Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Isogenic pairs of hiPSC-CMs with hypertrophic cardiomyopathy/LVNC-associated ACTC1 E99K mutation unveil differential functional deficits (2018)
Journal Article
Smith, J. G., Owen, T., Bhagwan, J. R., Mosqueira, D., Scott, E., Mannhardt, I., …Denning, C. (2018). Isogenic pairs of hiPSC-CMs with hypertrophic cardiomyopathy/LVNC-associated ACTC1 E99K mutation unveil differential functional deficits. Stem Cell Reports, 11(5), 1226-1243. https://doi.org/10.1016/j.stemcr.2018.10.006

Hypertrophic cardiomyopathy (HCM) is a primary disorder of contractility in heart muscle. To gain mechanistic insight and guide pharmacological rescue, this study models HCM using isogenic pairs of hiPSC-CMs carrying the E99K-ACTC1 cardiac actin mut... Read More about Isogenic pairs of hiPSC-CMs with hypertrophic cardiomyopathy/LVNC-associated ACTC1 E99K mutation unveil differential functional deficits.

Simplified footprint-free Cas9/CRISPR editing of cardiac-associated genes in human pluripotent stem cells (2018)
Journal Article
Kondrashov, A., Hoang, M. D., Smith, J. G., Bhagwan, J. R., Duncan, G., Mosqueira, D., …Denning, C. (in press). Simplified footprint-free Cas9/CRISPR editing of cardiac-associated genes in human pluripotent stem cells. Stem Cells and Development, 27(6), https://doi.org/10.1089/scd.2017.0268

Modelling disease with hPSCs is hindered because the impact on cell phenotype from genetic variability between individuals can be greater than from the pathogenic mutation. While ‘footprint-free’ Cas9/CRISPR editing solves this issue, existing approa... Read More about Simplified footprint-free Cas9/CRISPR editing of cardiac-associated genes in human pluripotent stem cells.