Skip to main content

Research Repository

Advanced Search

All Outputs (4)

A comparison of drug transport in pulmonary absorption models: isolated perfused rat lungs, respiratory epithelial cell lines and primary cell culture (2017)
Journal Article
Bosquillon, C., Madlova, M., Patel, N., Clear, N., & Forbes, B. (in press). A comparison of drug transport in pulmonary absorption models: isolated perfused rat lungs, respiratory epithelial cell lines and primary cell culture. Pharmaceutical Research, 34(12), https://doi.org/10.1007/s11095-017-2251-y

Purpose To evaluate the ability of human airway epithelial cell layers and a simple rat isolated perfused lung (IPL) model to predict pulmonary drug absorption in rats in vivo. Method The permeability of seven compounds selected to possess a r... Read More about A comparison of drug transport in pulmonary absorption models: isolated perfused rat lungs, respiratory epithelial cell lines and primary cell culture.

Ipratropium is ‘luminally recycled’ by an inter-play between apical uptake and efflux transporters in Calu-3 bronchial epithelial cell layers (2017)
Journal Article
Panduga, V., Stocks, M. J., & Bosquillon, C. (2017). Ipratropium is ‘luminally recycled’ by an inter-play between apical uptake and efflux transporters in Calu-3 bronchial epithelial cell layers. International Journal of Pharmaceutics, 532(1), https://doi.org/10.1016/j.ijpharm.2017.08.112

The mechanism by which quaternized anticholinergic bronchodilators permeate the airway epithelium remains controversial to date. In order to elucidate the role of drug transporters, ipratropium bidirectional transport as well as accumulation and rele... Read More about Ipratropium is ‘luminally recycled’ by an inter-play between apical uptake and efflux transporters in Calu-3 bronchial epithelial cell layers.

Enhanced expression of Organic Cation Transporters in bronchial epithelial cell layers following insults associated with asthma – impact on salbutamol transport (2017)
Journal Article
Mukherjee, M., Cingolani, E., Pritchard, D., & Bosquillon, C. (2017). Enhanced expression of Organic Cation Transporters in bronchial epithelial cell layers following insults associated with asthma – impact on salbutamol transport. European Journal of Pharmaceutical Sciences, 106, https://doi.org/10.1016/j.ejps.2017.05.052

Increasing evidence suggests Organic Cation Transporters (OCT) might facilitate the absorption of inhaled bronchodilators, including salbutamol, across the lung epithelium. This is essentially scarred and inflamed in asthma. Accordingly, the impact o... Read More about Enhanced expression of Organic Cation Transporters in bronchial epithelial cell layers following insults associated with asthma – impact on salbutamol transport.

Effect of polymer topology on non-covalent polymer-protein complexation: miktoarm versus linear mPEG-poly(glutamic acid) copolymers (2017)
Journal Article
Nieto-Orellana, A., Di Antonio, M., Conte, C., Falcone, F. H., Bosquillon, C., Childerhouse, N., …Stolnik, S. (in press). Effect of polymer topology on non-covalent polymer-protein complexation: miktoarm versus linear mPEG-poly(glutamic acid) copolymers. Polymer Chemistry, 8(14), https://doi.org/10.1039/C7PY00169J

Non-covalent polymer-protein conjugation is emerging as a potential route to improve pharmacokinetics and pharmacodynamics of protein therapeutics. In this study, a family of structurally related block copolymers of mPEG2k - poly(glutamic acid) with... Read More about Effect of polymer topology on non-covalent polymer-protein complexation: miktoarm versus linear mPEG-poly(glutamic acid) copolymers.