Skip to main content

Research Repository

Advanced Search

All Outputs (17)

Comparative Thermal and Structural Characterization of Sintered Nano-Silver and High-Lead Solder Die Attachments During Power Cycling (2018)
Journal Article
Dai, J., Li, J., Agyakwa, P., Corfield, M., & Johnson, C. M. (2018). Comparative Thermal and Structural Characterization of Sintered Nano-Silver and High-Lead Solder Die Attachments During Power Cycling. IEEE Transactions on Device and Materials Reliability, 18(2), 256-265. https://doi.org/10.1109/TDMR.2018.2825386

13.5 mm × 13.5 mm sintered nano-silver attachments for power devices onto AlN substrates were prepared at 250 ºC and a pressure of 10MPa for 5 minutes and compared with Pb5Sn solder joint die attachments under constant current power cycling with an i... Read More about Comparative Thermal and Structural Characterization of Sintered Nano-Silver and High-Lead Solder Die Attachments During Power Cycling.

Comparison of power cycling reliability of flexible PCB interconnect smaller/thinner and larger/thicker power devices with topside Sn-3.5Ag solder joints (2018)
Journal Article
Li, J., Dai, J., & Johnson, C. M. (2018). Comparison of power cycling reliability of flexible PCB interconnect smaller/thinner and larger/thicker power devices with topside Sn-3.5Ag solder joints. Microelectronics Reliability, 84, 55-65. https://doi.org/10.1016/j.microrel.2018.03.013

The power cycling reliability of flexible printed circuit board (PCB) interconnect smaller/thinner (ST) 9.5 mm × 5.5 mm × 0.07 mm and larger/thicker (LT) 13.5 mm × 13.5 mm × 0.5 mm single Si diode samples have been studied. With the assumption of cre... Read More about Comparison of power cycling reliability of flexible PCB interconnect smaller/thinner and larger/thicker power devices with topside Sn-3.5Ag solder joints.

Improved Reliability of Planar Power Interconnect With Ceramic-Based Structure (2017)
Journal Article
Zhang, H., Li, J., Dai, J., Corfield, M., Liu, X., Liu, Y., …Johnson, C. M. (2018). Improved Reliability of Planar Power Interconnect With Ceramic-Based Structure. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(1), 175-187. https://doi.org/10.1109/jestpe.2017.2758901

This paper proposes an advanced Si3N4 ceramic-based structure with through vias designed and filled with brazing alloy as a reliable interconnect solution in planar power modules. Finite element (FE) modeling and simulation were first used to predict... Read More about Improved Reliability of Planar Power Interconnect With Ceramic-Based Structure.

Time-Efficient Sintering Processes to Attach Power Devices Using Nanosilver Dry Film (2017)
Journal Article
Dai, J., Li, J., Agyakwa, P., & Johnson, C. M. (2017). Time-Efficient Sintering Processes to Attach Power Devices Using Nanosilver Dry Film. Journal of Microelectronics and Electronic Packaging, 14(4), 140-149. https://doi.org/10.4071/imaps.521776

Pressure-assisted sintering processes to attach power devices using wet nanosilver pastes with time scales of minutes to a few hours have been widely reported. This paper presents our work on time-efficient sintering, using nanosilver dry film and an... Read More about Time-Efficient Sintering Processes to Attach Power Devices Using Nanosilver Dry Film.

A Physical RC Network Model for Electrothermal Analysis of a Multichip SiC Power Module (2017)
Journal Article
Li, J., Castellazzi, A., Eleffendi, M. A., Gurpinar, E., Johnson, C. M., & Mills, L. (2018). A Physical RC Network Model for Electrothermal Analysis of a Multichip SiC Power Module. IEEE Transactions on Power Electronics, 33(3), 2494-2508. https://doi.org/10.1109/TPEL.2017.2697959

© 2017 IEEE. This paper is concerned with the thermal models which can physically reflect the heat-flow paths in a lightweight three-phase half-bridge two-level SiC power module with six MOSFETs and can be used for coupled electrothermal simulation.... Read More about A Physical RC Network Model for Electrothermal Analysis of a Multichip SiC Power Module.

Interconnect materials enabling IGBT modules to achieve stable short circuit failure behavior (2017)
Journal Article
Li, J., Yaqub, I., Corfield, M., & Johnson, C. M. (2017). Interconnect materials enabling IGBT modules to achieve stable short circuit failure behavior. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 7(5), 734-744. https://doi.org/10.1109/TCPMT.2017.2683202

Insulated gate bipolar transistor (IGBT) modules, which can fail to stable short-circuit mode, have major applications in electricity network-related fields. Sn-3.5Ag solder joints and sintered Ag joints for the die attachment and Mo, Cu, Sn-3.5Ag, A... Read More about Interconnect materials enabling IGBT modules to achieve stable short circuit failure behavior.

Upscaled Lattice Boltzmann Method for simulations of flows in heterogeneous porous media (2017)
Journal Article
Jun, L., & Brown, D. (2017). Upscaled Lattice Boltzmann Method for simulations of flows in heterogeneous porous media. Geofluids, 2017, Article 1740693. https://doi.org/10.1155/2017/1740693

An upscaled Lattice Boltzmann method (LBM) for flow simulations in heterogeneous porous media at the Darcy scale is proposed in this paper. In the Darcy scale simulations, the Shan-Chen force model is used to simplify the algorithm. The proposed upsc... Read More about Upscaled Lattice Boltzmann Method for simulations of flows in heterogeneous porous media.

Sintered-silver bonding of high-temperature piezoelectric ceramic sensors (2016)
Journal Article
Billore, J., Hascoët, S., Robutel, R., Buttay, C., & Li, J. (2017). Sintered-silver bonding of high-temperature piezoelectric ceramic sensors. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 7(1), 3-9. https://doi.org/10.1109/TCPMT.2016.2628874

Silver sintering is used to bond five components together, in order to form a piezoelectric sensor. A description is provided of the preparation of these components, and of the manufacturing steps, which are carried out at a low temperature (280 °C).... Read More about Sintered-silver bonding of high-temperature piezoelectric ceramic sensors.

Predicting Lifetime of Thick Al Wire Bonds Using Signals Obtained From Ultrasonic Generator (2016)
Journal Article
Arjmand, E., Agyakwa, P., Corfield, M., Li, J., & Johnson, C. M. (2016). Predicting Lifetime of Thick Al Wire Bonds Using Signals Obtained From Ultrasonic Generator. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 6(5), 814-821. https://doi.org/10.1109/TCPMT.2016.2543001

Routine monitoring of the wire bonding process requires real-time evaluation and control of wire bond quality. In this paper, we present a nondestructive technique for detecting bond quality by the application of a semisupervised classification algor... Read More about Predicting Lifetime of Thick Al Wire Bonds Using Signals Obtained From Ultrasonic Generator.

A thermal cycling reliability study of ultrasonically bonded copper wires (2016)
Journal Article
Arjmand, E., Agyakwa, P. A., Corfield, M. R., Li, J., Mouawad, B., & Mark Johnson, C. (2016). A thermal cycling reliability study of ultrasonically bonded copper wires. Microelectronics Reliability, 59, https://doi.org/10.1016/j.microrel.2016.01.009

In this work we report on a reliability investigation regarding heavy copper wires ultrasonically bonded onto active braze copper substrates. The results obtained from both a non-destructive approach using 3D X-ray tomography and shear tests showed n... Read More about A thermal cycling reliability study of ultrasonically bonded copper wires.

Response to comments on “A numerical method to determine interdiffusion coefficients of Cu6Sn5 and Cu3Sn intermetallic compounds” (2015)
Journal Article
Li, J., Agyakwa, P. A., & Johnson, C. M. (2016). Response to comments on “A numerical method to determine interdiffusion coefficients of Cu6Sn5 and Cu3Sn intermetallic compounds”. Intermetallics, 69, https://doi.org/10.1016/j.intermet.2015.10.016

Comments have recently been made by Yuan et al. [1] to deny one statement in our paper [2], Eq. (21) in Wagner's paper [3] can be used to accurately calculate the integrated interdiffusion coefficient for an incremental diffusion couple only under th... Read More about Response to comments on “A numerical method to determine interdiffusion coefficients of Cu6Sn5 and Cu3Sn intermetallic compounds”.

Dependence of overcurrent failure modes of IGBT modules on interconnect technologies (2015)
Journal Article
Yaqub, I., Li, J., & Johnson, C. M. (2015). Dependence of overcurrent failure modes of IGBT modules on interconnect technologies. Microelectronics Reliability, 55(12), 2596-2605. https://doi.org/10.1016/j.microrel.2015.09.020

Insulated gate bipolar transistor (IGBT) modules which can fail to short circuit mode have great of applications in electricity network related fields. Single IGBT samples have been constructed with the standard Al wire bonding, flexible printed circ... Read More about Dependence of overcurrent failure modes of IGBT modules on interconnect technologies.

Quantitative Microstructure Characterization of Ag Nanoparticle Sintered Joints for Power Die Attachment (2014)
Journal Article
Wang, Y., Li, J., Agyakwa, P., Johnson, C. M., & Li, S. (2014). Quantitative Microstructure Characterization of Ag Nanoparticle Sintered Joints for Power Die Attachment. Molecular Crystals and Liquid Crystals, 604(1), 11-26. https://doi.org/10.1080/15421406.2014.967647

© 2014 Copyright © Taylor & Francis Group, LLC. The samples of sintered Ag joints for power die attachments were prepared using paste of Ag nanoparticles at 240°C and 5 MPa for 3 to 17 minutes. Their microstructural features were quantitatively cha... Read More about Quantitative Microstructure Characterization of Ag Nanoparticle Sintered Joints for Power Die Attachment.

Built-in reliability design of highly integrated solid-state power switches with metal bump interconnects (2014)
Journal Article
Li, J., Castellazzi, A., Dai, T., Corfield, M., Solomon, A. K., & Johnson, C. M. (2015). Built-in reliability design of highly integrated solid-state power switches with metal bump interconnects. IEEE Transactions on Power Electronics, 30(5), https://doi.org/10.1109/TPEL.2014.2357334

A stacked substrate–chip–bump–chip–substrate assembly has been demonstrated in the construction of power switch modules with high power density and good electrical performance. In this paper, special effort has been devoted to material selection and... Read More about Built-in reliability design of highly integrated solid-state power switches with metal bump interconnects.

Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles (2014)
Journal Article
Li, J., Johnson, C. M., Buttay, C., Sabbah, W., & Azzopardi, S. (2015). Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles. Journal of Materials Processing Technology, 215, 299-308. https://doi.org/10.1016/j.jmatprotec.2014.08.002

3 mm × 3 mm dummy SiC dies with 100\200\200 nm thick Ti\W\Au metallization have simultaneously been attached using sintering of Ag nanoparticle paste on AlN-based direct bonded copper substrates with 5\0.1 μm thick NiP\Au finish. The effect of prepar... Read More about Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles.

Integrated Half-Bridge Switch Using 70- ?m-Thin Devices and Hollow Interconnects (2014)
Journal Article
Solomon, A. K., Li, J., Castellazzi, A., & Johnson, C. M. (2015). Integrated Half-Bridge Switch Using 70- ?m-Thin Devices and Hollow Interconnects. IEEE Transactions on Industry Applications, 51(1), 556-566. https://doi.org/10.1109/TIA.2014.2334734

An application-oriented integration concept for a half-bridge switch assembly has been developed based on the latest generation 70- ?m-thin insulated gate bipolar transistors and diodes, which are rated at 600 V/200 A. This paper addresses the design... Read More about Integrated Half-Bridge Switch Using 70- ?m-Thin Devices and Hollow Interconnects.

Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient liquid-phase Joints Used for Power Die Attachment (2014)
Journal Article
Li, J., Agyakwa, P., & Johnson, C. (2014). Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient liquid-phase Joints Used for Power Die Attachment. Journal of Electronic Materials, 43(4), 983-995. https://doi.org/10.1007/s11664-013-2971-7

Real Si insulated gate bipolar transistors with conventional Ni/Ag metallization and dummy Si chips with thickened Ni/Ag metallization have both been bonded, at 250°C for 0 min, 40 min, and 640 min, to Ag foil electroplated with 2.7 μm and 6.8 μm thi... Read More about Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient liquid-phase Joints Used for Power Die Attachment.