Effect Transistors.

Design of van der Waals interfaces for broad-spectrum optoelectronics (2020)
Journal Article
Ubrig, N., Ponomarev, E., Zultak, J., Domaretskiy, D., Zólyomi, V., Terry, D., …Morpurgo, A. F. (2020). Design of van der Waals interfaces for broad-spectrum optoelectronics. Nature Materials, 19, 299-304. https://doi.org/10.1038/s41563-019-0601-3

Van der Waals (vdW) interfaces based on 2D materials are promising for optoelectronics, as interlayer transitions between different compounds allow tailoring of the spectral response over a broad range. However, issues such as lattice mismatch or a s... Read More about Design of van der Waals interfaces for broad-spectrum optoelectronics.

Resonant tunnelling into the two-dimensional subbands of InSe layers (2020)
Journal Article
Kudrynskyi, Z. R., Kerfoot, J., Mazumder, D., Greenaway, M. T., Vdovin, E. E., Makarovsky, O., …Patanè, A. (2020). Resonant tunnelling into the two-dimensional subbands of InSe layers. Communications Physics, 3, Article 16. https://doi.org/10.1038/s42005-020-0290-x

Two-dimensional (2D) van der Waals (vdW) crystals have attracted considerable interest for digital electronics beyond Si-based complementary metal oxide semiconductor technologies. Despite the transformative success of Si-based devices, there are lim... Read More about Resonant tunnelling into the two-dimensional subbands of InSe layers.

Van der Waals SnSe2(1-x)S2x alloys: composition-dependent bowing coefficient and electron-phonon interaction (2020)
Journal Article
Kudrynskyi, Z. R., Wang, X., Sutcliffe, J., Bhuiyan, M. A., Fu, Y., Yang, Z., …Patanè, A. (2020). Van der Waals SnSe2(1-x)S2x alloys: composition-dependent bowing coefficient and electron-phonon interaction. Advanced Functional Materials, 30(9), Article 1908092. https://doi.org/10.1002/adfm.201908092

The design of advanced functional materials with customized properties often requires the use of an alloy. This approach has been used for decades, but only recently to create van der Waals (vdW) alloys for applications in electronics, optoelectronic... Read More about Van der Waals SnSe2(1-x)S2x alloys: composition-dependent bowing coefficient and electron-phonon interaction.

Defect-assisted high photoconductive UV-VIS gain in perovskite-decorated graphene transistors (2019)
Journal Article
Cottam, N. D., Zhang, C., Turyanska, L., Eaves, L., Kudrynskyi, Z., Vdovin, E. E., …Makarovsky, O. (2020). Defect-assisted high photoconductive UV-VIS gain in perovskite-decorated graphene transistors. ACS Applied Electronic Materials, 2, 147-154. https://doi.org/10.1021/acsaelm.9b00664

Recent progress in the synthesis of high stability inorganic perovskite nanocrystals (NCs) has led to their increasing use in broadband photodetectors. These NCs are of particular interest for the UV range as they have the potential to extend the wav... Read More about Defect-assisted high photoconductive UV-VIS gain in perovskite-decorated graphene transistors.

High-Frequency Elastic Coupling at the Interface of van der Waals Nanolayers Imaged by Picosecond Ultrasonics (2019)
Journal Article
Greener, J. D., de Lima Savi, E., Akimov, A. V., Raetz, S., Kudrynskyi, Z., Kovalyuk, Z. D., …Gusev, V. E. (2019). High-Frequency Elastic Coupling at the Interface of van der Waals Nanolayers Imaged by Picosecond Ultrasonics. ACS Nano, 13(10), 11530-11537. https://doi.org/10.1021/acsnano.9b05052

Although the topography of van de Waals (vdW) layers and heterostructures can be imaged by scanning probe microscopy, high-frequency interface elastic properties are more difficult to assess. These can influence the stability, reliability and perform... Read More about High-Frequency Elastic Coupling at the Interface of van der Waals Nanolayers Imaged by Picosecond Ultrasonics.

Two-Dimensional Covalent Crystals by Chemical Conversion of Thin van der Waals Materials (2019)
Journal Article
Sreepal, V., Yagmurcukardes, M., Vasu, K. S., Kelly, D. J., Taylor, S. F. R., Kravets, V. G., …Nair, R. R. (2019). Two-Dimensional Covalent Crystals by Chemical Conversion of Thin van der Waals Materials. Nano Letters, 19(9), 6475-6481. https://doi.org/10.1021/acs.nanolett.9b02700

Most of the studied two-dimensional (2D) materials have been obtained by exfoliation of van der Waals crystals. Recently, there has been growing interest in fabricating synthetic 2D crystals which have no layered bulk analogues. These efforts have be... Read More about Two-Dimensional Covalent Crystals by Chemical Conversion of Thin van der Waals Materials.