Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Immobilized Enzymes on Gold Nanoparticles: From Enhanced Stability to Cleaning of Heritage Textiles (2019)
Journal Article
Gherardi, F., Turyanska, L., Ferrari, E., Weston, N., Fay, M. W., & Colston, B. J. (2019). Immobilized Enzymes on Gold Nanoparticles: From Enhanced Stability to Cleaning of Heritage Textiles. ACS Applied Bio Materials, 2(11), 5136-5143. https://doi.org/10.1021/acsabm.9b00802

Enzyme-based treatments are used in heritage conservation for the effective removal of glues and other damaging organic layers from the surfaces of historic and artistic works. Despite their potential, however, the application of enzymatic treatments... Read More about Immobilized Enzymes on Gold Nanoparticles: From Enhanced Stability to Cleaning of Heritage Textiles.

An integrated approach to determine interactive genotoxic and global gene expression effects of multiwalled carbon nanotubes (MWCNTs) and benzo[a]pyrene (BaP) on marine mussels: evidence of reverse ‘Trojan Horse’ effects (2019)
Journal Article
Barranger, A., Rance, G. A., Aminot, Y., Dallas, L. J., Sforzini, S., Weston, N. J., …Jha, A. N. (2019). An integrated approach to determine interactive genotoxic and global gene expression effects of multiwalled carbon nanotubes (MWCNTs) and benzo[a]pyrene (BaP) on marine mussels: evidence of reverse ‘Trojan Horse’ effects. Nanotoxicology, 13(10), 1324-1343. https://doi.org/10.1080/17435390.2019.1654003

The interactions between carbon-based engineered nanoparticles (ENPs) and organic pollutants might enhance the uptake of contaminants into biota. The present integrated study aimed to assess this potential ‘Trojan Horse’, probing the interactive effe... Read More about An integrated approach to determine interactive genotoxic and global gene expression effects of multiwalled carbon nanotubes (MWCNTs) and benzo[a]pyrene (BaP) on marine mussels: evidence of reverse ‘Trojan Horse’ effects.

In-situ icing and water condensation study on different topographical surfaces (2019)
Journal Article
Memon, H., Liu, J., Weston, N., Wang, J., De Focatiis, D., Choi, K., & Hou, X. (2019). In-situ icing and water condensation study on different topographical surfaces. Cold Regions Science and Technology, 165, Article 102814. https://doi.org/10.1016/j.coldregions.2019.102814

Icephobicity is intrinsically affected by rough asperities and the surface voids provide anchoring points for the ice. The anchor of ice is likely to form on the surface under high humidity conditions. In-situ water condensation and icing observation... Read More about In-situ icing and water condensation study on different topographical surfaces.