Skip to main content

Research Repository

Advanced Search

All Outputs (49)

Spatially resolved acoustic spectroscopy for texture imaging in powder bed fusion nickel superalloys (2019)
Journal Article
Dryburgh, P., Patel, R., Pieris, D. M., Hirsch, M., Li, W., Sharples, S. D., …Clark, M. (2019). Spatially resolved acoustic spectroscopy for texture imaging in powder bed fusion nickel superalloys. AIP Conference Proceedings, 2102, Article 020004. https://doi.org/10.1063/1.5099708

© 2019 Author(s). There is a clear industrial pull to fabricate high value components using premium high temperature aerospace materials by additive manufacturing. Inconveniently, the same material properties which allow them to perform well in servi... Read More about Spatially resolved acoustic spectroscopy for texture imaging in powder bed fusion nickel superalloys.

Spatially resolved acoustic spectroscopy (SRAS) microstructural imaging (2019)
Journal Article
Clark, M., Clare, A., Dryburgh, P., Li, W., Patel, R., Pieris, D., …Smith, R. (2019). Spatially resolved acoustic spectroscopy (SRAS) microstructural imaging. AIP Conference Proceedings, 2102, Article 020001. https://doi.org/10.1063/1.5099705

© 2019 Author(s). Spatially resolved acoustic spectroscopy (SRAS) is an acoustic microscopy technique that can image the microstructure and measure the crystallographic orientation of grains or crystals in the material. It works by measuring the velo... Read More about Spatially resolved acoustic spectroscopy (SRAS) microstructural imaging.

Thickness measurement of polymer thin films with high frequency ultrasonic transducers (2019)
Journal Article
Smith, R. J., Cavera, S. L., Pérez-Cota, F., Marques, L., & Clark, M. (2019). Thickness measurement of polymer thin films with high frequency ultrasonic transducers. AIP Conference Proceedings, 2102(1), 040015-1–040015-6. https://doi.org/10.1063/1.5099765

© 2019 Author(s). In this paper we present a method for characterizing the thickness, and more interestingly, the variation of thickness in polymer thin films (

New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy (2019)
Journal Article
Pérez-Cota, F., Smith, R. J., Elsheikha, H. M., & Clark, M. (2019). New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy. Biomedical Optics Express, 10(5), 2399-2408. https://doi.org/10.1364/BOE.10.002399

The single cell eukaryotic protozoan Acanthamoeba castellanii exhibits a remarkable ability to switch from a vegetative trophozoite stage to a cystic form, in response to stressors. This phenotypic switch involves changes in gene expression and synth... Read More about New insights into the mechanical properties of Acanthamoeba castellanii cysts as revealed by phonon microscopy.

Spatially Resolved Acoustic Spectroscopy Towards Online Inspection of Additive Manufacturing (2019)
Journal Article
Pieris, D., Patel, R., Dryburgh, P., Hirsch, M., Li, W., Sharples, S., …Clark, M. (2019). Spatially Resolved Acoustic Spectroscopy Towards Online Inspection of Additive Manufacturing. Insight - Non-Destructive Testing & Condition Monitoring, 61(3), 132-137. https://doi.org/10.1784/insi.2019.61.3.132

High-integrity engineering applications such as aerospace will not permit the incorporation of components containing any structural defects. The current generation of additive manufacturing (AM) platforms yield components with relatively high level... Read More about Spatially Resolved Acoustic Spectroscopy Towards Online Inspection of Additive Manufacturing.

Super-resolution imaging using nano-bells (2018)
Journal Article
Fuentes-Dominguez, R., Pérez-Cota, F., Naznin, S., Smith, R. J., & Clark, M. (2018). Super-resolution imaging using nano-bells. Scientific Reports, 8, 1-9. https://doi.org/10.1038/s41598-018-34744-6

In this paper we demonstrate a new scheme for optical super-resolution, inspired, in-part, by PALM and STORM. In this scheme each object in the field of view is tagged with a signal that allows them to be detected separately. By doing this we can ide... Read More about Super-resolution imaging using nano-bells.

Imaging material texture of as-deposited selective laser melted parts using spatially resolved acoustic spectroscopy (2018)
Journal Article
Patel, R., Hirsch, M., Dryburgh, P., Pieris, D., Achamfuo-Yeboah, S., Smith, R., …Clark, M. (2018). Imaging material texture of as-deposited selective laser melted parts using spatially resolved acoustic spectroscopy. Applied Sciences, 8(10), Article 1991. https://doi.org/10.3390/app8101991

Additive manufacturing (AM) is a production technology where material is accumulated to create a structure, often through added shaped layers. The major advantage of additive manufacturing is in creating unique and complex parts for use in areas wher... Read More about Imaging material texture of as-deposited selective laser melted parts using spatially resolved acoustic spectroscopy.

Crystallographic texture can be rapidly determined by electrochemical surface analytics (2018)
Journal Article
Speidel, A., Su, R., Mitchell-Smith, J., Dryburgh, P., Bisterov, I., Pieris, D., …Clare, A. T. (2018). Crystallographic texture can be rapidly determined by electrochemical surface analytics. Acta Materialia, 159, 89-101. https://doi.org/10.1016/j.actamat.2018.07.059

Orientation affects application-defining properties of crystalline materials. Hence, information in this regard is highly-prized. We show that electrochemical jet processing (EJP), when coupled with accurate metrological appraisal, can characterise c... Read More about Crystallographic texture can be rapidly determined by electrochemical surface analytics.

Non destructive evaluation of biological cells (2018)
Journal Article
Pérez-Cota, F., Smith, R. J., Moradi, E., Webb, K. F., & Clark, M. (2019). Non destructive evaluation of biological cells. AIP Conference Proceedings, 2102, https://doi.org/10.1063/1.5099737

© 2019 Author(s). Regenerative medicine promises to be the next revolution in health care. This technology, which will be the first systematic manufacturing of biological parts for human consumption, requires non destructive evaluatioin (NDE) thechni... Read More about Non destructive evaluation of biological cells.

Active chiral control of GHz acoustic whispering-gallery modes (2017)
Journal Article
Mezil, S., Fujita, K., Osuka, P. H., Tomoda, M., Clark, M., Wright, O. B., & Matsuda, O. (in press). Active chiral control of GHz acoustic whispering-gallery modes. Applied Physics Letters, https://doi.org/10.1063/1.4994886

We selectively generate chiral surface-acoustic whispering gallery modes in the gigahertz range on a microscopic disk by means of an ultrafast time-domain technique incorporating a spatial light modulator. Active chiral control is achieved by making... Read More about Active chiral control of GHz acoustic whispering-gallery modes.

Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging (2017)
Journal Article
Perez-Cota, F., Smith, R. J., Moradi, E., Leija, A. L., Velickovic, K., Marques, L., …Clark, M. (2017). Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging

The mechanical properties of cells play an important role in cell function and behavior. This paper presents recent developments that have enabled the use of laser-generated phonons (ultrasound) with sub-optical wavelengths to look inside living cell... Read More about Cell imaging by phonon microscopy: sub-optical wavelength ultrasound for non-invasive imaging.

Size characterisation method and detection enhancement of plasmonic nanoparticles in a pump–probe system (2017)
Journal Article
Fuentes-Domínguez, R., Smith, R. J., Pérez-Cota, F., Marques, L., Peña-Rodríguez, O., & Clark, M. (2017). Size characterisation method and detection enhancement of plasmonic nanoparticles in a pump–probe system. Applied Sciences, 7(8), Article 819. https://doi.org/10.3390/app7080819

The optical resonance of metal nanoparticles can be used to enhance the generation and detection of their main vibrational mode. In this work, we show that this method allows the accurate characterisation of the particle’s size because the vibrationa... Read More about Size characterisation method and detection enhancement of plasmonic nanoparticles in a pump–probe system.

Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces (2017)
Journal Article
Colombi, A., Ageeva, V., Smith, R. J., Clare, A. T., Patel, R., Clark, M., …Craster, R. V. (2017). Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces. Scientific Reports, 7(1), Article 6750. https://doi.org/10.1038/s41598-017-07151-6

Recent years have heralded the introduction of metasurfaces that advantageously combine the vision of sub-wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. An important topic within met... Read More about Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces.

Orientation imaging of macro-sized polysilicon grains on wafers using spatially resolved acoustic spectroscopy (2017)
Journal Article
Patel, R., Li, W., Smith, R. J., Sharples, S. D., & Clark, M. (2017). Orientation imaging of macro-sized polysilicon grains on wafers using spatially resolved acoustic spectroscopy. Scripta Materialia, 140, 67-70. https://doi.org/10.1016/j.scriptamat.2017.07.003

Due to its economical production process polysilicon, or multicrystalline silicon, is widely used to produce solar cell wafers. However, the conversion efficiencies are often lower than equivalent monocrystalline or thin film cells, with the structur... Read More about Orientation imaging of macro-sized polysilicon grains on wafers using spatially resolved acoustic spectroscopy.

High resolution 3D imaging of living cells with sub-optical wavelength phonons (2016)
Journal Article
Perez-Cota, F., Smith, R. J., Moradi, E., Marques, L., Webb, K. F., & Clark, M. (2016). High resolution 3D imaging of living cells with sub-optical wavelength phonons. Scientific Reports, 6, Article 39326. https://doi.org/10.1038/srep39326

Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Supe... Read More about High resolution 3D imaging of living cells with sub-optical wavelength phonons.

Novel highly sensitive protein sensors based on tapered optical fibres modified with Au-based nanocoatings (2016)
Journal Article
Urrutia, A., Bojan, K., Marques, L., Mullaney, K., Goicoechea, J., James, S., …Tatam, R. (in press). Novel highly sensitive protein sensors based on tapered optical fibres modified with Au-based nanocoatings. Journal of Sensors, 2016, https://doi.org/10.1155/2016/8129387

Novel protein sensors based on tapered optical fibres modified with Au coatings deposited using two different procedures are proposed. Au-based coatings are deposited onto a nonadiabatic tapered optical fibre using (i) a novel facile method composed... Read More about Novel highly sensitive protein sensors based on tapered optical fibres modified with Au-based nanocoatings.

Thin-film transducers for the detection and imaging of Brillouin oscillations in transmission on cultured cells (2015)
Journal Article
Perez-Cota, F., Smith, R. J., Moradi, E., Webb, K. F., & Clark, M. (in press). Thin-film transducers for the detection and imaging of Brillouin oscillations in transmission on cultured cells. Journal of Physics: Conference Series, 684(1), https://doi.org/10.1088/1742-6596/684/1/012003

Mechanical imaging and characterisation of biological cells has been a subject of interest for the last twenty years. Ultrasonic imaging based on the scanning acoustic microscope (SAM) and mechanical probing have been extensively reported. Large acou... Read More about Thin-film transducers for the detection and imaging of Brillouin oscillations in transmission on cultured cells.

Thin-film optoacoustic transducers for the subcellular Brillouin oscillation imaging of individual biological cells (2015)
Journal Article
Perez-Cota, F., Smith, R. J., Moradi, E., Marques, L., Webb, K. F., & Clark, M. (2015). Thin-film optoacoustic transducers for the subcellular Brillouin oscillation imaging of individual biological cells. Applied Optics, 54(28), https://doi.org/10.1364/AO.54.008388

Mechanical characterisation and imaging of biological tissue has piqued interest in the applicability to cell and tissue biology. One method, based on detection of Brillouin oscillations, has already lead to demonstrations on biological cells using u... Read More about Thin-film optoacoustic transducers for the subcellular Brillouin oscillation imaging of individual biological cells.

Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles (2015)
Journal Article
Marques, L. M., Hernandez, F. U., James, S. W., Morgan, S. P., Clark, M., Tatam, R. P., & Korposh, S. (2016). Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles. Biosensors and Bioelectronics, 75, https://doi.org/10.1016/j.bios.2015.08.046

An optical fibre long period grating (LPG), modified with a coating of silica core gold shell (SiO2:Au) nanoparticles (NPs) deposited using the layer-by-layer method, was employed for the development of a biosensor. The SiO2:Au NPs were electrostatic... Read More about Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles.

Facile approach to generating polymeric nanoarrays containing populations of nanoparticles (2015)
Journal Article
Marques, L., Chen, X., Roberts, C. J., Clark, M., & Aylott, J. W. (2015). Facile approach to generating polymeric nanoarrays containing populations of nanoparticles. Micro and Nano Letters, 10(8), 378-383. doi:10.1049/mnl.2015.0041

The production of nanoarrays containing a population of entrapped, heterogeneous nanoparticles is reported. The nanoarray consists of a nanoporous film with pores of diameter 60-180 nm, formed from the phase separation of two immiscible polymers: pol... Read More about Facile approach to generating polymeric nanoarrays containing populations of nanoparticles.