Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Can human pluripotent stem cell-derived cardiomyocytes advance understanding of muscular dystrophies? (2016)
Journal Article
Kalra, S., Montanaro, F., & Denning, C. (2016). Can human pluripotent stem cell-derived cardiomyocytes advance understanding of muscular dystrophies?. Journal of Neuromuscular Diseases, 3(3), 309-332. https://doi.org/10.3233/JND-150133

Muscular dystrophies (MDs) are clinically and molecularly a highly heterogeneous group of single-gene disorders that primarily affect striated muscles. Cardiac disease is present in several MDs where it is an important contributor to morbidity and mo... Read More about Can human pluripotent stem cell-derived cardiomyocytes advance understanding of muscular dystrophies?.

Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion (2016)
Journal Article
Hammad, M., Rao, W., Smith, J. G. W., Anderson, D. G., Langer, R., Young, L. E., …Alexander, M. R. (2016). Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion. Biomaterials Science, 4(9), 1381-1391. https://doi.org/10.1039/c6bm00214e

Improved biomaterials are required for application in regenerative medicine, biosensing, and as medical devices. The response of cells to the chemistry of polymers cultured in media is generally regarded as being dominated by proteins adsorbed to the... Read More about Identification of polymer surface adsorbed proteins implicated in pluripotent human embryonic stem cell expansion.

Automated electrophysiological and pharmacological evaluation of human pluripotent stem cell-derived cardiomyocytes (2016)
Journal Article
Rajamohan, D., Kalra, S., Hoang, M. D., George, V., Staniforth, A., Russell, H., …Denning, C. (2016). Automated electrophysiological and pharmacological evaluation of human pluripotent stem cell-derived cardiomyocytes. Stem Cells and Development, 25(6), https://doi.org/10.1089/scd.2015.0253

Automated planar patch clamp systems are widely used in drug evaluation studies because of their ability to provide accurate, reliable, and reproducible data in a high-throughput manner. Typically, CHO and HEK tumorigenic cell lines overexpressing si... Read More about Automated electrophysiological and pharmacological evaluation of human pluripotent stem cell-derived cardiomyocytes.

High throughput screening for discovery of materials that control stem cell fate (2016)
Journal Article
Patel, A. K., Tibbitt, M., Celiz, A. D., Davies, M. C., Langer, R., Denning, C., …Anderson, D. G. (2016). High throughput screening for discovery of materials that control stem cell fate. Current Opinion in Solid State and Materials Science, 20(4), 202-211. https://doi.org/10.1016/j.cossms.2016.02.002

Insights into the complex stem cell niche have identified the cell–material interface to be a potent regulator of stem cell fate via material properties such as chemistry, topography and stiffness. In light of this, materials scientists have the oppo... Read More about High throughput screening for discovery of materials that control stem cell fate.

Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides (2016)
Journal Article
Dixon, J. E., Osman, G., Morris, G. E., Markides, H., Rotherham, M., Bayoussef, Z., …Shakesheff, K. M. (2016). Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides. Proceedings of the National Academy of Sciences, 113(3), E291-E299. https://doi.org/10.1073/pnas.1518634113

Protein transduction domains (PTDs) are powerful nongenetic tools that allow intracellular delivery of conjugated cargoes to modify cell behavior. Their use in biomedicine has been hampered by inefficient delivery to nuclear and cytoplasmic targets.... Read More about Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides.