Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Enhancing doxorubicin anticancer activity with a novel polymeric platform photoreleasing nitric oxide (2019)
Journal Article
Sodano, F., Cavanagh, R., Pearce, A. K., Lazzarato, L., Rolando, B., Fraix, A., …Sortino, S. (2020). Enhancing doxorubicin anticancer activity with a novel polymeric platform photoreleasing nitric oxide. Biomaterials Science, 8(5), 1329-1344. https://doi.org/10.1039/c9bm01644a

© 2020 The Royal Society of Chemistry. Combinations of conventional chemotherapeutics with unconventional anticancer agents such as reactive oxygen and nitrogen species may offer treatment benefits for cancer therapies. Here we report a novel polymer... Read More about Enhancing doxorubicin anticancer activity with a novel polymeric platform photoreleasing nitric oxide.

Amphiphilic tri- and tetra-block co-polymers combining versatile functionality with facile assembly into cytocompatible nanoparticles (2019)
Journal Article
Vasey, C. E., Pearce, A. K., Sodano, F., Cavanagh, R., Abelha, T., Cuzzucoli Crucitti, V., …Alexander, C. (2019). Amphiphilic tri- and tetra-block co-polymers combining versatile functionality with facile assembly into cytocompatible nanoparticles. Biomaterials Science, 7(9), 3832-3845. https://doi.org/10.1039/c9bm00667b

In order for synthetic polymers to find widespread practical application as biomaterials, their syntheses must be easy to perform, utilising freely available building blocks, and should generate products which have no adverse effects on cells or tiss... Read More about Amphiphilic tri- and tetra-block co-polymers combining versatile functionality with facile assembly into cytocompatible nanoparticles.

Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types (2019)
Journal Article
Sherman, H. G., Jovanovic, C., Abuawad, A., Kim, D., Collins, H., Dixon, J. E., …Rawson, F. J. (2019). Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types. BBA - Bioenergetics, 1860(8), 628-639. https://doi.org/10.1016/j.bbabio.2019.06.012

Trans-plasma membrane electron transfer (tMPET) is a process by which reducing equivalents, either electrons or reductants like ascorbic acid, are exported to the extracellular environment by the cell. TPMET is involved in a number of physiological p... Read More about Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types.

Exposure to a Nonionic Surfactant Induces a Response Akin to Heat-Shock Apoptosis in Intestinal Epithelial Cells: Implications for Excipients Safety (2019)
Journal Article
Cavanagh, R. J., Smith, P. A., & Stolnik, S. (2019). Exposure to a Nonionic Surfactant Induces a Response Akin to Heat-Shock Apoptosis in Intestinal Epithelial Cells: Implications for Excipients Safety. Molecular Pharmaceutics, 16(2), 618-631. https://doi.org/10.1021/acs.molpharmaceut.8b00934

© 2019 American Chemical Society. Amphipathic, nonionic, surfactants are widely used in pharmaceutical, food, and agricultural industry to enhance product features; as pharmaceutical excipients, they are also aimed at increasing cell membrane permeab... Read More about Exposure to a Nonionic Surfactant Induces a Response Akin to Heat-Shock Apoptosis in Intestinal Epithelial Cells: Implications for Excipients Safety.