Skip to main content

Research Repository

Advanced Search

All Outputs (50)

In vitro evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft (2018)
Journal Article
Rose, J., Sidney, L., Patient, J., White, L., Dua, H., El Haj, A., …Rose, F. (2018). In vitro evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft. Journal of Biomedical Materials Research Part A, 107(4), 828-838. https://doi.org/10.1002/jbm.a.36598

The advent of innovative surgical procedures utilizing partial thickness corneal grafts has created a need for the development of synthetic implants to recreate corneal stromal tissue. This work evaluates electrospun gelatin and polycaprolactone (PCL... Read More about In vitro evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft.

Photocrosslinkable gelatin hydrogels modulate the production of the major pro-inflammatory cytokine, TNF-α, by human mononuclear cells (2018)
Journal Article
Donaldson, A. R., Edi Tanase, C., Awuah, D., Vasanthi Bathri Narayanan, P., Hall, L., Nikkhah, M., …Ghaemmaghami, A. M. (2018). Photocrosslinkable gelatin hydrogels modulate the production of the major pro-inflammatory cytokine, TNF-α, by human mononuclear cells. Frontiers in Bioengineering and Biotechnology, 6, Article 116. https://doi.org/10.3389/fbioe.2018.00116

Hydrogels are an attractive class of biomaterials in tissue engineering due to their inherently compatible properties for cell culture. Gelatin methacryloyl (GelMA) has shown significant promise in the fields of tissue engineering and drug delivery,... Read More about Photocrosslinkable gelatin hydrogels modulate the production of the major pro-inflammatory cytokine, TNF-α, by human mononuclear cells.

Electrospun gelatin-based scaffolds as a novel 3D platform to study the function of contractile smooth muscle cells in vitro (2018)
Journal Article
Bridge, J. C., Amer, M. H., Morris, G. E., Martin, N., Player, D. J., Knox, A. J., …Rose, F. R. (2018). Electrospun gelatin-based scaffolds as a novel 3D platform to study the function of contractile smooth muscle cells in vitro. Biomedical Physics and Engineering Express, 4(4), Article 045039. https://doi.org/10.1088/2057-1976/aace8f

Contractile dysfunction of smooth muscle (SM) is a feature of chronic cardiovascular, respiratory and gastro-intestinal diseases. Owing to the low availability of human ex vivo tissue for the assessment of SM contractile function, the aim of this stu... Read More about Electrospun gelatin-based scaffolds as a novel 3D platform to study the function of contractile smooth muscle cells in vitro.

Improved delivery of PLGA microparticles and microparticle-cell scaffolds in clinical needle gauges using modified viscosity formulations (2018)
Journal Article
Qutachi, O., Wright, E. J., Bray, G., Hamid, O. A., Rose, F. R., Shakesheff, K., & Delcassian, D. (2018). Improved delivery of PLGA microparticles and microparticle-cell scaffolds in clinical needle gauges using modified viscosity formulations. International Journal of Pharmaceutics, 546(1-2), 272-278. https://doi.org/10.1016/j.ijpharm.2018.05.025

Polymer microparticles are widely used as acellular drug delivery platforms in regenerative medicine, and have emerging potential as cellular scaffolds for therapeutic cell delivery. In the clinic, PLGA microparticles are typically administered intra... Read More about Improved delivery of PLGA microparticles and microparticle-cell scaffolds in clinical needle gauges using modified viscosity formulations.

In vitro, in silico and in vivo study challenges the impact of bronchial thermoplasty on acute airway smooth muscle mass loss (2018)
Journal Article
Chernyavsky, I. L., Russell, R. J., Saunders, R. M., Morris, G. E., Berair, R., Singapuri, A., …Brightling, C. E. (2018). In vitro, in silico and in vivo study challenges the impact of bronchial thermoplasty on acute airway smooth muscle mass loss. European Respiratory Journal, 51(5), Article 1701680. https://doi.org/10.1183/13993003.01680-2017

Bronchial thermoplasty is a treatment for asthma. Whether during thermoplasty the airway wall fraction exposed to temperatures necessary to affect cells is sufficient to explain its histopathological impact is unclear. Airway smooth muscle and bronc... Read More about In vitro, in silico and in vivo study challenges the impact of bronchial thermoplasty on acute airway smooth muscle mass loss.

A biomaterials approach to influence stem cell fate in injectable cell-based therapies (2018)
Journal Article
Amer, M. H., Rose, F. R., Shakesheff, K. M., & White, L. J. (2018). A biomaterials approach to influence stem cell fate in injectable cell-based therapies. Stem Cell Research and Therapy, 9(39), https://doi.org/10.1186/s13287-018-0789-1

Background: Numerous stem cell therapies use injection-based administration to deliver high density cell preparations. However, cell retention rates as low as 1% have been observed within days of transplantation. This study investigated the effects o... Read More about A biomaterials approach to influence stem cell fate in injectable cell-based therapies.

Peptide hydrogels — a tissue engineering strategy for the prevention of oesophageal strictures (2017)
Journal Article
Kumar, D., Workman, V., O'Brien, M. C., McLaren, J. S., White, L. J., Ragunath, K., …Rose, F. R. (2017). Peptide hydrogels — a tissue engineering strategy for the prevention of oesophageal strictures. Advanced Functional Materials, 27(38), Article 1702424. https://doi.org/10.1002/adfm.201702424

Endoscopic treatment of Barrett’s oesophagus often leads to further damage of healthy tissue causing fibrotic tissue formation termed as strictures. This study shows that synthetic, self-assembling peptide hydrogels (PeptiGelDesign) support the activ... Read More about Peptide hydrogels — a tissue engineering strategy for the prevention of oesophageal strictures.

Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges (2017)
Journal Article
Amer, M. H., Rose, F. R., Shakesheff, K. M., Modo, M., & White, L. J. (in press). Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. npj Regenerative Medicine, 2, Article 23. https://doi.org/10.1038/s41536-017-0028-x

Significant progress has been made during the past decade towards the clinical adoption of cell- based therapeutics. However, existing cell delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells... Read More about Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges.

A design of experiments (DoE) approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies (2017)
Journal Article
Ruiter, F. A. A., Alexander, C., Rose, F. R., & Segal, J. (2017). A design of experiments (DoE) approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies. Biomedical Materials, 12(5), Article 055009. https://doi.org/10.1088/1748-605X/aa7b54

Electrospun fibrous materials have increasing applications in regenerative medicine due to the similarity of fibre constructs to the morphology of certain extracellular matrices. Although experimentally the electrospinning method is relatively simple... Read More about A design of experiments (DoE) approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies.

3D microfabricated scaffolds and microfluidic devices for ocular surface replacement: a review (2017)
Journal Article
Prina, E., Mistry, P., Sidney, L. E., Yang, J., Wildman, R. D., Bertolin, M., …Rose, F. R. A. (2017). 3D microfabricated scaffolds and microfluidic devices for ocular surface replacement: a review. Stem Cell Reviews and Reports, 13(3), 430-441. https://doi.org/10.1007/s12015-017-9740-6

In recent years, there has been increased research interest in generating corneal substitutes, either for use in the clinic or as in vitro corneal models. The advancement of 3D microfabrication technologies has allowed the reconstruction of the nativ... Read More about 3D microfabricated scaffolds and microfluidic devices for ocular surface replacement: a review.

Feasibility of spatially-offset Raman spectroscopy for in-vitro and in-vivo monitoring mineralisation of bone tissue-engineering scaffolds (2016)
Journal Article
Liao, Z., Sinjab, F., Nommeots-Nomm, A., Jones, J., Ruiz-Cantu, L., Yang, J., …Notingher, I. (2017). Feasibility of spatially-offset Raman spectroscopy for in-vitro and in-vivo monitoring mineralisation of bone tissue-engineering scaffolds. Analytical Chemistry, 89(1), 847-853. https://doi.org/10.1021/acs.analchem.6b03785

We investigated the feasibility of using spatially-offset Raman spectroscopy (SORS) for non-destructive characterisation of bone tissue engineering scaffolds. The deep regions of these scaffolds, or scaffolds implanted subcutaneously in live animals,... Read More about Feasibility of spatially-offset Raman spectroscopy for in-vitro and in-vivo monitoring mineralisation of bone tissue-engineering scaffolds.

A new photocrosslinkable polycaprolactone based ink for three dimensional inkjet printing (2016)
Journal Article
He, Y., Tuck, C., Prina, E., Kilsby, S., Christie, S. D., Edmondson, S., …Wildman, R. D. (2017). A new photocrosslinkable polycaprolactone based ink for three dimensional inkjet printing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(6), 1645-1657. https://doi.org/10.1002/jbm.b.33699

A new type of photocrosslinkable polycaprolactone (PCL)-based ink that is suitable for three-dimensional (3D) inkjet printing has been developed. Photocrosslinkable PCL dimethylacrylate was synthesized and mixed with poly(ethylene glycol) diacrylate... Read More about A new photocrosslinkable polycaprolactone based ink for three dimensional inkjet printing.

Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications (2016)
Journal Article
Vaithilingam, J., Prina, E., Goodridge, R. D., Hague, R. J., Edmondson, S., Rose, F. R., & Christie, S. D. (2016). Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications. Materials Science and Engineering: C, 67, 294-303. https://doi.org/10.1016/j.msec.2016.05.054

Selective laser melting (SLM) has previously been shown to be a viable method for fabricating biomedical implants; however, the surface chemistry of SLM fabricated parts is poorly understood. In this study, X-ray photoelectron spectroscopy (XPS) was... Read More about Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications.

Disc colours in field and cluster spiral galaxies at 0.5 ?z? 0.8 (2016)
Journal Article
Cantale, N., Jablonka, P., Courbin, F., Rudnick, G., Zaritsky, D., Meylan, G., …Simard, L. (2016). Disc colours in field and cluster spiral galaxies at 0.5 ≲z≲ 0.8. Astronomy and Astrophysics, 589, Article A82. https://doi.org/10.1051/0004-6361/201525801

We present a detailed study of the colours of late-type galaxy discs for ten of the EDisCS galaxy clusters with 0.5 ≲ z ≲ 0.8. Our cluster sample contains 172 spiral galaxies, and our control sample is composed of 96 field disc galaxies. We deconvolv... Read More about Disc colours in field and cluster spiral galaxies at 0.5 ?z? 0.8.

A detailed assessment of varying ejection rate on delivery efficiency of mesenchymal stem cells using narrow-bore needles (2016)
Journal Article
Rose, F., Shakesheff, K., White, L., & Amer, M. (2016). A detailed assessment of varying ejection rate on delivery efficiency of mesenchymal stem cells using narrow-bore needles. Stem Cells Translational Medicine, 5(3), 366-378. doi:10.5966/sctm.2015-0208

As the number of clinical trials exploring cell therapy rises, a thorough understanding of the limits of cell delivery is essential. We used an extensive toolset comprising various standard and multiplex assays for the assessment of cell delivery pos... Read More about A detailed assessment of varying ejection rate on delivery efficiency of mesenchymal stem cells using narrow-bore needles.

Adapting the electrospinning process to provide three unique environments for a tri-layered in vitro model of the airway wall (2015)
Journal Article
Bridge, J. C., Aylott, J. W., Brightling, C. E., Ghaemmaghami, A. M., Knox, A. J., Lewis, M. P., …Morris, G. E. (2015). Adapting the electrospinning process to provide three unique environments for a tri-layered in vitro model of the airway wall. Journal of Visualized Experiments, 101, Article e52986. https://doi.org/10.3791/52986

Electrospinning is a highly adaptable method producing porous 3D fibrous scaffolds that can be exploited in in vitro cell culture. Alterations to intrinsic parameters within the process allow a high degree of control over scaffold characteristics inc... Read More about Adapting the electrospinning process to provide three unique environments for a tri-layered in vitro model of the airway wall.

Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds (2014)
Journal Article
Morris, G., Bridge, J., Eltboli, O., Lewis, M., Knox, A., Aylott, J. W., …Rose, F. R. (2014). Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds. AJP - Lung Cellular and Molecular Physiology, 307(1), Article L38-L47. https://doi.org/10.1152/ajplung.00318.2013

Human airway smooth muscle (HASM) contraction plays a central role in regulating airway resistance in both healthy and asthmatic bronchioles. In vitro studies that investigate the intricate mechanisms that regulate this contractile process are predom... Read More about Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds.

Evaluation of skeletal tissue repair, Part 1: Assessment of novel growth-factor-releasing hydrogels in an ex vivo chick femur defect model (2014)
Journal Article
Smith, E., Rose, F., Kanczler, J., Shakesheff, K., Gothard, D., White, L., …Oreffoa, R. (2014). Evaluation of skeletal tissue repair, Part 1: Assessment of novel growth-factor-releasing hydrogels in an ex vivo chick femur defect model. Acta Biomaterialia, 10(10), 4186-4196. https://doi.org/10.1016/j.actbio.2014.06.011

Current clinical treatments for skeletal conditions resulting in large-scale bone loss include autograft or allograft, both of which have limited effectiveness. In seeking to address bone regeneration, several tissue engineering strategies have come... Read More about Evaluation of skeletal tissue repair, Part 1: Assessment of novel growth-factor-releasing hydrogels in an ex vivo chick femur defect model.