Skip to main content

Research Repository

Advanced Search

All Outputs (13)

Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing (2019)
Journal Article
Yoo, J., Clark, E. A., Wallace, M. J., Irvine, D. J., Alexander, M. R., Roberts, C. J., & Wildman, R. D. (2020). Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing. International Journal of Pharmaceutics, 578, https://doi.org/10.1016/j.ijpharm.2019.118805

© 2019 In this study, we investigate the viability of three-dimensional (3D) inkjet printing with UV curing to produce solid dosage forms containing a known poorly soluble drug, carvedilol. The formulation consists of 10 wt% carvedilol, Irgacure 2959... Read More about Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing.

Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation (2019)
Journal Article
Dundas, A. A., Sanni, O., Dubern, J., Dimitrakis, G., Hook, A. L., Irvine, D. J., …Alexander, M. R. (2019). Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation. Advanced Materials, 31(49), Article 1903513. https://doi.org/10.1002/adma.201903513

ynthetic materials are an everyday component of modern healthcare yet often fail routinely as a consequence of medical‐device‐centered infections. The incidence rate for catheter‐associated urinary tract infections is between 3% and 7% for each day o... Read More about Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation.

Toward Interpretable Machine Learning Models for Materials Discovery (2019)
Journal Article
Mikulskis, P., Alexander, M. R., & Winkler, D. A. (2019). Toward Interpretable Machine Learning Models for Materials Discovery. Advanced Intelligent Systems, 1(8), Article 1900045. https://doi.org/10.1002/aisy.201900045

Machine learning (ML) and artificial intelligence (AI) methods for modeling useful materials properties are now important technologies for rational design and optimization of bespoke functional materials. Although these methods make good predictions... Read More about Toward Interpretable Machine Learning Models for Materials Discovery.

Simultaneous Tracking of Pseudomonas aeruginosa motility in liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators (2019)
Journal Article
Hook, A. L., Flewellen, J. L., Dubern, J., Carabelli, A., Zald, I. M., Berry, R. M., …Alexander, M. R. (2019). Simultaneous Tracking of Pseudomonas aeruginosa motility in liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators. mSystems, 4(5), Article e00390-19. https://doi.org/10.1128/mSystems.00390-19

Bacteria sense chemicals, surfaces, and other cells and move toward some and away from others. Studying how single bacterial cells in a population move requires sophisticated tracking and imaging techniques. We have established quantitative methodolo... Read More about Simultaneous Tracking of Pseudomonas aeruginosa motility in liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators.

Wireless Nanobioelectronics for Electrical Intracellular Sensing (2019)
Journal Article
Sanjuan-Alberte, P., Jain, A., Shaw, A. J., Abayzeed, S. A., Domínguez, R. F., Alea-Reyes, M. E., …Rawson, F. J. (2019). Wireless Nanobioelectronics for Electrical Intracellular Sensing. ACS Applied Nano Materials, 2(10), 6397-6408. https://doi.org/10.1021/acsanm.9b01374

For the field of bioelectronics to make an impact on healthcare, there is an urgent requirement for the development of “wireless” electronic systems to enable modulation of chemistry inside of cells. Herein we report on an intracellular wireless elec... Read More about Wireless Nanobioelectronics for Electrical Intracellular Sensing.

Dual Bioresponsive Antibiotic and Quorum Sensing Inhibitor Combination Nanoparticles for Treatment of Pseudomonas aeruginosa Biofilms In Vitro and Ex Vivo (2019)
Journal Article
Singh, N., Romero, M., Travanut, A., Monteiro, P., Jordana-Lluch, E., Hardie, K. R., …Alexander, C. (2019). Dual Bioresponsive Antibiotic and Quorum Sensing Inhibitor Combination Nanoparticles for Treatment of Pseudomonas aeruginosa Biofilms In Vitro and Ex Vivo. Biomaterials Science, 10(7), 4099-4111. https://doi.org/10.1039/C9BM00773C

Many debilitating infections result from persistent microbial biofilms that do not respond to conventional antibiotic regimens. A potential method to treat such chronic infections is to combine agents which interfere with bacterial biofilm developmen... Read More about Dual Bioresponsive Antibiotic and Quorum Sensing Inhibitor Combination Nanoparticles for Treatment of Pseudomonas aeruginosa Biofilms In Vitro and Ex Vivo.

Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior (2019)
Journal Article
Vaithilingam, J., Sanjuan‐Alberte, P., Campora, S., Rance, G. A., Jiang, L., Thorpe, J., …Rawson, F. J. (2019). Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior. Advanced Functional Materials, 29(38), Article 1902016. https://doi.org/10.1002/adfm.201902016

Biological structures control cell behavior via physical, chemical, electrical, and mechanical cues. Approaches that allow us to build devices that mimic these cues in a combinatorial way are lacking due to there being no suitable instructive materia... Read More about Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior.

High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations (2019)
Journal Article
Zhou, Z., Ruiz Cantu, L., Chen, X., Alexander, M. R., Roberts, C. J., Hague, R., …Wildman, R. (2019). High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations. Additive Manufacturing, 29, Article 100792. https://doi.org/10.1016/j.addma.2019.100792

Inkjet printing has been used as an Additive Manufacturing (AM) method to fabricate three-dimensional (3D) structures. However, a lack of materials suitable for inkjet printing poses one of the key challenges that impedes industry from fully adopting... Read More about High-throughput characterization of fluid properties to predict droplet ejection for three-dimensional inkjet printing formulations.

Methodology for the synthesis of methacrylate monomers using designed single mode microwave applicators (2019)
Journal Article
Dundas, A. A., Hook, A. L., Alexander, M. R., Kingman, S. W., Dimitrakis, G., & Irvine, D. J. (2019). Methodology for the synthesis of methacrylate monomers using designed single mode microwave applicators. Reaction Chemistry and Engineering, 4(8), 1472-1476. https://doi.org/10.1039/c9re00173e

© 2019 The Royal Society of Chemistry. A novel single-well prototype high throughput microwave reactor geometry has been produced and shown to be capable of synthesizing an array of non-commercially available methacrylate monomers. The reactor, which... Read More about Methodology for the synthesis of methacrylate monomers using designed single mode microwave applicators.

Polymer microparticles with defined surface chemistry and topography mediate the formation of stem cell aggregates and cardiomyocyte function (2019)
Journal Article
Alvarez-Paino, M., Amer, M. H., Nasir, A., Cuzzucoli Crucitti, V., Thorpe, J., Burroughs, L., …Rose, F. (2019). Polymer microparticles with defined surface chemistry and topography mediate the formation of stem cell aggregates and cardiomyocyte function. ACS Applied Materials and Interfaces, 11(38), 34560-34574. https://doi.org/10.1021/acsami.9b04769

Surface-functionalized microparticles are relevant to fields spanning engineering and biomedicine, with uses ranging from cell culture to advanced cell delivery. Varying topographies of biomaterial surfaces are also being investigated as mediators of... Read More about Polymer microparticles with defined surface chemistry and topography mediate the formation of stem cell aggregates and cardiomyocyte function.

Water-Based 3D Inkjet Printing of an Oral Pharmaceutical Dosage Form (2019)
Journal Article
Cader, H. K., Rance, G. A., Alexander, M. R., Gonçalves, A. D., Roberts, C. J., Tuck, C. J., & Wildman, R. D. (2019). Water-Based 3D Inkjet Printing of an Oral Pharmaceutical Dosage Form. International Journal of Pharmaceutics, 564, 359-368. https://doi.org/10.1016/j.ijpharm.2019.04.026

Inkjet printing is a form of additive manufacturing where liquid droplets are selectively deposited onto a substrate followed by solidification. The process provides significant potential advantages for producing solid oral dosage forms or tablets, i... Read More about Water-Based 3D Inkjet Printing of an Oral Pharmaceutical Dosage Form.

Remotely controlled in situ growth of silver microwires forming bioelectronic interfaces (2019)
Journal Article
Sanjuan-Alberte, P., Saleh, E., Shaw, A. J., Lacalendola, N., Willmott, G., Vaithilingam, J., …Rawson, F. J. (2019). Remotely controlled in situ growth of silver microwires forming bioelectronic interfaces. ACS Applied Materials and Interfaces, 11(9), 8928-8936. https://doi.org/10.1021/acsami.8b22075

There is a pressing need to advance our ability to construct three-dimensional (3D) functional bioelectronic interfaces. Additionally, to ease the transition to building cellular electronic systems, a remote approach to merge electrical components wi... Read More about Remotely controlled in situ growth of silver microwires forming bioelectronic interfaces.

Lipids and polymers in pharmaceutical technology: lifelong companions (2019)
Journal Article
Siepmann, J., Faham, A., Clas, S., Boyd, B. J., Jannin, V., Bernkop-Schnürch, A., …Leroux, J. (2019). Lipids and polymers in pharmaceutical technology: lifelong companions. International Journal of Pharmaceutics, 558, 128-142. https://doi.org/10.1016/j.ijpharm.2018.12.080

In pharmaceutical technology, lipids and polymers are considered pillar excipients for the fabrication of most dosage forms, irrespective of the administration route. They play various roles ranging from support vehicles to release rate modifiers, st... Read More about Lipids and polymers in pharmaceutical technology: lifelong companions.