Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Porous phosphate-based glass microspheres show biocompatibility, tissue infiltration and osteogenic onset in an ovine bone defect model (2019)
Journal Article
McLaren, J. S., Macri-Pellizzeri, L., Zakir Hossain, K. M., Patel, U., Grant, D. M., Scammell, B. E., …Sottile, V. (2019). Porous phosphate-based glass microspheres show biocompatibility, tissue infiltration and osteogenic onset in an ovine bone defect model. ACS Applied Materials and Interfaces, 11(17), 15436–15446. https://doi.org/10.1021/acsami.9b04603

Phosphate-based glasses (PBG) are bioactive and fully degradable materials with tailorable degradation rates. PBGs can be produced as porous microspheres through a single-step process, using changes in their formulation and geometry to produce varyin... Read More about Porous phosphate-based glass microspheres show biocompatibility, tissue infiltration and osteogenic onset in an ovine bone defect model.

Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples (2019)
Journal Article
Dooley, M., Prasopthum, A., Liao, Z., Sinjab, F., Mclaren, J., Rose, F. R. A. J., …Notingher, I. (2019). Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples. Biomedical Optics Express, 10(4), 1678-1690. https://doi.org/10.1364/BOE.10.001678

Using phantom samples, we investigated the feasibility of spatially-offset Raman spectroscopy (SORS) as a tool for monitoring non-invasively the mineralization of bone tissue engineering scaffold in-vivo. The phantom samples consisted of 3D-printed s... Read More about Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples.