Skip to main content

Research Repository

Advanced Search

All Outputs (36)

Root gravitropism: quantification, challenges, and solutions (2018)
Journal Article
Muller, L., Bennett, M. J., French, A., Wells, D. M., & Swarup, R. (2018). Root gravitropism: quantification, challenges, and solutions. Methods in Molecular Biology, 1761, 103-112. https://doi.org/10.1007/978-1-4939-7747-5_8

© 2018, Springer Science+Business Media, LLC. Better understanding of root traits such as root angle and root gravitropism will be crucial for development of crops with improved resource use efficiency. This chapter describes a high-throughput, autom... Read More about Root gravitropism: quantification, challenges, and solutions.

MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis (2017)
Journal Article
Roy, S., Robson, F., Lilley, J., Liu, C., Cheng, X., Wen, J., …Murray, J. D. (2017). MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis. Plant Physiology, 174(1), 326-338. https://doi.org/10.1104/pp.16.01473

Most legume plants can form nodules, specialized lateral organs that form on roots, and house nitrogen-fixing bacteria collectively called rhizobia. The uptake of the phytohormone auxin into cells is known to be crucial for development of lateral roo... Read More about MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis.

SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice (2017)
Journal Article
Henry, S., Dievart, A., Divol, F., Pauluzzi, G., Meynard, D., Swarup, R., …Périn, C. (2017). SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice. Developmental Biology, 425(1), 1-7. https://doi.org/10.1016/j.ydbio.2017.03.001

The number of root cortex cell layers varies among plants, and many species have several cortical cell layers. We recently demonstrated that the two rice orthologs of the Arabidopsis SHR gene, OsSHR1 and OsSHR2, could complement the A. thaliana shr m... Read More about SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice.

Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein (2017)
Journal Article
Hunt, L., Amsbury, S., Baillie, A., Movahedi, M., Mitchell, A., Afsharinafar, M., …Gray, J. E. (2017). Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein. Plant Physiology, 174(2), https://doi.org/10.1104/pp.16.01715

Stomata are formed by a pair of guard cells which have thickened, elastic cell walls to withstand the large increases in turgor pressure that have to be generated to open the pore that they surround. We have characterised FOCL1, a guard cell-expresse... Read More about Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein.

One gene, many proteins: mapping cell-specific alternative splicing in plants (2016)
Journal Article
Swarup, R., Crespi, M., & Bennett, M. J. (2016). One gene, many proteins: mapping cell-specific alternative splicing in plants. Developmental Cell, 39(4), 383-385. https://doi.org/10.1016/j.devcel.2016.11.002

Pre-mRNA alternative splicing (AS) generates protein variants from a single gene that can create novel regulatory opportunities. In this issue of Developmental Cell, Li et al. (2016) present a high-resolution expression map of AS events in Arabidopsi... Read More about One gene, many proteins: mapping cell-specific alternative splicing in plants.

A ‘growing’ role for phosphites in promoting plant growth and development (2016)
Journal Article
Rossall, S., Qing, C., Paneri, M., Bennett, M., & Swarup, R. (2016). A ‘growing’ role for phosphites in promoting plant growth and development. Acta Horticulturae, 1148(1148), 61-68. https://doi.org/10.17660/ActaHortic.2016.1148.7

There is some on-going controversy about the role of phosphites in plant development. Little or no evidence is available that phosphites can be converted to phosphates, and thus directly enhance plant nutrition. Some phosphite-based products have bee... Read More about A ‘growing’ role for phosphites in promoting plant growth and development.

Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root (2016)
Journal Article
Street, I. H., Mathews, D. E., Yamburkenko, M. V., Sorooshzadeh, A., John, R. T., Swarup, R., …Schaller, G. E. (2016). Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development, 143(21), 3982-3993. https://doi.org/10.1242/dev.132035

Hormonal interactions are critical for plant development. In Arabidopsis, cytokinins inhibit root growth through effects on cell proliferation and cell elongation. Here we define key mechanistic elements in a regulatory network by which cytokinin inh... Read More about Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root.

Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis (2016)
Journal Article
Porco, S., Pěnčík, A., Rashed, A., Voß, U., Casanova-Sáez, R., Bishopp, A., …Ljung, K. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis. Proceedings of the National Academy of Sciences, 113(39), 11016-11021. https://doi.org/10.1073/pnas.1604375113

Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control t... Read More about Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis.

Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat (2016)
Journal Article
Drakulic, J., Ajigboye, O., Swarup, R., Bruce, T., & Ray, R. V. (2016). Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat. Applied and Environmental Microbiology, 82(22), 6548-6556. https://doi.org/10.1128/AEM.02343-16

Fusarium langsethiae is a fungal pathogen of cereal crops that is an increasing problem in northern Europe, but much of its epidemiology is poorly understood. The species produces the mycotoxins T-2 and HT-2, which are highly toxic. It was hypothesiz... Read More about Aphid Infestation Increases Fusarium langsethiae and T-2 and HT-2 Mycotoxins in Wheat.

Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3 (2016)
Journal Article
Porco, S., Larrieu, A., Du, Y., Gaudinier, A., Goh, T., Swarup, K., …Bennett, M. J. (2016). Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development, 143(18), 3340-3349. https://doi.org/10.1242/dev.136283

Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-induc... Read More about Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.

Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone (2015)
Journal Article
Wilson, M. H., Holman, T. J., Sørensen, I., Cancho-Sanchez, E., Wells, D. M., Swarup, R., …Hodgman, T. C. (2015). Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Frontiers in Cell and Developmental Biology, 3(FEB), Article 10. https://doi.org/10.3389/fcell.2015.00010

Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth an... Read More about Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone.

Auxin influx importers modulate serration along the leaf margin (2015)
Journal Article
Kasprzewska, A., Swarup, R., Carter, R., Bennett, M., Monk, N., Hobbs, J. K., & Fleming, A. (2015). Auxin influx importers modulate serration along the leaf margin. Plant Journal, 83(4), 705-718. https://doi.org/10.1111/tpj.12921

Leaf shape in Arabidopsis is modulated by patterning events in the margin that utilize a PIN‐based auxin exporter/CUC2 transcription factor system to define regions of promotion and retardation of growth, leading to morphogenesis. In addition to auxi... Read More about Auxin influx importers modulate serration along the leaf margin.

Plant embryogenesis requires AUX/LAX-mediated auxin influx (2015)
Journal Article
Robert, H. S., Grunewald, W., Sauer, M., Cannoot, B., Soriano, M., Swarup, R., …Friml, J. (2015). Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development, 142(4), 702-711. https://doi.org/10.1242/dev.115832

The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during emb... Read More about Plant embryogenesis requires AUX/LAX-mediated auxin influx.

The ASH1-RELATED3 SET-Domain Protein Controls Cell Division Competence of the Meristem and the Quiescent Center of the Arabidopsis Primary Root (2014)
Journal Article
Kumpf, R., Thorstensen, T., Aminur Rahman, M. A., Heyman, J., Zeynep Nenseth, H., Lammens, T., …Aalen, R. B. (2014). The ASH1-RELATED3 SET-Domain Protein Controls Cell Division Competence of the Meristem and the Quiescent Center of the Arabidopsis Primary Root. Plant Physiology, 166(2), 632-643. https://doi.org/10.1104/pp.114.244798

© 2014 American Society of Plant Biologists. All rights reserved. The stem cell niche of the Arabidopsis (Arabidopsis thaliana) primary root apical meristem is composed of the quiescent (or organizing) center surrounded by stem (initial) cells for th... Read More about The ASH1-RELATED3 SET-Domain Protein Controls Cell Division Competence of the Meristem and the Quiescent Center of the Arabidopsis Primary Root.

Systems Analysis of Auxin Transport in the Arabidopsis Root Apex (2014)
Journal Article
Band, L. R., Wells, D. M., Fozard, J. A., Ghetiu, T., French, A. P., Pound, M. P., …Bennett, M. J. (2014). Systems Analysis of Auxin Transport in the Arabidopsis Root Apex. Plant Cell, 26(3), 862-875. https://doi.org/10.1105/tpc.113.119495

Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the... Read More about Systems Analysis of Auxin Transport in the Arabidopsis Root Apex.

Small Ubiquitin-like Modifier Protein SUMO Enables Plants to Control Growth Independently of the Phytohormone Gibberellin (2014)
Journal Article
Conti, L., Nelis, S., Zhang, C., Woodcock, A., Swarup, R., Galbiati, M., …Sadanandom, A. (2014). Small Ubiquitin-like Modifier Protein SUMO Enables Plants to Control Growth Independently of the Phytohormone Gibberellin. Developmental Cell, 28(1), 102-110. https://doi.org/10.1016/j.devcel.2013.12.004

Plants survive adverse conditions by modulating their growth in response to a changing environment. Gibberellins (GAs) play a key role in these adaptive responses by stimulating the degradation of growth-repressing DELLA proteins. GA binding to its r... Read More about Small Ubiquitin-like Modifier Protein SUMO Enables Plants to Control Growth Independently of the Phytohormone Gibberellin.