Skip to main content

Research Repository

Advanced Search

All Outputs (5)

The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo (2020)
Journal Article
Bass, J. J., Kazi, A. A., Deane, C. S., Nakhuda, A., Ashcroft, S. P., Brook, M. S., …Atherton, P. J. (2021). The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo. Journal of Physiology, 599(3), 963-979. https://doi.org/10.1113/JP280652

Key points: Reduced vitamin D receptor (VDR) expression prompts skeletal muscle atrophy. Atrophy occurs through catabolic processes, namely the induction of autophagy, while anabolism remains unchanged. In response to VDR-knockdown mitochondrial func... Read More about The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo.

Influence of sex on the age?related adaptations of neuromuscular function and motor unit properties in elite masters athletes (2020)
Journal Article
Piasecki, J., Inns, T. B., Bass, J. J., Scott, R., Stashuk, D. W., Phillips, B. E., …Piasecki, M. (2021). Influence of sex on the age‐related adaptations of neuromuscular function and motor unit properties in elite masters athletes. Journal of Physiology, 599(1), 193-205. https://doi.org/10.1113/jp280679

Motor unit (MU) remodelling acts to minimise loss of muscle fibres following denervation in older age, which may be more successful in masters athletes. Evidence suggests performance and neuromuscular function decline with age in this population, alt... Read More about Influence of sex on the age?related adaptations of neuromuscular function and motor unit properties in elite masters athletes.

Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy (2020)
Journal Article
Bass, J. J., Nakhuda, A., Deane, C. S., Brook, M. S., Wilkinson, D. J., Phillips, B. E., …Atherton, P. J. (2020). Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy. Molecular Metabolism, 42, Article 101059. https://doi.org/10.1016/j.molmet.2020.101059

Objective The Vitamin D receptor (VDR) has been positively associated with skeletal muscle mass, function and regeneration. Mechanistic studies have focused upon loss of the receptor, with in vivo whole-body knockout models demonstrating reduced myo... Read More about Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy.

Glucagon-like peptide 1 infusions overcome anabolic resistance to feeding in older human muscle (2020)
Journal Article
Abdulla, H., Phillips, B. E., Wilkinson, D. J., Limb, M., Jandova, T., Bass, J. J., …Atherton, P. J. (2020). Glucagon-like peptide 1 infusions overcome anabolic resistance to feeding in older human muscle. Aging Cell, 19(9), Article e13202. https://doi.org/10.1111/acel.13202

© 2020 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd Background: Despite its known insulin-independent effects, glucagon-like peptide-1 (GLP-1) role in muscle protein turnover has not been explored under fed-stat... Read More about Glucagon-like peptide 1 infusions overcome anabolic resistance to feeding in older human muscle.

The Effect of Whey Protein Supplementation on Myofibrillar Protein Synthesis and Performance Recovery in Resistance-Trained Men (2020)
Journal Article
Davies, R. W., Bass, J. J., Carson, B. P., Norton, C., Kozior, M., Wilkinson, D. J., …Jakeman, P. M. (2020). The Effect of Whey Protein Supplementation on Myofibrillar Protein Synthesis and Performance Recovery in Resistance-Trained Men. Nutrients, 12(3), Article 845. https://doi.org/10.3390/nu12030845

Background: The aim of this study was to investigate the effect of whey protein supplementation on myofibrillar protein synthesis (myoPS) and muscle recovery over a 7-d period of intensified resistance training (RT). Methods: In a double-blind random... Read More about The Effect of Whey Protein Supplementation on Myofibrillar Protein Synthesis and Performance Recovery in Resistance-Trained Men.