Skip to main content

Research Repository

Advanced Search

All Outputs (14)

Reactive material jetting of polyimide insulators for complex circuit board design (2018)
Journal Article
Zhang, F., Saleh, E., Vaithilingam, J., Li, Y., Tuck, C., Hague, R., …He, Y. (2019). Reactive material jetting of polyimide insulators for complex circuit board design. Additive Manufacturing, 25, 477-484. https://doi.org/10.1016/j.addma.2018.11.017

Polyimides are a group of high performance thermal stable dielectric materials used in diverse applications. In this article, we synthesized and developed a high-performance polyimide precursor ink for a Material Jetting (MJ) process. The proposed in... Read More about Reactive material jetting of polyimide insulators for complex circuit board design.

Design and optical characterisation of an efficient light trapping structure for dye-sensitized solar cell integrated windows (2018)
Journal Article
Knott, A., Liu, X., Makarovskiy, O., O'Shea, J., Tuck, C., & Wu, Y. (2019). Design and optical characterisation of an efficient light trapping structure for dye-sensitized solar cell integrated windows. Building Simulation, 12(1), 41-49. https://doi.org/10.1007/s12273-018-0485-1

Windows integrated with semi-transparent photovoltaics (PVs) such as Dye-Sensitized Solar Cells (DSSCs) show good potential in improving building performance, in term of providing daylight, reducing unnecessary solar heat gain and also generating ele... Read More about Design and optical characterisation of an efficient light trapping structure for dye-sensitized solar cell integrated windows.

Selective recrystallization of cellulose composite powders and microstructure creation through 3D binder jetting (2018)
Journal Article
Holland, S., Tuck, C., & Foster, T. (2018). Selective recrystallization of cellulose composite powders and microstructure creation through 3D binder jetting. Carbohydrate Polymers, 200, 229-238. https://doi.org/10.1016/j.carbpol.2018.07.064

Binder jetting is an additive manufacturing technique in which powdered material is sequentially laid down and printed on by an ink binder, in a selective manner, to form a 3D object. Unfortunately work in this area relevant to food materials is larg... Read More about Selective recrystallization of cellulose composite powders and microstructure creation through 3D binder jetting.

Band gap behavior of optimal one-dimensional composite structures with an additive manufactured stiffener (2018)
Journal Article
Ampatzidis, T., Leach, R. K., Tuck, C., & Chronopoulos, D. (2018). Band gap behavior of optimal one-dimensional composite structures with an additive manufactured stiffener. Composites Part B: Engineering, 153, https://doi.org/10.1016/j.compositesb.2018.07.012

In this work, the banded behaviour of composite one-dimensional structures with an additive manufactured stiffener is examined. A finite element method is used to calculate the stiffness, mass and damping matrices, and periodic structure theory is us... Read More about Band gap behavior of optimal one-dimensional composite structures with an additive manufactured stiffener.

Optimisation of substrate angles for multi-material and multi-functional inkjet printing (2018)
Journal Article
Vaithilingam, J., Saleh, E., Wildman, R. D., Hague, R. J., & Tuck, C. (2018). Optimisation of substrate angles for multi-material and multi-functional inkjet printing. Scientific Reports, 8, Article 9030. https://doi.org/10.1038/s41598-018-27311-6

Three dimensional inkjet printing of multiple materials for electronics applications are challenging due to the limited material availability, inconsistencies in layer thickness between dissimilar materials and the need to expose the printed tracks o... Read More about Optimisation of substrate angles for multi-material and multi-functional inkjet printing.

Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading (2018)
Journal Article
Maskery, I., Aremu, A., Parry, L., Wildman, R., Tuck, C., & Ashcroft, I. (2018). Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading. Materials and Design, 155, 220-232. https://doi.org/10.1016/j.matdes.2018.05.058

In this paper we present a numerical investigation into surface-based lattice structures with the aim of facilitating their design for additive manufacturing. We give the surface equations for these structures and show how they can be used to tailor... Read More about Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading.

3D-printed components for quantum devices (2018)
Journal Article
Saint, R., Evans, W., Zhou, Y., Barrett, T. J., Fromhold, T., Saleh, E., …Krüger, P. (2018). 3D-printed components for quantum devices. Scientific Reports, 8, https://doi.org/10.1038/s41598-018-26455-9

Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. The full potential o... Read More about 3D-printed components for quantum devices.

A comparison of Ti-6Al-4V in-situ alloying in Selective Laser Melting using simply-mixed and satellited powder blend feedstocks (2018)
Journal Article
Simonelli, M., Aboulkhair, N. T., Cohen, P., Murray, J. W., Clare, A. T., Tuck, C., & Hague, R. J. (in press). A comparison of Ti-6Al-4V in-situ alloying in Selective Laser Melting using simply-mixed and satellited powder blend feedstocks. Materials Characterization, https://doi.org/10.1016/j.matchar.2018.05.039

In-situ alloying within laser powder-bed fusion, specifically Selective Laser Melting (SLM), has been investigated for the formulation of novel alloys from elemental powders to extend the benefits offered by these technologies. Inadequate preparation... Read More about A comparison of Ti-6Al-4V in-situ alloying in Selective Laser Melting using simply-mixed and satellited powder blend feedstocks.

Compressive failure modes and energy absorption in additively manufactured double gyroid lattices (2018)
Journal Article
Maskery, I., Aboulkhair, N. T., Aremu, A., Tuck, C., & Ashcroft, I. (in press). Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Additive Manufacturing, 16, https://doi.org/10.1016/j.addma.2017.04.003

Lattice structures are excellent candidates for lightweight, energy absorbing applications such as personal protective equipment. In this paper we explore several important aspects of lattice design and production by metal additive manufacturing, inc... Read More about Compressive failure modes and energy absorption in additively manufactured double gyroid lattices.

Scanning photocurrent microscopy of 3D printed light trapping structures in dye-sensitized solar cells (2018)
Journal Article
Knott, A. N., Makarovsky, O., O’Shea, P., Tuck, C., & Wu, Y. (2018). Scanning photocurrent microscopy of 3D printed light trapping structures in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 180, https://doi.org/10.1016/j.solmat.2018.02.028

Converting solar energy directly into electricity as a clean and renewable energy resource is immensely important to solving the energy crisis and environmental pollution problems induced by the consumption of fossil fuels. Dye-sensitized solar cells... Read More about Scanning photocurrent microscopy of 3D printed light trapping structures in dye-sensitized solar cells.

Fluid gels: a new feedstock for high viscosity jetting (2018)
Journal Article
Holland, S., Tuck, C., & Foster, T. (2018). Fluid gels: a new feedstock for high viscosity jetting. Food Biophysics, 13(2), https://doi.org/10.1007/s11483-018-9523-x

Suspensions of gel particles which are pourable or spoonable at room temperature can be created by shearing a gelling biopolymer through its gelation (thermal or ion mediated) rather than allowing quiescent cooling – thus the term ‘fluid gel’ may be... Read More about Fluid gels: a new feedstock for high viscosity jetting.

Author Correction: Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction (2018)
Journal Article
Hu, Q., Sun, X., Parmenter, C. D. J., Fay, M. W., Smith, E. F., Rance, G. A., …Wildman, R. (2018). Author Correction: Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction. Scientific Reports, 8(1), Article 3512. https://doi.org/10.1038/s41598-018-21513-8

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

Creep behaviour of inconel 718 processed by laser powder bed fusion (2018)
Journal Article
Xu, Z., Hyde, C., Tuck, C., & Clare, A. (2018). Creep behaviour of inconel 718 processed by laser powder bed fusion. Journal of Materials Processing Technology, 256, https://doi.org/10.1016/j.jmatprotec.2018.01.040

Additive manufacturing lends itself well to the manufacture of aerospace parts due to the high complexity and small volume of many components found in modern aero engines. By exploiting additive manufacturing design freedoms, enhanced part functional... Read More about Creep behaviour of inconel 718 processed by laser powder bed fusion.

Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery (2018)
Journal Article
Louzao, I., Koch, B., Taresco, V., Ruiz Cantu, L., Irvine, D. J., Roberts, C. J., …Alexander, M. R. (in press). Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery. ACS Applied Materials and Interfaces, 10(8), https://doi.org/10.1021/acsami.7b15677

A robust discovery methodology is presented to identify novel biomaterials suitable for 3D printing. Currently the application of Additive Manufacturing is limited by the availability of functional inks, especially in the area of biomaterials-this me... Read More about Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery.