Skip to main content

Research Repository

Advanced Search

All Outputs (39)

Spin-state dependent pressure responsiveness of Fe(<scp>ii</scp>)-based triazolate metal–organic frameworks (2024)
Journal Article
Kronawitter, S. M., Röβ-Ohlenroth, R., Hallweger, S. A., Hirrle, M., Krug von Nidda, H., Luxenhofer, T., …Kieslich, G. (2024). Spin-state dependent pressure responsiveness of Fe(ii)-based triazolate metal–organic frameworks. Journal of Materials Chemistry C, https://doi.org/10.1039/d4tc00360h

Fe(II)-containing Metal–Organic Frameworks (MOFs) that exhibit temperature-induced spin-crossover (SCO) are candidate materials in the field of sensing, barocalorics, and data storage. Their responsiveness towards pressure is therefore of practical i... Read More about Spin-state dependent pressure responsiveness of Fe(<scp>ii</scp>)-based triazolate metal–organic frameworks.

Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds (2024)
Journal Article
Flinn, B. T., Rance, G. A., Cull, W. J., Cardillo-Zallo, I., Pitcairn, J., Cliffe, M. J., …Khlobystov, A. N. (2024). Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds. ACS Nano, 18(9), 7148–7160. https://doi.org/10.1021/acsnano.3c11820

Room-temperature magnetically switchable materials play a vital role in current and upcoming quantum technologies, such as spintronics, molecular switches, and data storage devices. The increasing miniaturization of device architectures produces a ne... Read More about Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds.

How Reproducible is the Synthesis of Zr–Porphyrin Metal–Organic Frameworks? An Interlaboratory Study (2024)
Journal Article
Boström, H. L. B., Emmerling, S., Heck, F., Koschnick, C., Jones, A. J., Cliffe, M. J., …Lotsch, B. V. (2024). How Reproducible is the Synthesis of Zr–Porphyrin Metal–Organic Frameworks? An Interlaboratory Study. Advanced Materials, Article 2304832. https://doi.org/10.1002/adma.202304832

Metal–organic frameworks (MOFs) are a rapidly growing class of materials that offer great promise in various applications. However, the synthesis remains challenging: for example, a range of crystal structures can often be accessed from the same buil... Read More about How Reproducible is the Synthesis of Zr–Porphyrin Metal–Organic Frameworks? An Interlaboratory Study.

Bi2Se3 interlayer treatments affecting the Y3Fe5O12 (YIG) platinum spin Seebeck effect (2023)
Journal Article
Hu, Y., Weir, M. P., Pereira, H. J., Amin, O. J., Pitcairn, J., Cliffe, M. J., …Woodward, S. (2023). Bi2Se3 interlayer treatments affecting the Y3Fe5O12 (YIG) platinum spin Seebeck effect. Applied Physics Letters, 123(22), Article 223902. https://doi.org/10.1063/5.0157778

In this work, we present a method to enhance the longitudinal spin Seebeck effect at platinum/yttrium iron garnet (Pt/YIG) interfaces. The introduction of a partial interlayer of bismuth selenide (Bi2Se3, 2.5% surface coverage) interfaces significant... Read More about Bi2Se3 interlayer treatments affecting the Y3Fe5O12 (YIG) platinum spin Seebeck effect.

PASCal Python: A Principal Axis Strain Calculator (2023)
Journal Article
Lertkiattrakul, M., Evans, M. L., & Cliffe, M. J. (2023). PASCal Python: A Principal Axis Strain Calculator. The Journal of Open Source Software, 8(90), Article 5556. https://doi.org/10.21105/joss.05556

The response of crystalline materials to external stimuli: whether temperature, pressure or electrochemical potential, is critical for both our understanding of materials and their use. This information can be readily obtained through in-situ diffrac... Read More about PASCal Python: A Principal Axis Strain Calculator.

High-pressure behavior of the magnetic van der Waals molecular framework Ni(NCS) 2 (2023)
Journal Article
Geers, M., Jarvis, D. M., Liu, C., Saxena, S. S., Pitcairn, J., Myatt, E., …Cliffe, M. J. (2023). High-pressure behavior of the magnetic van der Waals molecular framework Ni(NCS) 2. Physical Review B, 108(14), Article 144439. https://doi.org/10.1103/PhysRevB.108.144439

Two-dimensional materials offer a unique range of magnetic, electronic, and mechanical properties which can be controlled by external stimuli. Pressure is a particularly important stimulus, as it can be achieved readily and can produce large response... Read More about High-pressure behavior of the magnetic van der Waals molecular framework Ni(NCS) 2.

Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid (2023)
Journal Article
Flinn, B. T., Radu, V., Fay, M. W., Tyler, A. J., Pitcairn, J., Cliffe, M. J., …Khlobystov, A. N. (2023). Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid. Nanoscale Advances, 2023(23), 6423-6434. https://doi.org/10.1039/d3na00155e

Spin-active nanomaterials play a vital role in current and upcoming quantum technologies, such as spintronics, data storage and computing. To advance the design and application of these materials, methods to link size, shape, structure, and chemical... Read More about Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid.

Modulated self-assembly of hcp topology MOFs of Zr/Hf and the extended 4,4′-(ethyne-1,2-diyl)dibenzoate linker (2023)
Journal Article
Boyadjieva, S. S., Firth, F. C., Alizadeh Kiapi, M. R., Fairen-Jimenez, D., Ling, S., Cliffe, M. J., & Forgan, R. S. (2023). Modulated self-assembly of hcp topology MOFs of Zr/Hf and the extended 4,4′-(ethyne-1,2-diyl)dibenzoate linker. CrystEngComm, 25(14), 2119-2124. https://doi.org/10.1039/d2ce01529c

Careful control of synthetic conditions can enhance the structural diversity of metal–organic frameworks (MOFs) within individual metal-linker combinations. Herein, we show that hcp topology MOFs of both Zr(iv) and Hf(iv), linked by the extended (eth... Read More about Modulated self-assembly of hcp topology MOFs of Zr/Hf and the extended 4,4′-(ethyne-1,2-diyl)dibenzoate linker.

Non-collinear magnetism in the post-perovskite thiocyanate frameworks CsM(NCS)3 (2023)
Journal Article
Geers, M., Lee, J. Y., Ling, S., Fabelo, O., Cañadillas-Delgado, L., & Cliffe, M. J. (2023). Non-collinear magnetism in the post-perovskite thiocyanate frameworks CsM(NCS)3. Chemical Science, https://doi.org/10.1039/d2sc06861c

AMX3 compounds are structurally diverse, a notable example being the post-perovskite structure which adopts a two-dimensional framework with corner- and edge-sharing octahedra. Few molecular post-perovskites are known and of these, none have reported... Read More about Non-collinear magnetism in the post-perovskite thiocyanate frameworks CsM(NCS)3.

One-dimensional alignment of defects in a flexible metal-organic framework (2023)
Journal Article
Fu, Y., Forse, A. C., Kang, Z., Cliffe, M. J., Cao, W., Yin, J., …Kong, X. (2023). One-dimensional alignment of defects in a flexible metal-organic framework. Science Advances, 9(6), Article eade6975. https://doi.org/10.1126/sciadv.ade6975

Crystalline materials are often considered to have rigid periodic lattices, while soft materials are associated with flexibility and nonperiodicity. The continuous evolution of metal-organic frameworks (MOFs) has erased the boundaries between these t... Read More about One-dimensional alignment of defects in a flexible metal-organic framework.

Low-Dimensional Metal-Organic Magnets as a Route toward the S = 2 Haldane Phase (2023)
Journal Article
Pitcairn, J., Iliceto, A., Cañadillas-Delgado, L., Fabelo, O., Liu, C., Balz, C., …Cliffe, M. J. (2023). Low-Dimensional Metal-Organic Magnets as a Route toward the S = 2 Haldane Phase. Journal of the American Chemical Society, 145(3), 1783-1792. https://doi.org/10.1021/jacs.2c10916

Metal-organic magnets (MOMs), modular magnetic materials where metal atoms are connected by organic linkers, are promising candidates for next-generation quantum technologies. MOMs readily form low-dimensional structures and so are ideal systems to r... Read More about Low-Dimensional Metal-Organic Magnets as a Route toward the S = 2 Haldane Phase.

Slow magnetic relaxation in Fe(ii) m-terphenyl complexes (2022)
Journal Article
Valentine, A. J., Geer, A. M., Blundell, T. J., Tovey, W., Cliffe, M. J., Davies, E. S., …Kays, D. L. (2022). Slow magnetic relaxation in Fe(ii) m-terphenyl complexes. Dalton Transactions, 51(47), 18118-18126. https://doi.org/10.1039/d2dt03531f

Two-coordinate transition metal complexes are exciting candidates for single-molecule magnets (SMMs) because their highly axial coordination environments lead to sizeable magnetic anisotropy. We report a series of five structurally related two-coordi... Read More about Slow magnetic relaxation in Fe(ii) m-terphenyl complexes.

Tethering Effects in Oligomer-Based Metal-Organic Frameworks (2022)
Journal Article
Dodson, R. A., Park, J., Kim, J., Cliffe, M. J., & Cohen, S. M. (2022). Tethering Effects in Oligomer-Based Metal-Organic Frameworks. Inorganic Chemistry, 61(31), 12063-12488. https://doi.org/10.1021/acs.inorgchem.2c01567

Metal-organic frameworks (MOFs) can be constructed using conventional molecular linkers or polymeric linkers (polyMOFs), but the relationship and relative properties of these related materials remain understudied. As an intermediate between these two... Read More about Tethering Effects in Oligomer-Based Metal-Organic Frameworks.

Magnetic order in a metal thiocyanate perovskite-analogue (2022)
Journal Article
Cliffe, M. J., Fabelo, O., & Cañadillas-Delgado, L. (2022). Magnetic order in a metal thiocyanate perovskite-analogue. CrystEngComm, https://doi.org/10.1039/d2ce00649a

Metal thiocyanate perovskite-analogues are a growing class of materials, but although they contain paramagnetic cations there have been no reports of their magnetic properties. Due to the large separations between the paramagnetic cations, with a sho... Read More about Magnetic order in a metal thiocyanate perovskite-analogue.

A high-throughput, solvent free method for dispersing metal atoms directly onto supports (2021)
Journal Article
Kohlrausch, E. C., Centurion, H. A., Lodge, R. W., Luo, X., Slater, T., Santos, M. J. L., …Alves Fernandes, J. (2021). A high-throughput, solvent free method for dispersing metal atoms directly onto supports. Journal of Materials Chemistry A, 9(47), 26676-26679. https://doi.org/10.1039/d1ta08372d

Atomically-dispersed metal catalysts (ADMCs) on surfaces have demonstrated high activity and selectivity in many catalytic reactions. However, dispersing and stabilising individual atoms in support materials in an atom/energy-efficient scalable way s... Read More about A high-throughput, solvent free method for dispersing metal atoms directly onto supports.

Exploring the Role of Cluster Formation in UiO Family Hf Metal-Organic Frameworks with in Situ X-ray Pair Distribution Function Analysis (2021)
Journal Article
Firth, F. C., Gaultois, M. W., Wu, Y., Stratford, J. M., Keeble, D. S., Grey, C. P., & Cliffe, M. J. (2021). Exploring the Role of Cluster Formation in UiO Family Hf Metal-Organic Frameworks with in Situ X-ray Pair Distribution Function Analysis. Journal of the American Chemical Society, 143(47), 19668-19683. https://doi.org/10.1021/jacs.1c06990

The structures of Zr and Hf metal-organic frameworks (MOFs) are very sensitive to small changes in synthetic conditions. One key difference affecting the structure of UiO MOF phases is the shape and nuclearity of Zr or Hf metal clusters acting as nod... Read More about Exploring the Role of Cluster Formation in UiO Family Hf Metal-Organic Frameworks with in Situ X-ray Pair Distribution Function Analysis.

Controlling multiple orderings in metal thiocyanate molecular perovskites Ax{Ni[Bi(SCN)6]} (2021)
Journal Article
Lee, J. Y., Ling, S., Argent, S., Senn, M., Cañadillas-Delgado, L., & Cliffe, M. (2021). Controlling multiple orderings in metal thiocyanate molecular perovskites Ax{Ni[Bi(SCN)6]}. Chemical Science, 12(10), 3516-3525. https://doi.org/10.1039/d0sc06619b

We report four new A-site vacancy ordered thiocyanate double double perovskites, A1–x{Ni[Bi(SCN)6](1–x)/3}, A = K+, NH4+, CH3(NH3)+ (MeNH3+) and C(NH2)3+ (Gua+), including the first examples of thiocyanate perovskites containing organic A-site cation... Read More about Controlling multiple orderings in metal thiocyanate molecular perovskites Ax{Ni[Bi(SCN)6]}.

Strengthening the Magnetic Interactions in Pseudobinary First-Row Transition Metal Thiocyanates, M(NCS)2 (2020)
Journal Article
Bassey, E. N., Paddison, J. A., Keyzer, E. N., Lee, J., Manuel, P., da Silva, I., …Cliffe, M. J. (2020). Strengthening the Magnetic Interactions in Pseudobinary First-Row Transition Metal Thiocyanates, M(NCS)2. Inorganic Chemistry, 59(16), 11627–11639. https://doi.org/10.1021/acs.inorgchem.0c01478

Understanding the effect of chemical composition on the strength of magnetic interactions is key to the design of magnets with high operating temperatures. The magnetic divalent first-row transition metal (TM) thiocyanates are a class of chemically s... Read More about Strengthening the Magnetic Interactions in Pseudobinary First-Row Transition Metal Thiocyanates, M(NCS)2.

Direct imaging of correlated defect nanodomains in a metal-organic framework (2020)
Journal Article
Johnstone, D. N., Firth, F. C., Grey, C. P., Midgley, P. A., Cliffe, M. J., & Collins, S. M. (2020). Direct imaging of correlated defect nanodomains in a metal-organic framework. Journal of the American Chemical Society, 142(30), 13081–13089. https://doi.org/10.1021/jacs.0c04468

Defect engineering can enhance key properties of metal-organic frameworks (MOFs). Tailoring the distribution of defects, for example in correlated nanodomains, requires characterization across length scales. However, a critical na-noscale characteriz... Read More about Direct imaging of correlated defect nanodomains in a metal-organic framework.

The Structures of Ordered Defects in Thiocyanate Analogues of Prussian Blue (2020)
Journal Article
Cliffe, M., Keyzer, E., Bond, A., Astle, M. A., & Grey, C. (2020). The Structures of Ordered Defects in Thiocyanate Analogues of Prussian Blue. Chemical Science, 11(17), 4430-4438. https://doi.org/10.1039/D0SC01246G

We report the structures of six new divalent transition metal hexathiocyanatobismuthate frame- works with the generic formula {M[Bi(SCN)6]2+x }x− {guest}x+, M = Mn, Co, Ni and Zn. These 3 frameworks are defective analogues of the perovskite-derived... Read More about The Structures of Ordered Defects in Thiocyanate Analogues of Prussian Blue.