Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Short-Term Evaluation of Cellular Fate in an Ovine Bone Formation Model (2021)
Journal Article
Markides, H., Foster, N. C., McLaren, J. S., Hopkins, T., Black, C., Oreffo, R. O. C., …El Haj, A. J. (2021). Short-Term Evaluation of Cellular Fate in an Ovine Bone Formation Model. Cells, 10(7), Article 1776. https://doi.org/10.3390/cells10071776

The ovine critical-sized defect model provides a robust preclinical model for testing tissue-engineered constructs for use in the treatment of non-union bone fractures and severe trauma. A critical question in cell-based therapies is understanding th... Read More about Short-Term Evaluation of Cellular Fate in an Ovine Bone Formation Model.

Porous phosphate-based glass microspheres show biocompatibility, tissue infiltration and osteogenic onset in an ovine bone defect model (2019)
Journal Article
McLaren, J. S., Macri-Pellizzeri, L., Zakir Hossain, K. M., Patel, U., Grant, D. M., Scammell, B. E., …Sottile, V. (2019). Porous phosphate-based glass microspheres show biocompatibility, tissue infiltration and osteogenic onset in an ovine bone defect model. ACS Applied Materials and Interfaces, 11(17), 15436–15446. https://doi.org/10.1021/acsami.9b04603

Phosphate-based glasses (PBG) are bioactive and fully degradable materials with tailorable degradation rates. PBGs can be produced as porous microspheres through a single-step process, using changes in their formulation and geometry to produce varyin... Read More about Porous phosphate-based glass microspheres show biocompatibility, tissue infiltration and osteogenic onset in an ovine bone defect model.

A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model (2014)
Journal Article
McLaren, J. S., White, L., Cox, H., Ashraf, W., Rahman, C., Blunn, G., …Scammell, B. E. (2014). A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model. eCells and Materials Journal, 27, 332-349. https://doi.org/10.22203/eCM.v027a24

Open fractures are at risk of serious infection and, if infected, require several surgical interventions and courses of systemic antibiotics. We investigated a new injectable formulation that simultaneously hardens in vivo to form a porous scaffold f... Read More about A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model.