Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Feasibility of spatially-offset Raman spectroscopy for in-vitro and in-vivo monitoring mineralisation of bone tissue-engineering scaffolds (2016)
Journal Article
Liao, Z., Sinjab, F., Nommeots-Nomm, A., Jones, J., Ruiz-Cantu, L., Yang, J., …Notingher, I. (2017). Feasibility of spatially-offset Raman spectroscopy for in-vitro and in-vivo monitoring mineralisation of bone tissue-engineering scaffolds. Analytical Chemistry, 89(1), 847-853. https://doi.org/10.1021/acs.analchem.6b03785

We investigated the feasibility of using spatially-offset Raman spectroscopy (SORS) for non-destructive characterisation of bone tissue engineering scaffolds. The deep regions of these scaffolds, or scaffolds implanted subcutaneously in live animals,... Read More about Feasibility of spatially-offset Raman spectroscopy for in-vitro and in-vivo monitoring mineralisation of bone tissue-engineering scaffolds.

Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing (2016)
Journal Article
Ruiz-Cantu, L., Gleadall, A., Faris, C., Segal, J., Shakesheff, K., & Yang, J. (2016). Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing. Biofabrication, 8(1), Article 015016. https://doi.org/10.1088/1758-5090/8/1/015016

© 2016 IOP Publishing Ltd. 3D printing is of great interest for tissue engineering scaffolds due to the ability to form complex geometries and control internal structures, including porosity and pore size. The porous structure of scaffolds plays an i... Read More about Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing.