Skip to main content

Research Repository

Advanced Search

All Outputs (10)

Single-Cell Tracking on Polymer Microarrays Reveals the Impact of Surface Chemistry on Pseudomonas aeruginosa Twitching Speed and Biofilm Development (2020)
Journal Article
Carabelli, A. M., Isgró, M., Sanni, O., Figueredo, G. P., Winkler, D. A., Burroughs, L., …Alexander, M. R. (2020). Single-Cell Tracking on Polymer Microarrays Reveals the Impact of Surface Chemistry on Pseudomonas aeruginosa Twitching Speed and Biofilm Development. ACS Applied Bio Materials, 3(12), 8471–8480. https://doi.org/10.1021/acsabm.0c00849

© 2020 American Chemical Society. Bacterial biofilms exhibit up to 1000 times greater resistance to antibiotic or host immune clearance than planktonic cells. Pseudomonas aeruginosa produces retractable type IV pili (T4P) that facilitate twitching mo... Read More about Single-Cell Tracking on Polymer Microarrays Reveals the Impact of Surface Chemistry on Pseudomonas aeruginosa Twitching Speed and Biofilm Development.

Model-Informed Drug Discovery and Development in Pulmonary Delivery: Biopharmaceutical Pharmacometric Modeling for Formulation Evaluation of Pulmonary Suspensions (2020)
Journal Article
Sou, T., Soukarieh, F., Williams, P., Stocks, M. J., Cámara, M., & Bergström, C. A. S. (2020). Model-Informed Drug Discovery and Development in Pulmonary Delivery: Biopharmaceutical Pharmacometric Modeling for Formulation Evaluation of Pulmonary Suspensions. ACS Omega, 5(40), 25733-25746. https://doi.org/10.1021/acsomega.0c03004

Copyright © 2020 American Chemical Society. For respiratory conditions, targeted drug delivery to the lungs could produce higher local concentrations with reduced risk of adverse events compared to systemic administration. Despite the increasing inte... Read More about Model-Informed Drug Discovery and Development in Pulmonary Delivery: Biopharmaceutical Pharmacometric Modeling for Formulation Evaluation of Pulmonary Suspensions.

Novel quinazolinone inhibitors of the Pseudomonas aeruginosa quorum sensing transcriptional regulator PqsR (2020)
Journal Article
Grossman, S., Soukarieh, F., Richardson, W., Liu, R., Mashabi, A., Emsley, J., …Stocks, M. J. (2020). Novel quinazolinone inhibitors of the Pseudomonas aeruginosa quorum sensing transcriptional regulator PqsR. European Journal of Medicinal Chemistry, 208, Article 112778. https://doi.org/10.1016/j.ejmech.2020.112778

© 2020 The Authors Rising numbers of cases of multidrug- and extensively drug-resistant Pseudomonas aeruginosa over recent years have created an urgent need for novel therapeutic approaches to cure potentially fatal infections. One such approach is v... Read More about Novel quinazolinone inhibitors of the Pseudomonas aeruginosa quorum sensing transcriptional regulator PqsR.

Discovery of hemocompatible bacterial biofilm-resistant copolymers (2020)
Journal Article
Singh, T., Hook, A. L., Luckett, J., Maitz, M. F., Sperling, C., Werner, C., …Alexander, M. R. (2020). Discovery of hemocompatible bacterial biofilm-resistant copolymers. Biomaterials, 260, Article 120312. https://doi.org/10.1016/j.biomaterials.2020.120312

© 2020 The Authors Blood-contacting medical devices play an important role within healthcare and are required to be biocompatible, hemocompatible and resistant to microbial colonization. Here we describe a high throughput screen for copolymers with t... Read More about Discovery of hemocompatible bacterial biofilm-resistant copolymers.

Gaussia luciferase as a reporter for quorum sensing in staphylococcus aureus (2020)
Journal Article
Blower, I., Tong, C., Sun, X., Murray, E., Luckett, J., Chan, W., …Hill, P. (2020). Gaussia luciferase as a reporter for quorum sensing in staphylococcus aureus. Sensors, 20(15), 1-12. https://doi.org/10.3390/s20154305

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Gaussia luciferase (GLuc) is a secreted protein with significant potential for use as a reporter of gene expression in bacterial pathogenicity studies. To date there are relatively few example... Read More about Gaussia luciferase as a reporter for quorum sensing in staphylococcus aureus.

Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants (2020)
Journal Article
Dundas, A. A., Cuzzucoli Crucitti, V., Haas, S., Dubern, J., Latif, A., Romero, M., …Irvine, D. J. (2020). Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants. Advanced Functional Materials, 30(36), https://doi.org/10.1002/adfm.202001821

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A flow-focusing microfluidic device is used to produce functionalized monodisperse polymer particles with surface chemistries designed to control bacterial biofilm formatio... Read More about Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants.

Hit Identification of New Potent PqsR Antagonists as Inhibitors of Quorum Sensing in Planktonic and Biofilm Grown Pseudomonas aeruginosa (2020)
Journal Article
Soukarieh, F., Liu, R., Romero, M., Roberston, S. N., Richardson, W., Lucanto, S., …Stocks, M. J. (2020). Hit Identification of New Potent PqsR Antagonists as Inhibitors of Quorum Sensing in Planktonic and Biofilm Grown Pseudomonas aeruginosa. Frontiers in Chemistry, 8, Article 204. https://doi.org/10.3389/fchem.2020.00204

© Copyright © 2020 Soukarieh, Liu, Romero, Roberston, Richardson, Lucanto, Oton, Qudus, Mashabi, Grossman, Ali, Sou, Kukavica-Ibrulj, Levesque, Bergström, Halliday, Mistry, Emsley, Heeb, Williams, Cámara and Stocks. Current treatments for Pseudomonas... Read More about Hit Identification of New Potent PqsR Antagonists as Inhibitors of Quorum Sensing in Planktonic and Biofilm Grown Pseudomonas aeruginosa.

Immune Modulation by Design: Using Topography to Control Human Monocyte Attachment and Macrophage Differentiation (2020)
Journal Article
Vassey, M. J., Figueredo, G. P., Scurr, D. J., Vasilevich, A. S., Vermeulen, S., Carlier, A., …Alexander, M. R. (2020). Immune Modulation by Design: Using Topography to Control Human Monocyte Attachment and Macrophage Differentiation. Advanced Science, 7(11), https://doi.org/10.1002/advs.201903392

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Macrophages play a central role in orchestrating immune responses to foreign materials, which are often responsible for the failure of implanted medical devices. Material t... Read More about Immune Modulation by Design: Using Topography to Control Human Monocyte Attachment and Macrophage Differentiation.

A Simple Polymicrobial Biofilm Keratinocyte Colonization Model for Exploring Interactions Between Commensals, Pathogens and Antimicrobials (2020)
Journal Article
Jordana-Lluch, E., Garcia, V., Kingdon, A. D. H., Singh, N., Alexander, C., Williams, P., & Hardie, K. R. (2020). A Simple Polymicrobial Biofilm Keratinocyte Colonization Model for Exploring Interactions Between Commensals, Pathogens and Antimicrobials. Frontiers in Microbiology, 11, Article 291. https://doi.org/10.3389/fmicb.2020.00291

© 2020 Jordana-Lluch, Garcia, Kingdon, Singh, Alexander, Williams and Hardie. Skin offers protection against external insults, with the skin microbiota playing a crucial defensive role against pathogens that gain access when the skin barrier is breac... Read More about A Simple Polymicrobial Biofilm Keratinocyte Colonization Model for Exploring Interactions Between Commensals, Pathogens and Antimicrobials.

Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections (2020)
Journal Article
Kurmoo, Y., Hook, A. L., Harvey, D., Dubern, J., Williams, P., Morgan, S. P., …Alexander, M. R. (2020). Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections. Biomaterials Science, 8(5), 1464-1477. https://doi.org/10.1039/c9bm00875f

Real time monitoring of bacterial attachment to medical devices provides opportunities to detect early biofilm formation and instigate appropriate interventions before infection develops. This study utilises long period grating (LPG) optical fibre se... Read More about Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections.