Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Cell type–specific super-resolution imaging reveals an increase in calcium-permeable AMPA receptors at spinal peptidergic terminals as an anatomical correlate of inflammatory pain (2019)
Journal Article
Woodhams, S. G., Markus, R., Gowler, P. R., Self, T. J., & Chapman, V. (2019). Cell type–specific super-resolution imaging reveals an increase in calcium-permeable AMPA receptors at spinal peptidergic terminals as an anatomical correlate of inflammatory pain. PAIN, 160(11), 2641-2650. https://doi.org/10.1097/j.pain.0000000000001672

Spinal hyperexcitability is a key event in the development of persistent pain, and arises partly from alterations in the number and localization of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptors. However, determinin... Read More about Cell type–specific super-resolution imaging reveals an increase in calcium-permeable AMPA receptors at spinal peptidergic terminals as an anatomical correlate of inflammatory pain.

Mechanistic investigations into the encapsulation and release of small molecules and proteins from a supramolecular nucleoside gel in vitro and in vivo (2019)
Journal Article
Faidra Angelerou, M. G., Markus, R., Paraskevopoulou, V., Foralosso, R., Clarke, P., Alvarez, C. V., …Marlow, M. (2020). Mechanistic investigations into the encapsulation and release of small molecules and proteins from a supramolecular nucleoside gel in vitro and in vivo. Journal of Controlled Release, 317, 118-129. https://doi.org/10.1016/j.jconrel.2019.10.011

Supramolecular gels have recently emerged as promising biomaterials for the delivery of a wide range of bioactive molecules, from small hydrophobic drugs to large biomolecules such as proteins. Although it has been demonstrated that each encapsulated... Read More about Mechanistic investigations into the encapsulation and release of small molecules and proteins from a supramolecular nucleoside gel in vitro and in vivo.

Live Simultaneous Monitoring of Mineral Deposition and Lipid Accumulation in Differentiating Stem Cells (2019)
Journal Article
De Melo, N., McGinlay, S., Markus, R., Macri-Pellizzeri, L., Symonds, M. E., Ahmed, I., & Sottile, V. (2019). Live Simultaneous Monitoring of Mineral Deposition and Lipid Accumulation in Differentiating Stem Cells. Biomimetics, 4(3), 1-10. https://doi.org/10.3390/biomimetics4030048

Mesenchymal stem cells (MSCs) are progenitors for bone-forming osteoblasts and lipid-storing adipocytes, two major lineages co-existing in bone marrow. When isolated in vitro, these stem cells recapitulate osteoblast or adipocyte formation if treated... Read More about Live Simultaneous Monitoring of Mineral Deposition and Lipid Accumulation in Differentiating Stem Cells.

Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types (2019)
Journal Article
Sherman, H. G., Jovanovic, C., Abuawad, A., Kim, D., Collins, H., Dixon, J. E., …Rawson, F. J. (2019). Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types. BBA - Bioenergetics, 1860(8), 628-639. https://doi.org/10.1016/j.bbabio.2019.06.012

Trans-plasma membrane electron transfer (tMPET) is a process by which reducing equivalents, either electrons or reductants like ascorbic acid, are exported to the extracellular environment by the cell. TPMET is involved in a number of physiological p... Read More about Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types.