Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Ligand-directed covalent labelling of a GPCR with a fluorescent tag in live cells (2020)
Journal Article
Stoddart, L. A., Kindon, N. D., Otun, O., Harwood, C. R., Patera, F., Veprintsev, D. B., …Kellam, B. (2020). Ligand-directed covalent labelling of a GPCR with a fluorescent tag in live cells. Communications Biology, 3(1), Article 722. https://doi.org/10.1038/s42003-020-01451-w

© 2020, The Author(s). To study the localisation of G protein-coupled receptors (GPCR) in their native cellular environment requires their visualisation through fluorescent labelling. To overcome the requirement for genetic modification of the recept... Read More about Ligand-directed covalent labelling of a GPCR with a fluorescent tag in live cells.

Monitoring Allosteric Interactions with CXCR4 Using NanoBiT Conjugated Nanobodies (2020)
Journal Article
Soave, M., Heukers, R., Kellam, B., Woolard, J., Smit, M. J., Briddon, S. J., & Hill, S. J. (2020). Monitoring Allosteric Interactions with CXCR4 Using NanoBiT Conjugated Nanobodies. Cell Chemical Biology, 27, 1-12. https://doi.org/10.1016/j.chembiol.2020.06.006

© 2020 The Authors Camelid single-domain antibody fragments (nanobodies) offer the specificity of an antibody in a single 15-kDa immunoglobulin domain. Their small size allows for easy genetic manipulation of the nanobody sequence to incorporate prot... Read More about Monitoring Allosteric Interactions with CXCR4 Using NanoBiT Conjugated Nanobodies.

Heterodimeric Analogues of the Potent Y1R Antagonist 1229U91, Lacking One of the Pharmacophoric C-Terminal Structures, Retain Potent Y1R Affinity and Show Improved Selectivity over Y4R (2020)
Journal Article
Richardson, R. R., Richardson, R., Groenen, M., Liu, M., Mountford, S. J., Briddon, S. J., …Thompson, P. E. (2020). Heterodimeric Analogues of the Potent Y1R Antagonist 1229U91, Lacking One of the Pharmacophoric C-Terminal Structures, Retain Potent Y1R Affinity and Show Improved Selectivity over Y4R. Journal of Medicinal Chemistry, 63(10), 5274-5286. https://doi.org/10.1021/acs.jmedchem.0c00027

The cyclic dimeric peptide 1229U91 (GR231118) has an unusual structure and displays potent, insurmountable antagonism of the Y1 receptor. To probe the structural basis for this activity, we have prepared ring size variants and heterodimeric compounds... Read More about Heterodimeric Analogues of the Potent Y1R Antagonist 1229U91, Lacking One of the Pharmacophoric C-Terminal Structures, Retain Potent Y1R Affinity and Show Improved Selectivity over Y4R.

The tetraspanin Tspan15 is an essential subunit of an ADAM10 scissor complex (2020)
Journal Article
Koo, C. Z., Harrison, N., Noy, P. J., Szyroka, J., Matthews, A. L., Hsia, H. E., …Tomlinson, M. G. (2020). The tetraspanin Tspan15 is an essential subunit of an ADAM10 scissor complex. Journal of Biological Chemistry, 295(36), 12822-12839. https://doi.org/10.1074/jbc.RA120.012601

© 2020 Koo et al. A disintegrin and metalloprotease 10 (ADAM10) is a transmembrane protein essential for embryonic development, and its dysregulation underlies disorders such as cancer, Alzheimer's disease, and inflammation. ADAM10 is a "molecular sc... Read More about The tetraspanin Tspan15 is an essential subunit of an ADAM10 scissor complex.

Application of fluorescence correlation spectroscopy to study substrate binding in styrene maleic acid lipid copolymer encapsulated ABCG2 (2020)
Journal Article
Horsey, A. J., Briggs, D. A., Holliday, N. D., Briddon, S. J., & Kerr, I. D. (2020). Application of fluorescence correlation spectroscopy to study substrate binding in styrene maleic acid lipid copolymer encapsulated ABCG2. BBA - Biomembranes, 1862(6), https://doi.org/10.1016/j.bbamem.2020.183218

© 2020 The Authors ABCG2 is one of a trio of human ATP binding cassette transporters that have the ability to bind and transport a diverse array of chemical substrates out of cells. This so-called “multidrug” transport has numerous physiological cons... Read More about Application of fluorescence correlation spectroscopy to study substrate binding in styrene maleic acid lipid copolymer encapsulated ABCG2.