Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Design and characterisation of an additive manufacturing benchmarking artefact following a design-for-metrology approach (2019)
Journal Article
Santos, V. M. R., Thompson, A., Sims-Waterhouse, D., Maskery, I., Woolliams, P., & Leach, R. (2020). Design and characterisation of an additive manufacturing benchmarking artefact following a design-for-metrology approach. Additive Manufacturing, 32, Article 100964. https://doi.org/10.1016/j.addma.2019.100964

We present the design and characterisation of a high-speed sintering additive manufacturing benchmarking artefact following a design-for-metrology approach. In an important improvement over conventional approaches, the specifications and operating pr... Read More about Design and characterisation of an additive manufacturing benchmarking artefact following a design-for-metrology approach.

Rainbow metamaterials for broadband multi-frequency vibration attenuation: Numerical analysis and experimental validation (2019)
Journal Article
Chronopoulos, D., Meng, H., Elmadih, W., Fabro, A., & Maskery, I. (2020). Rainbow metamaterials for broadband multi-frequency vibration attenuation: Numerical analysis and experimental validation. Journal of Sound and Vibration, 465, Article 115005. https://doi.org/10.1016/j.jsv.2019.115005

In this study, we propose a ‘rainbow’ metamaterial to achieve broadband multi-frequency vibration attenuation. The rainbow metamaterial is constituted of a Π-shaped beam partitioned into substructures by parallel plates insertions with two attached c... Read More about Rainbow metamaterials for broadband multi-frequency vibration attenuation: Numerical analysis and experimental validation.

Optimal design of rainbow elastic metamaterials (2019)
Journal Article
Fabro, A. T., Meng, H., Chronopoulos, D., Maskery, I., & Chen, Y. (2020). Optimal design of rainbow elastic metamaterials. International Journal of Mechanical Sciences, 165, https://doi.org/10.1016/j.ijmecsci.2019.105185

In this study, we present an optimization scheme for the resonator distribution in rainbow metamaterials that are constitutive of a ?-shaped beam with parallel plate insertions and two sets of spatially varying cantilever-mass resonators. To improve... Read More about Optimal design of rainbow elastic metamaterials.

Three-dimensional resonating metamaterials for low-frequency vibration attenuation (2019)
Journal Article
Elmadih, W., Chronopoulos, D., Syam, W., Maskery, I., Meng, H., & Leach, R. (2019). Three-dimensional resonating metamaterials for low-frequency vibration attenuation. Scientific Reports, 9(1), Article 11503. https://doi.org/10.1038/s41598-019-47644-0

Recent advances in additive manufacturing have enabled fabrication of phononic crystals and metamaterials which exhibit spectral gaps, or stopbands, in which the propagation of elastic waves is prohibited by Bragg scattering or local resonance effect... Read More about Three-dimensional resonating metamaterials for low-frequency vibration attenuation.

Multidimensional Phononic Bandgaps in Three-Dimensional Lattices for Additive Manufacturing (2019)
Journal Article
Elmadih, W., Syam, W. P., Maskery, I., Chronopoulos, D., & Leach, R. (2019). Multidimensional Phononic Bandgaps in Three-Dimensional Lattices for Additive Manufacturing. Materials, 12(11), Article 1878. https://doi.org/10.3390/ma12111878

We report on numerical modelling of three-dimensional lattice structures designed to provide phononic bandgaps. The examined lattice structures rely on two distinct mechanisms for bandgap formation: the destructive interference of elastic waves and i... Read More about Multidimensional Phononic Bandgaps in Three-Dimensional Lattices for Additive Manufacturing.