Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Prethermalization from a low-density Holstein-Primakoff expansion (2016)
Journal Article
Marcuzzi, M., Marino, J., Gambassi, A., & Silva, A. (2016). Prethermalization from a low-density Holstein-Primakoff expansion. Physical Review B, 94, Article 214304. https://doi.org/10.1103/PhysRevB.94.214304

We consider the non-equilibrium dynamics arising after a quench of the transverse magnetic field of a quantum Ising chain, together with the sudden switch-on of a long-range interaction term. The dynamics after the quantum quench is mapped onto a ful... Read More about Prethermalization from a low-density Holstein-Primakoff expansion.

Emergent kinetic constraints, ergodicity breaking, and cooperative dynamics in noisy quantum systems (2016)
Journal Article
Everest, B., Marcuzzi, M., Garrahan, J. P., & Lesanovsky, I. (2016). Emergent kinetic constraints, ergodicity breaking, and cooperative dynamics in noisy quantum systems. Physical Review E, 94(5), Article 052108. https://doi.org/10.1103/physreve.94.052108

Kinetically constrained spin systems play an important role in understanding key properties of the dynamics of slowly relaxing materials, such as glasses. Recent experimental studies have revealed that manifest kinetic constraints govern the evolutio... Read More about Emergent kinetic constraints, ergodicity breaking, and cooperative dynamics in noisy quantum systems.

Absorbing state phase transition with competing quantum and classical fluctuations (2016)
Journal Article
Marcuzzi, M., Buchhold, M., Diehl, S., & Lesanovsky, I. (2016). Absorbing state phase transition with competing quantum and classical fluctuations. Physical Review Letters, 116(24), https://doi.org/10.1103/PhysRevLett.116.245701

Stochastic processes with absorbing states feature examples of non-equilibrium universal phenomena. While the classical regime has been thoroughly investigated in the past, relatively little is known about the behavior of these non-equilibrium system... Read More about Absorbing state phase transition with competing quantum and classical fluctuations.