Skip to main content

Research Repository

Advanced Search

All Outputs (9)

Exploring the Many-Body Dynamics Near a Conical Intersection with Trapped Rydberg Ions (2021)
Journal Article
Gambetta, F. M., Zhang, C., Hennrich, M., Lesanovsky, I., & Li, W. (2021). Exploring the Many-Body Dynamics Near a Conical Intersection with Trapped Rydberg Ions. Physical Review Letters, 126(23), Article 233404. https://doi.org/10.1103/physrevlett.126.233404

Conical intersections between electronic potential energy surfaces are paradigmatic for the study of nonadiabatic processes in the excited states of large molecules. However, since the corresponding dynamics occurs on a femtosecond timescale, their i... Read More about Exploring the Many-Body Dynamics Near a Conical Intersection with Trapped Rydberg Ions.

Long-Range Multibody Interactions and Three-Body Antiblockade in a Trapped Rydberg Ion Chain (2020)
Journal Article
Gambetta, F. M., Zhang, C., Hennrich, M., Lesanovsky, I., & Li, W. (2020). Long-Range Multibody Interactions and Three-Body Antiblockade in a Trapped Rydberg Ion Chain. Physical Review Letters, 125(13), https://doi.org/10.1103/physrevlett.125.133602

Trapped Rydberg ions represent a flexible platform for quantum simulation and information processing which combines a high degree of control over electronic and vibrational degrees of freedom. The possibility to individually excite ions to high-lying... Read More about Long-Range Multibody Interactions and Three-Body Antiblockade in a Trapped Rydberg Ion Chain.

Nonequilibrium Quantum Many-Body Rydberg Atom Engine (2020)
Journal Article
Carollo, F., Gambetta, F. M., Brandner, K., Garrahan, J. P., & Lesanovsky, I. (2020). Nonequilibrium Quantum Many-Body Rydberg Atom Engine. Physical Review Letters, 124(17), https://doi.org/10.1103/physrevlett.124.170602

The standard approach to quantum engines is based on equilibrium systems and on thermo-dynamic transformations between Gibbs states. However, non-equilibrium quantum systems offer enhanced experimental flexibility in the control of their parameters a... Read More about Nonequilibrium Quantum Many-Body Rydberg Atom Engine.

Engineering non-binary Rydberg interactions via electron-phonon coupling (2020)
Journal Article
Gambetta, F. M., Li, W., Schmidt-Kaler, F., & Lesanovsky, I. (2020). Engineering non-binary Rydberg interactions via electron-phonon coupling. Physical Review Letters, 124(4), https://doi.org/10.1103/PhysRevLett.124.043402

Coupling electronic and vibrational degrees of freedom of Rydberg atoms held in optical tweezers arrays offers a flexible mechanism for creating and controlling atom-atom interactions. We find that the state-dependent coupling between Rydberg atoms a... Read More about Engineering non-binary Rydberg interactions via electron-phonon coupling.

Engineering NonBinary Rydberg Interactions via Phonons in an Optical Lattice (2020)
Journal Article
Gambetta, F., Li, W., Schmidt-Kaler, F., & Lesanovsky, I. (2020). Engineering NonBinary Rydberg Interactions via Phonons in an Optical Lattice. Physical Review Letters, 124(4), Article 043402. https://doi.org/10.1103/physrevlett.124.043402

Coupling electronic and vibrational degrees of freedom of Rydberg atoms held in optical tweezer arrays offers a flexible mechanism for creating and controlling atom-atom interactions. We find that the state-dependent coupling between Rydberg atoms an... Read More about Engineering NonBinary Rydberg Interactions via Phonons in an Optical Lattice.

Classical stochastic discrete time crystals (2019)
Journal Article
Gambetta, F. M., Carollo, F., Lazarides, A., Lesanovsky, I., & Garrahan, J. P. (2019). Classical stochastic discrete time crystals. Physical Review E, 100(6), Article 060105(R). https://doi.org/10.1103/PhysRevE.100.060105

© 2019 American Physical Society. We describe a general and simple paradigm for discrete time crystals (DTCs), systems with a stable subharmonic response to an external driving field, in a classical thermal setting. We consider, specifically, an Isin... Read More about Classical stochastic discrete time crystals.

Exploring nonequilibrium phases of the generalized Dicke model with a trapped Rydberg-ion quantum simulator (2019)
Journal Article
Gambetta, F. M., Lesanovsky, I., & Li, W. (2019). Exploring nonequilibrium phases of the generalized Dicke model with a trapped Rydberg-ion quantum simulator. Physical Review A, 100(2), Article 022513. https://doi.org/10.1103/physreva.100.022513

Trapped ions are a versatile platform for the investigation of quantum many-body phenomena, in particular for the study of scenarios where long-range interactions are mediated by phonons. Recent experiments have shown that the trapped ion platform ca... Read More about Exploring nonequilibrium phases of the generalized Dicke model with a trapped Rydberg-ion quantum simulator.

Discrete time crystals in the absence of manifest symmetries or disorder in open quantum systems (2019)
Journal Article
Gambetta, F., Carollo, F., Marcuzzi, M., Garrahan, J., & Lesanovsky, I. (2019). Discrete time crystals in the absence of manifest symmetries or disorder in open quantum systems. Physical Review Letters, 122(1), Article 015701. https://doi.org/10.1103/physrevlett.122.015701

We establish a link between metastability and a discrete time-crystalline phase in a periodically driven open quantum system. The mechanism we highlight requires neither the system to display any microscopic symmetry nor the presence of disorder, but... Read More about Discrete time crystals in the absence of manifest symmetries or disorder in open quantum systems.

Effective metal-insulator nonequilibrium quantum phase transition in the Su-Schrieffer-Heeger model (2018)
Journal Article
Porta, S., Ziani, N. T., Kennes, D. M., Gambetta, F. M., Sassetti, M., & Cavaliere, F. (2018). Effective metal-insulator nonequilibrium quantum phase transition in the Su-Schrieffer-Heeger model. Physical Review B, 98(21), Article 214306. https://doi.org/10.1103/physrevb.98.214306

We consider the steady-state behavior of observables in the Su-Schrieffer-Heeger (SSH) model and in the one-dimensional transverse field quantum Ising model after a sudden quantum quench of the parameter controlling the gap. In the thermodynamic limi... Read More about Effective metal-insulator nonequilibrium quantum phase transition in the Su-Schrieffer-Heeger model.