Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Singularities in large deviations of work in quantum quenches (2018)
Journal Article
Rotondo, P., Minář, J., Garrahan, J. P., Lesanovsky, I., & Marcuzzi, M. (2018). Singularities in large deviations of work in quantum quenches. Physical Review B, 98(18), Article 184303. https://doi.org/10.1103/physrevb.98.184303

We investigate large deviations of the work performed in a quantum quench across two different phases separated by a quantum critical point, using as an example the Dicke model quenched from its superradiant to its normal phase. We extract the distri... Read More about Singularities in large deviations of work in quantum quenches.

A terahertz-driven non-equilibrium phase transition in a room temperature atomic vapour (2018)
Journal Article
Wade, C., Marcuzzi, M., Levi, E., Kondo, J., Lesanovsky, I., Adams, C., & Weatherill, K. (2018). A terahertz-driven non-equilibrium phase transition in a room temperature atomic vapour. Nature Communications, 9, 1-7. https://doi.org/10.1038/s41467-018-05597-4

There are few demonstrated examples of phase transitions that may be driven directly by terahertz frequency electric fields, and those that are known require field strengths exceeding 1 MV cm?1. Here we report a non-equilibrium phase transition drive... Read More about A terahertz-driven non-equilibrium phase transition in a room temperature atomic vapour.

Open quantum generalisation of Hopfield neural networks (2018)
Journal Article
Rotondo, P., Marcuzzi, M., Garrahan, J. P., Lesanovsky, I., & Müller, M. (2018). Open quantum generalisation of Hopfield neural networks. Journal of Physics A: Mathematical and Theoretical, 51(11), Article 115301. https://doi.org/10.1088/1751-8121/aaabcb

We propose a new framework to understand how quantum effects may impact on the dynamics of neural networks. We implement the dynamics of neural networks in terms of Markovian open quantum systems, which allows us to treat thermal and quantum coherent... Read More about Open quantum generalisation of Hopfield neural networks.