Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Roots branch towards water by post-translational modification of transcription factor ARF7 (2018)
Journal Article
Orosa Puente, B., Leftley, N., Von Wangenheim, D., Banda, J., Anjil, S., Hill, K., …Bennett, M. (2018). Roots branch towards water by post-translational modification of transcription factor ARF7. Science, 362(6421), 1407-1410. https://doi.org/10.1126/science.aau3956

Plants adapt to heterogeneous soil conditions by altering their root architecture. For example, roots branch when in contact with water using the hydropatterning response. We report that hydropatterning is dependent on auxin response factor ARF7. Thi... Read More about Roots branch towards water by post-translational modification of transcription factor ARF7.

A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation (2018)
Journal Article
Bhosale, R., Boudolf, V., Cuevas, F., Lu, R., Eekhout, T., Hu, Z., …De Veylder, L. (2018). A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation. Plant Cell, 30(10), 2330-2351. https://doi.org/10.1105/tpc.17.00983

© 2018 ASPB. Somatic polyploidy caused by endoreplication is observed in arthropods, molluscs, and vertebrates but is especially prominent in higher plants, where it has been postulated to be essential for cell growth and fate maintenance. However, a... Read More about A Spatiotemporal DNA Endoploidy Map of the Arabidopsis Root Reveals Roles for the Endocycle in Root Development and Stress Adaptation.

Erratum: Author Correction: A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (Nature communications (2018) 9 1 (1409)) (2018)
Journal Article
Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F. H., Hartmann, A., Traini, R., …Swarup, R. (2018). Erratum: Author Correction: A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (Nature communications (2018) 9 1 (1409)). Nature Communications, 9(1), 1818. https://doi.org/10.1038/s41467-018-04281-x

The original version of this Article omitted the following from the Acknowledgements: 'We also thank DBT-CREST BT/HRD/03/01/2002.'This has been corrected in both the PDF and HTML versions of the Article.

Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)) (2018)
Journal Article
Giri, J., Bhosale, R., Huang, G., Pandey, B. K., Parker, H., Zappala, S., …Bennett, M. J. (2018). Erratum: Author Correction: Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (Nature communications (2018) 9 1 (1408)). Nature Communications, 9(1), Article 1810. https://doi.org/10.1038/s41467-018-04280-y

The original version of this Article omitted the following from the Acknowledgements:'We also thank DBT-CREST BT/HRD/03/01/2002.'This has been corrected in both the PDF and HTML versions of the Article.

Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate (2018)
Journal Article
Giri, J., Bhosale, R., Huang, G., Pandey, B. K., Parker, H., Zappala, S., …Bennett, M. J. (2018). Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate. Nature Communications, 9(1), https://doi.org/10.1038/s41467-018-03850-4

Root traits such as root angle and hair length influence resource acquisition particularly for immobile nutrients like phosphorus (P). Here, we attempted to modify root angle in rice by disrupting the OsAUX1 auxin influx transporter gene in an effort... Read More about Rice auxin influx carrier OsAUX1 facilitates root hair elongation in response to low external phosphate.

A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate (2018)
Journal Article
Giehl, R. F. H., Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F., Hartmann, A., …Swarup, R. (2018). A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nature Communications, 9(1), 1-9. https://doi.org/10.1038/s41467-018-03851-3

Phosphate (P) is an essential macronutrient for plant growth. Roots employ adaptive mechanisms to forage for P in soil. Root hair elongation is particularly important since P is immobile. Here we report that auxin plays a critical role promoting root... Read More about A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate.