Skip to main content

Research Repository

Advanced Search

All Outputs (12)

Bimodal Soil Pore Structure Investigated by a Combined Soil Water Retention Curve and X-Ray Computed Tomography Approach (2017)
Journal Article
Mooney, S. J., Zhou, H., Mooney, S. J., & Peng, X. (2017). Bimodal Soil Pore Structure Investigated by a Combined Soil Water Retention Curve and X-Ray Computed Tomography Approach. Soil Science Society of America Journal, 81(6), 1270-1278. https://doi.org/10.2136/sssaj2016.10.0338

Well-structured soils are generally considered to have bimodal pore structure, including textural pores between soil particles and structural pores between soil aggregates. Bimodal pore structure has previously been inferred indirectly from the soil... Read More about Bimodal Soil Pore Structure Investigated by a Combined Soil Water Retention Curve and X-Ray Computed Tomography Approach.

The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface (2017)
Journal Article
Helliwell, J., Sturrock, C. J., Mairhofer, S., Craigon, J., Ashton, R., Miller, A., …Mooney, S. J. (in press). The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface. Scientific Reports, 7(14875), https://doi.org/10.1038/s41598-017-14904-w

The rhizosphere is the zone of soil infuenced by a plant root and is critical for plant health and nutrient acquisition. All below ground resources must pass through this dynamic zone prior to their capture by plant roots. However, researching the un... Read More about The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface.

Soil seal development under simulated rainfall: structural, physical and hydrological dynamics (2017)
Journal Article
Armenise, E., Simmons, R. W., Ahn, S., Garbout, A., Doen, S. H., Mooney, S. J., …Ritz, K. (2018). Soil seal development under simulated rainfall: structural, physical and hydrological dynamics. Journal of Hydrology, 556, https://doi.org/10.1016/j.jhydrol.2017.10.073

This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/... Read More about Soil seal development under simulated rainfall: structural, physical and hydrological dynamics.

Assessing water uptake in sugar beet (Beta vulgaris) under different watering regimes (2017)
Journal Article
Fitters, T. F., Bussell, J. S., Mooney, S. J., & Sparkes, D. L. (2017). Assessing water uptake in sugar beet (Beta vulgaris) under different watering regimes. Environmental and Experimental Botany, 144, https://doi.org/10.1016/j.envexpbot.2017.10.001

Sugar beet yield worldwide is substantially reduced as a result of drought stress. Water uptake may be limited by the plant (e.g. low root density) or by soil physical constraints. An experiment was conducted to assess the ability of sugar beet to pr... Read More about Assessing water uptake in sugar beet (Beta vulgaris) under different watering regimes.

Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity (2017)
Journal Article
Lehmeier, C., Pajor, R., Lundgren, M. R., Mathers, A., Sloan, J., Bauch, M., …Fleming, A. J. (2017). Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity. Plant Journal, 92(6), https://doi.org/10.1111/tpj.13727

The pattern of cell division, growth and separation during leaf development determines the pattern and volume of airspace in a leaf. The resulting balance of cellular material and airspace is expected to significantly influence the primary function o... Read More about Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity.

Shaping 3D root system architecture (2017)
Journal Article
Morris, E. C., Griffiths, M., Golebiowska, A., Mairhofer, S., Burr-Hersey, J., Goh, T., …Bennett, M. J. (2017). Shaping 3D root system architecture. Current Biology, 27(17), R919-R930. https://doi.org/10.1016/j.cub.2017.06.043

Plants are sessile organisms rooted in one place. The soil resources that plants require are often distributed in a highly heterogeneous pattern. To aid foraging, plants have evolved roots whose growth and development are highly responsive to soil si... Read More about Shaping 3D root system architecture.

Inorganic fertilization effects on the structure of a calcareous silt loam soil (2017)
Journal Article
Zhou, H., Fang, H., Hu, C., Mooney, S. J., Dong, . W., & Peng, X. (2018). Inorganic fertilization effects on the structure of a calcareous silt loam soil. Agronomy Journal, 109(6), 2871–2880. https://doi.org/10.2134/agronj2016.10.0590

Inorganic fertilizers have been intensely used in the North China Plain (NCP) to maintain or increase crop yields, but their effects on soil physical properties, especially soil structure, are unclear. The objective of this study was to evaluate the... Read More about Inorganic fertilization effects on the structure of a calcareous silt loam soil.

Quantification of seed-soil contact of sugar beet (Beta vulgaris) using X-ray Computed Tomography (2017)
Journal Article
Sparkes, D., Bussell, J., Blunk, S., Malik, A. H., de Heer, M. I., Ekblad, T., …Mooney, S. J. (2017). Quantification of seed-soil contact of sugar beet (Beta vulgaris) using X-ray Computed Tomography. Plant Methods, 13(1), https://doi.org/10.1186/s13007-017-0220-4

© 2017 The Author(s). Background: Seed-soil contact is important to ensure successful germination, however, there is a paucity of reported studies that have quantified the microstructure at and around this critical interface, mainly due to the opacit... Read More about Quantification of seed-soil contact of sugar beet (Beta vulgaris) using X-ray Computed Tomography.

Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography (2017)
Journal Article
Burr-Hersey, J. E., Mooney, S. J., Bengough, A. G., Mairhofer, S., & Ritz, K. (2017). Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography. PLoS ONE, 12(7), Article e0181872. https://doi.org/10.1371/journal.pone.0181872

Plant roots growing through soil typically encounter considerable structural heterogeneity, and local variations in soil dry bulk density. The way the in situ architecture of root systems of different species respond to such heterogeneity is poorly u... Read More about Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography.

Quantification of differences in germination behaviour of pelleted and coated sugar beet seeds using X-ray Computed Tomography (X-ray CT) (2017)
Journal Article
Blunk, S., Malik, A. H., de Heer, M. I., Ekblad, T., Fredlund, K., Mooney, S. J., & Sturrock, C. J. (in press). Quantification of differences in germination behaviour of pelleted and coated sugar beet seeds using X-ray Computed Tomography (X-ray CT). Biomedical Physics and Engineering Express, 3(4), https://doi.org/10.1088/2057-1976/aa7c3f

Seed enhancement technologies i.e. priming, pelleting and coating have been extensively9 used throughout the last century to improve crop yield and to reduce losses associated with pest infestation. However, until recently, it has not been possible t... Read More about Quantification of differences in germination behaviour of pelleted and coated sugar beet seeds using X-ray Computed Tomography (X-ray CT).

Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling: Quantification of root water uptake in soil (2017)
Journal Article
Daly, K. R., Tracy, S. R., Crout, N. M., Mairhofer, S., Pridmore, T. P., Mooney, S. J., & Roose, T. (2018). Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling: Quantification of root water uptake in soil. Plant, Cell and Environment, 41(1), 121-133. https://doi.org/10.1111/pce.12983

Spatially averaged models of root-soil interactions are often used to calculate plant water uptake. Using a combination of X-ray Computed Tomography (CT) and image based modelling we tested the accuracy of this spatial averaging by directly calculati... Read More about Quantification of root water uptake in soil using X-ray computed tomography and image-based modelling: Quantification of root water uptake in soil.

Root hydrotropism is controlled via a cortex-specific growth mechanism (2017)
Journal Article
Dietrich, D., Pang, L., Kobayashi, A., Fozard, J. A., Boudolf, V., Bhosale, R., …Bennett, M. J. (2017). Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants, 3(6), Article 17057. https://doi.org/10.1038/nplants.2017.57

Plants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis remains unclear... Read More about Root hydrotropism is controlled via a cortex-specific growth mechanism.