Skip to main content

Research Repository

Advanced Search

All Outputs (28)

Benchmark exercise on image-based permeability determination of engineering textiles: Microscale predictions (2023)
Journal Article
Syerko, E., Schmidt, T., May, D., Binetruy, C., Advani, S., Lomov, S., …Vorobyev, R. (2023). Benchmark exercise on image-based permeability determination of engineering textiles: Microscale predictions. Composites Part A: Applied Science and Manufacturing, 167, Article 107397. https://doi.org/10.1016/j.compositesa.2022.107397

Permeability measurements of engineering textiles exhibit large variability as no standardization method currently exists; numerical permeability prediction is thus an attractive alternative. It has all advantages of virtual material characterization... Read More about Benchmark exercise on image-based permeability determination of engineering textiles: Microscale predictions.

Controlling resin flow in Liquid Composite Moulding processes through localized irradiation with ultraviolet light (2022)
Journal Article
Endruweit, A., Matveev, M., & Tretyakov, M. V. (2022). Controlling resin flow in Liquid Composite Moulding processes through localized irradiation with ultraviolet light. Polymer Composites, 43(11), 8308-8321. https://doi.org/10.1002/pc.27001

A vacuum infusion process was implemented to produce composite specimens from a random glass filament mat and an acrylic modified polyester resin curable upon irradiation with ultraviolet (UV) light. Through localized irradiation with UV light during... Read More about Controlling resin flow in Liquid Composite Moulding processes through localized irradiation with ultraviolet light.

Out-of-plane permeability measurement for reinforcement textiles: A benchmark exercise (2021)
Journal Article
Yong, A., Aktas, A., May, D., Endruweit, A., Advani, S., Hubert, P., …Willenbacher, B. (2021). Out-of-plane permeability measurement for reinforcement textiles: A benchmark exercise. Composites Part A: Applied Science and Manufacturing, 148, Article 106480. https://doi.org/10.1016/j.compositesa.2021.106480

The out-of-plane permeability of two glass fibre fabrics was measured by 26 institutions using silicone oil as a test fluid. Participants in this study were free to select the test procedure, specimen dimensions and data analysis method, provided tha... Read More about Out-of-plane permeability measurement for reinforcement textiles: A benchmark exercise.

Analysis of contact area in a continuous application-and-peel test method for prepreg tack (2021)
Journal Article
Choong, G., Endruweit, A., & De Focatiis, D. (2021). Analysis of contact area in a continuous application-and-peel test method for prepreg tack. International Journal of Adhesion and Adhesives, 107, Article 102849. https://doi.org/10.1016/j.ijadhadh.2021.102849

The relationship between prepreg tack and the degree of intimate contact (DoIC) between prepreg and a rigid substrate was explored in the context of a continuous application-and-peel test method. Tack for a unidirectional prepreg tape was characteris... Read More about Analysis of contact area in a continuous application-and-peel test method for prepreg tack.

Experimental characterisation of textile compaction response: A benchmark exercise (2020)
Journal Article
Yong, A., Aktas, A., May, D., Endruweit, A., Lomov, S., Advani, S., …Wang, J. (2021). Experimental characterisation of textile compaction response: A benchmark exercise. Composites Part A: Applied Science and Manufacturing, 142, Article 106243. https://doi.org/10.1016/j.compositesa.2020.106243

This paper reports the results of an international benchmark exercise on the measurement of fibre bed compaction behaviour. The aim was to identify aspects of the test method critical to obtain reliable results and to arrive at a recommended test pro... Read More about Experimental characterisation of textile compaction response: A benchmark exercise.

Adaptation of material deposition parameters to account for out-time effects on prepreg tack (2020)
Journal Article
Smith, A., Endruweit, A., Choong, G., De Focatiis, D., & Hubert, P. (2020). Adaptation of material deposition parameters to account for out-time effects on prepreg tack. Composites Part A: Applied Science and Manufacturing, 133, Article 105835. https://doi.org/10.1016/j.compositesa.2020.105835

A single-stage peel method was employed to determine the relationship between key processing parameters and tack for a standard aerospace carbon/epoxy prepreg subjected to various levels of room-temperature out-time. The temperature-dependent viscoel... Read More about Adaptation of material deposition parameters to account for out-time effects on prepreg tack.

Modelling the permeability of random discontinuous carbon fibre preforms (2020)
Journal Article
Xiao, Z., Liu, X., Harper, L. T., Endruweit, A., & Warrior, N. A. (2020). Modelling the permeability of random discontinuous carbon fibre preforms. Journal of Composite Materials, 54(20), 2739-2751. https://doi.org/10.1177/0021998320902506

A force-directed algorithm was developed to create representative geometrical models of fibre distributions in Directed Carbon Fibre Preforms (DCFP). Local permeability values were calculated for the preform models depending on the local fibre orient... Read More about Modelling the permeability of random discontinuous carbon fibre preforms.

A reference specimen for compaction tests of fiber reinforcements (2019)
Journal Article
May, D., Kühn, F., Etchells, M., Fauster, E., Endruweit, A., & Lira, C. (2019). A reference specimen for compaction tests of fiber reinforcements. Advanced Manufacturing: Polymer & Composites Science, 5(4), 230-233. https://doi.org/10.1080/20550340.2019.1701826

Compaction behavior of textiles has a major influence on the outcome of various manufacturing processes for fiber reinforced polymer composites. Nevertheless, no standard exists up to date which specifies test methods or test rigs. A recent internati... Read More about A reference specimen for compaction tests of fiber reinforcements.

Simulation of the forming process for curved composite sandwich panels (2019)
Journal Article
Chen, S., McGregor, O. L., Endruweit, A., Harper, L. T., & Warrior, N. A. (2020). Simulation of the forming process for curved composite sandwich panels. International Journal of Material Forming, 13, 967–980. https://doi.org/10.1007/s12289-019-01520-4

© 2019, The Author(s). For affordable high-volume manufacture of sandwich panels with complex curvature and varying thickness, fabric skins and a core structure are simultaneously press-formed using a set of matched tools. A finite-element-based proc... Read More about Simulation of the forming process for curved composite sandwich panels.

A novel criterion for the prediction of meso-scale defects in textile preforming (2019)
Journal Article
Matveev, M. Y., Endruweit, A., De Focatiis, D. S., Long, A. C., & Warrior, N. A. (2019). A novel criterion for the prediction of meso-scale defects in textile preforming. Composite Structures, 226, Article 111263. https://doi.org/10.1016/j.compstruct.2019.111263

© 2019 The Authors In numerical simulations of reinforcement preforming, fabrics are often modelled using continuum approaches with homogenised material properties in order to reduce the computational costs. To predict the occurrence of meso-scale de... Read More about A novel criterion for the prediction of meso-scale defects in textile preforming.

In-plane permeability characterization of engineering textiles based on radial flow experiments: a benchmark exercise (2019)
Journal Article
May, D., Aktas, A., Advani, S., Berg, D., Endruweit, A., Fauster, E., …Ziegmann, G. (2019). In-plane permeability characterization of engineering textiles based on radial flow experiments: a benchmark exercise. Composites Part A: Applied Science and Manufacturing, 121, 100-114. https://doi.org/10.1016/j.compositesa.2019.03.006

Efficient process design for Liquid Composite Moulding requires knowledge of the permeability, which quantifies textile conductance for liquid flow. Yet, existing textile characterization methods have not yet been standardized, although good progress... Read More about In-plane permeability characterization of engineering textiles based on radial flow experiments: a benchmark exercise.

Characterisation of tack for uni-directional prepreg tape employing a continuous application-and-peel test method (2018)
Journal Article
Endruweit, A., Choong, G. Y., Ghose, S., Johnson, B. A., Younkin, D. R., Warrior, N. A., & De Focatiis, D. S. (2018). Characterisation of tack for uni-directional prepreg tape employing a continuous application-and-peel test method. Composites Part A: Applied Science and Manufacturing, 114, 295-306. https://doi.org/10.1016/j.compositesa.2018.08.027

Employing a test method with coupled application and peel phases, tack was characterised for a UD prepreg tape. Different aspects of tack were explored by varying test parameters and material condition. In addition, different surface combinations wer... Read More about Characterisation of tack for uni-directional prepreg tape employing a continuous application-and-peel test method.

Optimisation of local in-plane constraining forces in double diaphragm forming (2018)
Journal Article
Chen, S., McGregor, O. P., Harper, L. T., Endruweit, A., & Warrior, N. A. (2018). Optimisation of local in-plane constraining forces in double diaphragm forming. Composite Structures, 201, 570-581. https://doi.org/10.1016/j.compstruct.2018.06.062

© 2018 Elsevier Ltd Rigid blocks (risers) were introduced in the double diaphragm forming (DDF) process to change the local in-plane strain distribution in the diaphragms, aimed at reducing wrinkling defects in the production of fabric preforms. A tw... Read More about Optimisation of local in-plane constraining forces in double diaphragm forming.

Frictional behaviour of non-crimp fabrics (NCFs) in contact with a forming tool (2018)
Journal Article
Avgoulas, E. I., Mulvihill, D. M., Endruweit, A., Sutcliffe, M. P., Warrior, N. A., De Focatiis, D. S., & Long, A. C. (2018). Frictional behaviour of non-crimp fabrics (NCFs) in contact with a forming tool. Tribology International, 121, 71-77. https://doi.org/10.1016/j.triboint.2018.01.026

Microscopic observation and analysis are used to examine the role that contact conditions play in determining the frictional behaviour of non-crimp fabrics (NCFs). The true fibre contact length is measured over a range of normal pressures. For the NC... Read More about Frictional behaviour of non-crimp fabrics (NCFs) in contact with a forming tool.

Influence of the micro-structure on saturated transverse flow in fibre arrays (2018)
Journal Article
Gommer, F., Endruweit, A., & Long, A. C. (2018). Influence of the micro-structure on saturated transverse flow in fibre arrays. Journal of Composite Materials, 52(18), 2463-2475. https://doi.org/10.1177/0021998317747954

This study analyses the influence of the random filament arrangement in fibre bundles on the resin flow behaviour. Transverse steady-state resin flow which occurs behind a liquid resin flow front was simulated numerically through statistically equiva... Read More about Influence of the micro-structure on saturated transverse flow in fibre arrays.

Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements (2017)
Journal Article
Endruweit, A., Zeng, X., Matveev, M. Y., & Long, A. C. (2018). Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements. Composites Part A: Applied Science and Manufacturing, 104, https://doi.org/10.1016/j.compositesa.2017.10.020

Axial flow through gaps between aligned straight yarns with realistic cross-sectional shapes, described by power-ellipses, was analysed numerically. At a given fibre volume fraction, equivalent gap permeabilities have a maximum at minimum size of elo... Read More about Effect of yarn cross-sectional shape on resin flow through inter-yarn gaps in textile reinforcements.

Double diaphragm forming simulation for complex composite structures (2017)
Journal Article
Chen, S., McGregor, O., Endruweit, A., Elsmore, M., De Focatiis, D., Harper, L., & Warrior, N. (2017). Double diaphragm forming simulation for complex composite structures. Composites Part A: Applied Science and Manufacturing, 95, 346-358. https://doi.org/10.1016/j.compositesa.2017.01.017

A finite element (FE) model has been developed to simulate the double diaphragm forming (DDF) process, to identify potential defects when forming complex 3D preforms from 2D biaxial non-crimp fabric plies. Three different metrics have been introduced... Read More about Double diaphragm forming simulation for complex composite structures.

Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern (2016)
Journal Article
Chen, S., McGregor, O., Harper, L., Endruweit, A., & Warrior, N. (2016). Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern. Composites Part A: Applied Science and Manufacturing, 91, 156-167. https://doi.org/10.1016/j.compositesa.2016.09.016

To capture the asymmetrical shear behaviour of a bi-axial NCF with a pillar stitch, a non-orthogonal constitutive model was developed and implemented in finite element forming simulations. Preforming experiments indicate that the local distribution o... Read More about Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern.

Quantification of micro-scale variability in fibre bundles (2016)
Journal Article
Gommer, F., Endruweit, A., & Long, A. (2016). Quantification of micro-scale variability in fibre bundles. Composites Part A: Applied Science and Manufacturing, 87, 131-137. https://doi.org/10.1016/j.compositesa.2016.04.019

Local variations in the random filament arrangement in carbon fibre bundles were determined by optical microscopy and automated image analysis. Successive steps of abrading, polishing and acquiring micro¬graphs of the sample surface made it feasible... Read More about Quantification of micro-scale variability in fibre bundles.