Skip to main content

Research Repository

Advanced Search

All Outputs (7)

Convergence of resistance and evolutionary responses in Escherichia coli and Salmonella enterica co-inhabiting chicken farms in China (2024)
Journal Article
Baker, M., Zhang, X., Maciel-Guerra, A., Babaarslan, K., Dong, Y., Wang, W., …Dottorini, T. (2024). Convergence of resistance and evolutionary responses in Escherichia coli and Salmonella enterica co-inhabiting chicken farms in China. Nature Communications, 15, Article 206. https://doi.org/10.1038/s41467-023-44272-1

Sharing of genetic elements among different pathogens and commensals inhabiting same hosts and environments has significant implications for antimicrobial resistance (AMR), especially in settings with high antimicrobial exposure. We analysed 661 Esch... Read More about Convergence of resistance and evolutionary responses in Escherichia coli and Salmonella enterica co-inhabiting chicken farms in China.

A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications (2022)
Journal Article
Pearcy, N., Garavaglia, M., Millat, T., Gilbert, J. P., Song, Y., Hartman, H., …Minton, N. P. (2022). A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications. PLoS Computational Biology, 18(5), Article e1010106. https://doi.org/10.1371/journal.pcbi.1010106

Exploiting biological processes to recycle renewable carbon into high value platform chemicals provides a sustainable and greener alternative to current reliance on petrochemicals. In this regard Cupriavidus necator H16 represents a particularly prom... Read More about A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications.

Engineering improved ethylene production: Leveraging systems Biology and adaptive laboratory evolution (2021)
Journal Article
Vaud, S., Pearcy, N., Hanževački, M., Van Hagen, A. M., Abdelrazig, S., Safo, L., …Bryan, S. J. (2021). Engineering improved ethylene production: Leveraging systems Biology and adaptive laboratory evolution. Metabolic Engineering, 67, 308-320. https://doi.org/10.1016/j.ymben.2021.07.001

Ethylene is a small hydrocarbon gas widely used in the chemical industry. Annual worldwide production currently exceeds 150 million tons, producing considerable amounts of CO2 contributing to climate change. The need for a sustainable alternative is... Read More about Engineering improved ethylene production: Leveraging systems Biology and adaptive laboratory evolution.

Genome-Scale Metabolic Models and Machine Learning Reveal Genetic Determinants of Antibiotic Resistance in Escherichia coli and Unravel the Underlying Metabolic Adaptation Mechanisms (2021)
Journal Article
Pearcy, N., Hu, Y., Baker, M., Maciel-Guerra, A., Xue, N., Wang, W., …Dottorini, T. (2021). Genome-Scale Metabolic Models and Machine Learning Reveal Genetic Determinants of Antibiotic Resistance in Escherichia coli and Unravel the Underlying Metabolic Adaptation Mechanisms. mSystems, 6(4), Article e00913-20. https://doi.org/10.1128/mSystems.00913-20

Antimicrobial resistance (AMR) is becoming one of the largest threats to public health worldwide, with the opportunistic pathogen Escherichia coli playing a major role in the AMR global health crisis. Unravelling the complex interplay between drug re... Read More about Genome-Scale Metabolic Models and Machine Learning Reveal Genetic Determinants of Antibiotic Resistance in Escherichia coli and Unravel the Underlying Metabolic Adaptation Mechanisms.

Synthetic biology on acetogenic bacteria for highly efficient conversion of c1 gases to biochemicals (2020)
Journal Article
Jin, S., Bae, J., Song, Y., Pearcy, N., Shin, J., Kang, S., …Cho, B. K. (2020). Synthetic biology on acetogenic bacteria for highly efficient conversion of c1 gases to biochemicals. International Journal of Molecular Sciences, 21(20), Article 7639. https://doi.org/10.3390/ijms21207639

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Synthesis gas, which is mainly produced from fossil fuels or biomass gasification, consists of C1 gases such as carbon monoxide, carbon dioxide, and methane as well as hydrogen. Acetogenic bac... Read More about Synthetic biology on acetogenic bacteria for highly efficient conversion of c1 gases to biochemicals.

A Sustainable Chemicals Manufacturing Paradigm Using CO2 and Renewable H2 (2020)
Journal Article
Bommareddy, R. R., Wang, Y., Pearcy, N., Hayes, M., Lester, E., Minton, N. P., & Conradie, A. V. (2020). A Sustainable Chemicals Manufacturing Paradigm Using CO2 and Renewable H2. iScience, 23(6), https://doi.org/10.1016/j.isci.2020.101218

© 2020 The Author(s) The chemical industry must decarbonize to align with UN Sustainable Development Goals. A shift toward circular economies makes CO2 an attractive feedstock for producing chemicals, provided renewable H2 is available through techno... Read More about A Sustainable Chemicals Manufacturing Paradigm Using CO2 and Renewable H2.

Gsmodutils: a python based framework for test-driven genome scale metabolic model development (2019)
Journal Article
Gilbert, J., Pearcy, N., Norman, R., Millat, T., Winzer, K., King, J., …Twycross, J. (2019). Gsmodutils: a python based framework for test-driven genome scale metabolic model development. Bioinformatics, 35(18), 3397-3403. https://doi.org/10.1093/bioinformatics/btz088

© 2019 The Author(s) 2019. Published by Oxford University Press. Motivation: Genome scale metabolic models (GSMMs) are increasingly important for systems biology and metabolic engineering research as they are capable of simulating complex steady-stat... Read More about Gsmodutils: a python based framework for test-driven genome scale metabolic model development.